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Abstract: In this paper, we study the general mechanism of Turing-pattern in a tree-grass competition
model with cross diffusion and time delay. The properties of four equilibrium points, the existence
of Hopf bifurcation and the sufficient conditions for Turing instability caused by cross-diffusion are
analyzed, respectively. The amplitude equation of tree-grass competition model is derived by using
multi-scale analysis method, and its nonlinear stability is studied. The sensitivity analysis also verified
that fire frequency plays a key role in tree-grass coexistence equilibrium. Finally, the Turing pattern of
tree-grass model obtained by numerical simulation is consistent with the spatial structure of tree-grass
density distribution observed in Hulunbuir grassland, China.
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1. Introduction

The coexistence of trees and grasses on the tropical grassland has always been the topic of theoret-
ical and empirical research. One of the landscape characteristics of savanna is the coverage of grass
layer and tree layer, especially the coverage of community, and one of the mechanisms causing this
landscape is random repeated disturbance. In other words, the fire disturbance suppresses the specific
stage of tree life cycle, limits the density of upper trees, and generates an open and unsaturated tree
canopy, which promotes the growth and development of grasses [1–4]. In Savanna, fire is a frequent
disturbance that has a “inhibitor effect” on the growth of trees and grasses [5, 6]. Moreover, these two
species can adapt to the local fire system, and they will be able to survive and reproduce in repeated
fires [7]. However, too frequent or too infrequent fires may lead to species extinction [8,9]. To analyze
the fire effect on the coexistence balance of trees and grasses, ecologists have established many types
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of tree-grass models with fire feedback, and some of which assume that fire was periodicity, unpre-
dictable, and determined by external factors [10, 11]. Others believe that fire come from the internal
feedback of vegetation pattern, and the probability of fire is a predictable disturbance affected by many
factors such as vegetation and its rich characteristics [4,12–14]. For areas covered by grasses and trees
(including grassland and woodland), and the fire issue is fundamental. This is because fire plays a
key role in controlling the generation mechanism of tree-grass spatial patterns, which is a global prob-
lem [15,16]. However, most scholars analyze the fire effect in vegetation pattern dynamics of tree-grass
by collecting observations and statistical analysis, but there are few in-depth theoretical analysis.

In grassland ecosystem, the formation area of tree-grass pattern is broad, and it needs a long evo-
lution process (decades or even longer). For this long-term and large-scale spatial evolution mecha-
nism of tree-grass, considering the propagation and diffusion characteristics of vegetation is one of the
key factors to explore the generation of tree-grass spatial pattern in grassland ecosystem. Therefore,
the reaction-diffusion theory is suitable for the dynamic analysis of vegetation pattern [17]. Mean-
while, many researches agree that the reaction-diffusion system is one of the basic equations describ-
ing the movement of nature, and their application range covers almost many subjects [18–20], such as
predator-prey model [21–23], infectious disease model [24,25], population competition model [26,27]
and neuron oscillator model [28, 29], and when control parameter of the model cross the threshold
value (bifurcation occur), a qualitative change in the behavior of a system will be induced. In order
to understand the underlying ecological mechanisms in the process of tree-grass coexistence, explore
the effect of fire disturbance on grassland desertification, learn from the analysis results of bifurcation
in these studies, and expand the dynamic method of vegetation pattern research, which has important
guiding significance for delaying savanna desertification and promoting the restoration of tree-grass
vegetation. There is little theoretical analysis on the dynamic characteristics of tree-grass model with
the fire frequency as control parameter, and there are also few numerical simulations to verify and pre-
dict the distribution of tree-grass density pattern. In the following analysis, we will use the bifurcation
dynamics theory and method to analyze the effect of fire frequency on tree-grass coexistent equilibrium
from the perspective of nonlinear dynamic system theory.

The other organizational structures of this paper are as follows: In section 2, a universal tree-
grass competition model under fire feedback is selected, and the tree-grass model with time-delay
and diffusion term is established based on it. In section 3, we mainly analyze the stability of the
equilibrium point of the tree-grass model, the Hopf bifurcation induced by time delay, and the sufficient
conditions for the Turing bifurcation caused by diffusion based on the theorem of differential equations
and bifurcation theory. In section 4, the amplitude equation of tree-grass model with time delay and
diffusion is solved by multi-scale analysis method [17]. Taking the delay as the control parameter, and
the stability of the Turing pattern was analyzed. In section 5, the sensitivity analysis of fire frequency to
each variable of tree-grass model is discussed. Based on the analysis, a series of numerical simulations
on the tree-grass pattern are carried out, and compared with the spatial structure of tree-grass density
distribution on Hulunbuir grassland, which is obtained through field observation. It is found that the
theoretical analysis results are consistent with the actual grassland ecosystem.
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2. The model

We represent the dynamics of the savanna system with a tree-grass model (2.1) as the theoretical
model of this paper [6].  dW

dT = rwW(1 − W
Kw

) − c G
Kg

MwW,
dG
dT = rgG(1 − G

Kg
− W

Kw
) − c G

Kg
MgG.

(2.1)

By introducing the dimensionless transformation as follows:

t = Trg, g = G
Kg
, w = W

Kw
,

then the system (2.1) becomes: { dw
dt = B1w(1 − w) − wδ( f )Mw,
dg
dt = g(1 − g − w) − gδ( f )Mg,

(2.2)

where B1 =
rw
rg

, δ( f ) = c g
rg

(c is a dimensionless parameter that describes the strength of the vegetation
feedback on fire, which in this case is driven by grass biomass G of a given pyrogenicity). W, G
represent the biomass of trees and grasses respectively. rw, rg represent the change rate of the biomass
of trees and grasses respectively. kw, kg represent the maximum biomass(carrying capacity) of trees
and grasses that can be supported in a given area respectively. Mw, Mg are constant, which represent
the loss rate of the biomass of trees and grasses in fire respectively. δ( f ) represents the fire frequency.
dw/dt, dg/dt represent the rate of change of state variables w and g in the range [0, 1] respectively.
The growth term B1w(1 − w) in the first equation of model (2.2) indicates that trees are planted where
there are no trees, and grasses does not inhibit their growth. The growth term g(1−g−w) in the second
equation of model (2.2) indicates that grasses is planted in a place where neither trees nor grasses, that
is, the increase of grass biomass is not only inhibited by its own accumulation, but also decreases with
the increase of tree biomass, where δ( f )Mww, δ( f )Mgg represent the disappearance terms of tree and
grass biomass caused by fire frequency respectively.

For the convenience of calculation, let B1 = B, w = u, g = v, Mw = a, Mg = b, δ( f ) = δ, then the
system (2.2) becomes: { du(t)

dt = Bu(t) (1 − u(t)) − δau(t),
dv(t)

dt = v(t) (1 − u(t) − v(t)) − δbv(t),
(2.3)

we have a > 0, b > 0, δ > 0 and B > 0 for the biological implications. The establishment of model (2.3)
reflects the two characteristics of coexistence balance between upper and lower species in vegetation
spatial [6]. One is asymmetric competition, where trees shade the surface vegetation(grasses), but
the surface vegetation(grasses) has relatively little influence on the tree layer, resulting in the gradual
replacement of the grass layer by trees without interference (see the direction of change indicated by
the black solid line in Figure 1). It shows that in grassland ecosystem, when the interference of fire
frequency is not considered, trees are in a dominant position and at the expense of grass layer, and the
competitive effect of grasses is not enough to prevent the rapid supplement of tree biomass [3, 30, 31].
The other is the different sensitivity to fire feedback, compared with grass layer, when the fire intensity
is higher, the damage degree of tree layer is more serious(see width of brown solid line in Figure 1).
This is because the tree and grass species in the core area of fire are burned on a large scale. Due
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to the slow growth and the long regeneration cycle of trees, it can not recover within limited interval
of fires. When considering the interference of fire frequency, grasses as the fuel of fire determines
the fire intensity (see the positive feedback of the red dotted line in Figure 1). Since the canopy of
trees is higher than the heart of the fire, the water content of trees is higher than that of grasses, and
trees are considered to be the factor to inhibit the occurrence of fire in the early stage of fire(see the
negative feedback of the blue dotted line in Figure 1). Trees can also switch from inhibiting the fires
to promoting them if they occur frequently. Note: The model structure is shown in Figure 1, which is
improved according to the reference [12].

Figure 1. Structure diagram of fire-vegetation relationship composed of trees and grasses.
Where the fire frequency is determined by positive feedback with grasses (red arrow), and
trees have a negative effect on fires (blue arrow). The solid black arrow represents the direc-
tion of change in the absence of fire. The brown arrows indicate a negative effect of fire on
the given state variable, with the width of the arrow proportional to the strength of the effect.

For the model (2.3) under the coupling of the fire, tree species and grass species may diffuse in
the direction of regions rich in resources, or may diffuse in areas with few competitors because of the
asymmetric competition between species, or may diffuse with the influence of external environmental
factors such as water flow. Based on the above complex ecological process, It is reasonable to study
the influence of diffusion on the evolution trend of vegetation pattern by using the bifurcation theory
of reaction-diffusion equation (use Laplace operator ∆ to describe the diffusion characteristics of trees
and grasses).

In addition, there may be months or even years between two consecutive fires, during which tree
species and grass species will regrow and affect each other [6]. Therefore, a series of effects of fire
frequency cycle (tempering time) on tree-grass density distribution need to be considered. It is worth
noting that the delay effect caused by fire frequency is one of the key parameters affecting the dynamic
change of vegetation landscape pattern in Savanna [6]. The vegetation density distribution before
the occurring time of fire directly affects the next state of vegetation growth, that is, a series of con-
sequences caused by the time delay “τ” of fire frequency can not be ignored. Based on the above
considerations, this paper introduces the effect of time delay τ of fire frequency to the reduction item
aδu(t), bδv(t) respectively, then the system (2.3) in the following reaction-diffusion form:

{ ∂u(x,y,t)
∂t = Bu(x, y, t)(1 − u(x, y, t)) − δau(x, y, t − τ) + d11∆u + d12∆v, (x, y) ∈ Ω

∂v(x,y,t)
∂t = v(x, y, t)(1 − v(x, y, t) − u(x, y, t)) − δbv(x, y, t − τ) + d21∆u + d22∆v, (x, y) ∈ Ω,

(2.4)

under Neumann boundary condition
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∂u(x, y, t)
∂n

=
∂v(x, y, t)
∂n

= 0, (x, y) ∈ ∂Ω, (2.5)

with the initial condition:

(H0) : u(x, y, 0) = u∗ > 0, v(x, y, 0) = v∗ > 0, (x, y) ∈ Ω.

where u(x, y, t), v(x, y, t) represent the state variables of trees and grasses with respect to time t and
spatial position (x, y), respectively. LetΩ = (0, L)×(0, L), which represents a bounded domain with the
smooth boundary ∂Ω in two-dimensional space R2, where L represents a positive boundary constant.
∆ = ∂2

∂x2 +
∂2

∂y2 is a Laplacian operator in space Ω. δau(x, y, t− τ) and δbv(x, y, t− τ) with delay term τ in
model (2.4) represent the loss of biomass caused by the duration of fire, respectively. d11, d22 represent
the passive diffusion coefficients of u(x, y, t), v(x, y, t) respectively, and we have d11 > 0, d22 > 0 for
biological sense. d12, d21 represent the cross-diffusion coefficients of u(x, y, t), v(x, y, t) respectively.
From the definition of cross-diffusion in reference [32], then the coefficient d12 indicate the influence
of v(x, y, t) density to u(x, y, t) density. That is to say, u(x, y, t) is repelled from v(x, y, t) for d12 > 0,
and u(x, y, t) is attracted to v(x, y, t) for d12 < 0. When the role of u(x, y, t) and v(x, y, t) switched, then
d21 has the same meaning. In addition, we assume d11d22 − d12d21 > 0, which indicates that the flux of
the respective densities in the spatial domain depends more strongly on their own density than on the
other [33, 34].

For the tree-grass model (2.4), the two main explanations for the coexistence balance of trees and
grasses are either competition for resources or different sensitivity to external disturbances, such as
sensitivity to fire frequency [35]. From the perspective of resource competition, trees and grasses are
in a competitive relationship. In order to avoid competition with the grasses (trees), the trees(grasses)
will choose to migrate from the high density area to the low density area of the grasses (trees), it was
corresponded to d12 > 0 (d21 > 0).

From the perspective of sensitivity to fire frequency, grasses is the fuel of fire, while trees is more
damaged by fire [12]. Under the disturbance of fire frequency, the proportion between trees and grasses,
and the distribution of vegetation density will change [3,4,35]. From the sensitivity to fire disturbance,
if the fire frequency is within the threshold range, because the adult trees have certain fire resistance,
and grasses will sacrifice its own biomass as the fuel to support the continuous combustion of fire.
Then the tree layer is in a dominant position, can quickly regrow from the infrequent occurrence of
fire, and expand the range of shade trees at the expense of the grass layer, thus slowly reducing grass
biomass. Therefore, in the process of vegetation restoration under infrequent fire interference, the grass
population will be gradually replaced by trees, and the Savanna gradually expands to the forest, that
is the tree population will spread from the low-density area to the high-density area of grasses, which
was corresponded to d12 < 0.

With the increase of fire frequency, tree and grass biomass will continue to decrease, and more
frequent fires will lead to the extinction of tree species. However, grass species can recover rapidly
from limited tempering interval of fire due to the fast growth cycle, and tree species are no longer in
a dominant competitive position due to the slow growth and metabolism (compared with seedlings,
grasses is in a dominant competitive position) [12]. Finally, the grass population grow vigorously
due to short recover circle and lack of inhibition from dominant competitors (trees), and delay the
regeneration of tree population. Therefore, in the process of vegetation restoration under frequent
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fire interference, the tree population will be gradually replaced by grasses, and the Savanna gradually
expands to the grassland, that is the grass population will spread from the low-density area to the high-
density area of trees, which was corresponded to d21 < 0. Therefore, regardless of d12 < 0 or d21 < 0,
it has practical ecological significance.

3. Stability analysis and Turing instability conditions

Set f (u(t), v(t)) = Bu(t)(1 − u(t) − aδ), g(u(t), v(t)) = v(t)(1 − u(t) − v(t) − bδ). Next, solve the
equations f (u(t), v(t)) = 0 and g(u(t), v(t)) = 0, then the corresponding ODE system (2.3) always
has three boundary equilibrium points E0 = (0, 0), E1 = (u1, 0), E2 = (0, v2) and one coexistence
equilibrium point E∗ = (u∗, v∗). In order to satisfy the biological significance, the positive equilibrium
condition (H0) holds, where u1 = 1 − aδ/B, v2 = 1 − bδ, u∗ = u1 and v∗ = aδ/B − bδ.

3.1. Stability analysis of equilibrium points

Let ũ(x, y, t) = u∗ − u(x, y, t), ṽ(x, y, t) = v∗ − v(x, y, t), which are substituted into Eq (2.4) and
removing the sign “∼”, the Taylor expansion at E∗ = (u∗, v∗) is as follows:

∂u(x, y, t)
∂t

=B (1 − 2u∗) u(x, y, t) − aδu(x, y, t − τ) − Bu(x, y, t)2

+ d11∆u + d12∆v,
∂v(x, y, t)
∂t

= − v∗u(x, y, t) + (1 − u∗ − 2v∗)v(x, y, t) − bδv(x, y, t − τ)

− u(x, y, t)v(x, y, t) − v(x, y, t)2 + d21∆u + d22∆v,

(3.1)

then the linearization of the system (3.1) is:(∂u(x,y,t)
∂t

∂v(x,y,t)
∂t

)
= A

(
u(x, y, t)
v(x, y, t)

)
+ B

(
u(x, y, t − τ)
v(x, y, t − τ)

)
+ D∆

(
u
v

)
, (3.2)

the matrices are:

A =
(
a11 0
a21 a22

)
, B =

(
a13 0
0 a24

)
, D =

(
d11 d12

d21 d22

)
,

where a11 = B(1 − 2u∗), a21 = −v∗, a22 = 1 − u∗ − 2v∗, a13 = −aδ, a24 = −bδ, and the nonlinear term of
the system (3.1) is

N =
(
n1

n2

)
=

(
−Bu(x, y, t)2

−u(x, y, t)v(x, y, t) − v(x, y, t)2

)
.

The characteristic equation corresponding to Eq (3.2) is:(
λpk

3 + pk
4

)
e−λτ + p5e−2λτ + λ2 + λpk

1 + pk
2 = 0, (3.3)

where pk
1 = −a11 − a22 + d11k2 + d22k2, pk

2 =
(
d11k2 − a11

) (
d22k2 − a22

)
− d12k2

(
d21k2 − a21

)
, pk

3 =

−a13 − a24, pk
4 = a24

(
a11 − d11k2

)
+ a13

(
a22 − d22k2

)
and p5 = a13a24.
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Under the condition (H0), assume a11 < 0, a22 < 0 hold, then we obtain the condition

(H1) : 0 < b <
a

2B
, 0 < δ < δ0,

where δ0 =
B
a . Then under the condition (H1), the characteristic equation (3.3) with k = 0, τ = 0

becomes:
λ2 − λ

(
−p0

1 − p0
3

)
+ p0

2 + p0
4 + p5 = 0, (3.4)

then we have

TR0 = −p0
1 − p0

3 = a11 + a13 + a22 + a24 < 0,
DET0 = p0

2 + p0
4 + p5 = a11a22 + a13a22 + a11a24 + a13a24 > 0.

The corresponding ODE system (2.3) has an unique asymptotically stable positive equilibrium point
E∗. Next, using the same method to judge the properties of the other three boundary equilibrium
points E0, E1, E2. The characteristic eigenvalues of the system (2.3) at E0 are λ1(E0) = B − a f and
λ2(E0) = 1 − b f , then we have λ1(E0) > 0, λ2(E0) > 0. The characteristic eigenvalues of the system
(2.3) at E1 are λ1(E1) = −λ1(E0) and λ2(E1) = v∗, then we have λ1(E1) < 0, λ2(E1) > 0. The
characteristic eigenvalues of the system (2.3) at E2 are λ1(E2) = λ1(E0) and λ2(E2) = −λ2(E0), then we
have λ1(E2) > 0, λ2(E2) < 0.

Table 1. Existence and stability of the four equilibrium points.

Condition E0 = (0, 0) E1 = (u1, 0) E2 = (0, v2) E∗ = (u∗, v∗)
Sign(λ1) + - + -
Sign(λ2) + + - -

(H1) Unstable Source Unstable Saddle Unstable Saddle Stable Sink

In summary, the properties of the four balance points E0, E1, E2, E∗, and the property of eigenvalues
of the system in the neighborhood of these equilibrium points are summarized in Table 1. The main
results and conclusion are as below.

Lemma 3.1. For the system (2.3), if the condition (H1) holds, then
Case i. The tree-grass coexistence equilibrium E∗ = (u∗, v∗) is asymptotically stable.
Case ii. The wooded equilibrium E1 = (u1, 0) is a unstable saddle.
Case iii. The grassland equilibrium E2 = (0, v2) is a unstable saddle.
Case iv. The desert equilibrium E0 = (0, 0) is a unstable source. It is to be noted that the existence

of E∗, E1 or E2 destabilizes the desert equilibrium E0.

Obviously, λ1(E∗) < 0, λ2(E∗) < 0 when the condition (H0), (H1) hold. This implies that the
coexistence equilibrium E∗ of (2.3) is locally asymptotically stable. From the above discussion and
Lemma 3.1, we have the following conclusion.

Theorem 3.1. If (H0), (H1) hold, the coexistence equilibrium E∗ of (2.3) is locally asymptotically
stable.

The above result indicates that E∗ attracts all feasible solutions under the condition (H0), (H1).
Biologically, it means that tree species and grass species coexist steadily in the same area for a long
time.
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3.2. Hopf bifurcation analysis

In this section, we want to study the Hopf bifurcation of Eq (2.4) caused by time delay τ. Now
multiply both sides of the system (3.3) by eλτ, then:(

λ2 + λpk
1 + pk

2

)
eλτ + p5e−λτ +

(
λpk

3 + pk
4

)
= 0, (3.5)

suppose Eq (3.5) has a pair of pure imaginary roots, that is λ = ±iw, (w > 0), i2 = −1. Substituting
λ = iw into (3.5), and separating the real and imaginary parts, we have:

(
pk

2 + p5 − w2
)

Cos(ωτ) − pk
1wSin(ωτ) + pk

4 = 0,(
pk

2 − p5 − w2
)

Sin(ωτ) + pk
1wCos(ωτ) + pk

3w = 0,
(3.6)

the direct calculation results are as follows:

cos(ωτ) = −
pk

1 pk
3w2 − pk

4w2 + pk
2 pk

4 − pk
4 p5(

pk
1

)2
w2 − 2pk

2w2 +
(
pk

2

)2
− p2

5 + w4
,

sin(ωτ) =
w

(
pk

3w2 − pk
2 pk

3 + pk
1 pk

4 − pk
3 p5

)
(
pk

1

)2
w2 − 2pk

2w2 +
(
pk

2

)2
− p2

5 + w4

(3.7)

Noting that cos2(ωτ) + sin2(ωτ) = 1, then:

w8 + q1w6 + q2w4 + q3w2 + q4 = 0, (3.8)

and w is the positive real root of (3.8), in which:

q1 = −

(
−2

(
pk

1

)2
+

(
pk

3

)2
+ 4pk

2

)
, q5 = 4pk

1 pk
3 pk

4 p5 − 4
(
pk

2

)3
−

(
pk

2

)2 (
pk

3

)2

q2 = −

(
−

(
pk

1

)4
+

(
pk

3

)2 (
pk

1

)2
+ 4pk

2

(
pk

1

)2
− 6

(
pk

2

)2
− 2pk

2

(
pk

3

)2
+ p2

4 + 2p2
5 − 2

(
pk

3

)2
p5

)
,

q3 =
(
pk

1

)2
(
2p2

2 −
(
pk

4

)2
− 2p2

5

)
+ q5 + 2p2

((
pk

4

)2
+ 2p2

5 − p5

(
pk

3

)2
)
− p5

((
pk

3

)2
p5 + 2

(
pk

4

)2
)
,

q4 = −

(
−

(
pk

2

)4
+

(
pk

4

)2 (
pk

2

)2
+ 2p2

5

(
pk

2

)2
− 2

(
pk

4

)2
p5 pk

2 − p4
5 +

(
pk

4

)2
p2

5

)
.

From (3.7), we have:

τl =
1
w

Arccos

− pk
1 pk

3w2 − pk
4w2 + pk

2 pk
4 − pk

4 p5(
pk

1

)2
w2 − 2pk

2w2 +
(
pk

2

)2
− p2

5 + w4

 + 2πl, l = 0, 1, 2 · · · . (3.9)

According to the existence theorem of Hopf bifurcation [36, 37], let τ be the Hopf bifurcation
parameter, τl is the critical value of Hopf bifurcation. If Reλ = 0, Imλ , 0, then Hopf bifurcation
occurs when the system (3.5) satisfies the transversal condition Re

(
dλ
dτ

)
τ=τmin

, 0. Set τmin = min {τl},
then we have following theorem:
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Theorem 3.2. Let k = 0, if the conditions (H1) and Re
(

dλ
dτ

)
τ=τmin

, 0 hold, then
Case i. When τ ∈ [0, τmin), the system (2.4) is locally asymptotically stable near the equilibrium point

E∗.
Case ii. When τ = τmin, the system (2.4) undergoes Hopf bifurcation the equilibrium point E∗.

Next, we do a simple numerical simulation to verify the existence of Hopf bifurcation. Under the
condition (H1), fixed parameters a = 1.5, b = 0.5, B = 1.2 and δ = 0.3. By solving Eqs (3.8) and (3.9),
we get a unique positive real root w = 0.34, the critical value τmin = 6.8 for Hopf bifurcation, the equi-
librium point E∗ = (u∗, v∗) = (0.6625, 0.225), and dλ/dτ = 0.00768−0.0387i, then Re(dλ/dτ)τ=τmin > 0.
With the change of time t, we obtain the phase diagrams of the system (2.4) without diffusion according
to the different values of delay τ, see Figure 2. In Figure 2 (a) and (b), selected the time delay value
τ = 2.8, τ = 4.87, belong to the region [0, τmin), and the system is asymptotically stable nearby E∗.
In Figure 2 (c), select the time delay value τ = 6.87, belong to the region τ > τmin, then the unstable
periodic solution appears, and the Hopf bifurcation occurs nearby τ = τmin.
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Figure 2. The phase diagram of variables u(t), v(t) and time t of the system (2.4) with k = 0
for (a) : τ = 2.8 < τmin, (b) : τ = 4.87 < τmin, (c) : τ = 6.87 > τmin.

3.3. Turing instability analysis

In this section, we mainly analyze the sufficient conditions of Turing instability. In order to analyze
the effect of τ on the Turing instability of the system (2.4), we develop u(x, y, t − τ) and v(x, y, t − τ)
into power series [31], and only the first order term left as follows:

u(x, y, t − τ) = u(x, y, t) − τ
∂u(x, y, t)
∂t

, v(x, y, t − τ) = v(x, y, t) − τ
∂v(x, y, t)
∂t

, (3.10)

Substituting (3.10) into the system (2.4), then we get:{ ∂u(x,y,t)
∂t (a13τ + 1) = (a11 + a13) u(x, y, t) + d11∆u + d12∆v,

∂v(x,y,t)
∂t (a24τ + 1) = a21u(x, y, t) + (a22 + a24) v(x, y, t) + d21∆u + d22∆v.

After calculation, we have:{ ∂u(x,y,t)
∂t = A11(τ)u(x, y, t) + D11(τ)∆u + D12(τ)∆v,

∂v(x,y,t)
∂t = A21(τ)u(x, y, t) + A22(τ)v(x, y, t) + D21(τ)∆u + D22(τ)∆v,

(3.11)
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where A11(τ) = a11+a13
a13τ+1 , A21(τ) = a21

a24τ+1 , A22(τ) = a22+a24
a24τ+1 , D11(τ) = d11

a13τ+1 , D12(τ) = d12
a13τ+1 , D21(τ) = d21

a24τ+1

and D22(τ) = d22
a24τ+1 . All the coefficients of the system (3.11) with the cross-diffusion are related to the

time delay τ, so we only need to analyze this new system (3.11). Define:

TRk = (A11(τ) + A22(τ)) − (D11(τ) + D22(τ)) k2,

DETk = Γk4 − L1k2 + L2,
(3.12)

then the characteristic equation corresponding to the linearization of the system (3.11) is as follows:

λ2 − TRkλ + DETk = 0,

where Γ = D11(τ)D22(τ) − D12(τ)D21(τ), L1 = A22(τ)D11(τ) − A21(τ)D12(τ) + A11(τ)D22(τ), and L2 =

A11(τ)A22(τ).
In order to analyze the conditions of Turing instability, we assume that the condition (H1

2) : a >
b, 0 < B < a

a+b , τ <
1
aδ holds when the loss rate of tree biomass a is greater than that of grass biomass

b (for a > b), and the condition (H2
2) : 0 < a < b, 0 < B < a

2b , τ <
1
bδ holds when the loss rate of

tree biomass a is less than that of grass biomass b (for a < b). Combine the condition (H1
2) with (H2

2)
means the following condition holds:

(H2) : A22(τ) < 0, A11(τ) < 0, TR0 < 0, DET0 > 0,

since DETk is a curve function of the wave number k. The necessary condition for Turing bifurcation
also needs to satisfy the conditions:

(H3) : L1 > 0, (H4) : DETk < 0.

When the system (3.11) satisfies the condition (H1) − (H4), it means that there is always a wave
number kc that leads to Turing instability. That is to say, when k = kc , 0 the Turing instability occurs
if Re(λ) = 0, Im(λ) , 0. Next, we want to find the critical control parameter τc and the critical wave
number kc for Turing instability. From DETk = 0 and the roots k2 are:

k2
− =

L1 −

√
L2

1 − 4ΓL2

2Γ
, k2
+ =

L1 +

√
L2

1 − 4ΓL2

2Γ
,

according Λ = L2
1 − 4ΓL2 = 0, the critical wave number k2

c =
L1
2Γ .

Next, we will discuss the stability of the system (3.11) with passive diffusion but without cross-
diffusion (for d12 = d21 = 0). Then the system (3.11) becomes:

∂u(x, y, t)
∂t

= A11(τ)u(x, y, t) + D11(τ)∆u,

∂v(x, y, t)
∂t

= A21(τ)u(x, y, t) + A22(τ)v(x, y, t) + D22(τ)∆v,
(3.13)

the general linear analysis shows that the sufficient condition for the generation of Turing pattern is
to satisfy conditions (H2) − (H4). However, in the characteristic equation corresponding to the system
(3.13) without cross-diffusion, there have

DETk|(d12=d21=0) = D11(τ)D22(τ)k4 + k2 (−A22(τ)D11(τ) − A11(τ)D22(τ)) + L2,
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no matter how the wave number k2 is chosen, the curve DETk|(d12=d21=0) ≥ L2 > 0, which is contradicted
with the condition (H4). Therefore, when d12 = d21 = 0, the Turing pattern of the system (2.4) will
not appear, it means that the model (2.4) is always asymptotically stable without cross-diffusion at the
positive equilibrium point E∗. Therefore, cross-diffusion is essential and indispensable to the Turing
instability analysis of the system (2.4). On the other hand, since the coefficients of the system (3.11)
are all related to the time delay τ, the Turing instability of the system (2.4) is also related to the time
delay τ and the fire frequency δ. If δ is chosen as Turing bifurcation parameter, from DETk = 0 we get
the value δc as:

δc =
2
√

(d11 − d21) d2
22 (s4 + s5) + s2 + s3

a2d2
22 − 2abd22s1 + b2d2

11

,

where

s1 = d11 − 2d21, s3 = 2a11bd21d22 + ad2
22 (a11 − a21) ,

s2 = bd11 (a22d11 − a11d22 − a21d22) − aa22d22s1,

s4 = a2a22 (a21d22 − a22d21) + a11b2 (a21d11 − a11d21) ,

s5 = ab
(
a2

21d22 − a21 (a22d11 + a11d22) + 2a11a22d21

)
.

Theorem 3.3. If conditions (H1)− (H4) hold, and the wave number k2 = m2+n2, (m, n) ∈ N0
+. Then

the system (2.4) undergoes k-mode Turing instability if any of the following conditions is true.
Case i. The wave number k2 and Turing bifurcation parameter δ are satisfy k2

c < k2 < k2
+ and

δc < δ < δ0 respectively.
Case ii. The fire frequency (τ, δ) ∈ Region {η1 < 0, η2 > 0, η3 > 0, η4 > 0}.

Remark 3.1. For the case i in the Theorem 3.3, we make the following assumptions for the Turing
instability analysis of the system (2.4) for convenient. That is, the Turing instability conditions are
(H1) − (H4), which would mean that both the condition δ > δc and the condition 0 < δ < δ0 hold.
Therefore, the range of Turing instability induced by fire frequency is summarized as δc < δ < δ0.

Remark 3.2. For the case ii in the Theorem 3.3, we make the following assumptions for the Turing
instability analysis of the system (2.4) for convenient. That is, if the time delay τ is chosen as Turing
bifurcation parameter, set curves η1 = TR0, η2 = DET0, η3 = L1, η4 = Λ, and these curves are
functions of τ and δ. In addition, these curves will have to satisfy the Turing instability conditions
(H1) − (H4), which can be simplified to the region {η1 < 0, η2 > 0, η3 > 0, η4 > 0}.

In order to further determine the conditions of Turing instability caused by the combined effects
of diffusion and time delay, the case i and case ii in Theorem 3.3 are discussed through numerical
simulation. If the conditions (H2) − (H4) hold, the parameters are taken as a = 0.95, b = 1.1, B = 0.5,
d11 = 0.0004, d12 = 0.005, d21 = −0.0001 and d22 = 0.00495.

Discussing the relationship between k and δ in Case i of theorem 3.3. Set τ = 0.1, then we get
k2

c = 135, δc = 0.37697 and δ0 = 0.52631. According to Theorem 3.3, Turing instability occurs in the
range δc < δ < δ0. We discretize δ and observe the relationship between DETk and k2, as shown in
Figure 3. The system (2.4) is asymptotically stable and Turing instability does not occur for δ < δc,
see the curve δ1, δ2. The system (2.4) occurs Turing instability for δc < δ < δ0, see the curve δ4, δ5, and
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Turing instability

δ1 = 0.35697

δ2 = 0.36697

δ3 = δc = 0.37697

δ4 = 0.38697

δ5 = 0.38697

100 200 300 400 500 600
k

2

0.2

0.4

0.6

DETk

Figure 3. The shaded areas is Turing instability. According to the different value of fire
frequency δ, the corresponding relationship between the curve DETk and the wave number
k2, where δ1 = 0.35697, δ2 = 0.36697, δ3 = δc = 0.37697, δ4 = 0.38697, δ5 = 0.39697.

the shaded areas is the Turing instability region. The numerical simulation is consistent with the case i
of Theorem 3.3.

Discussing the relationship between τ and δ in case ii of theorem 3.3, the curves of (τ, δ) are
expressed as follows:

η1 = −
0.27273τδ2 − 0.52632τδ − 0.143541δ + 0.47847

δ2τ2 − 1.96172δτ + 0.95694
,

η2 =
0.38278δ − 0.72727δ2

δ2τ2 − 1.96172δτ + 0.9569
,

η3 = −
0.00239 − 0.00807δ

δ2τ2 − 1.96172δτ + 0.95694
,

η4 =
0.00007δ2 − 0.000042δ

(0.90909 − δτ)2(1.05263 − δτ)2 ,

the Turing instability occurs in the region of conditions η1 < 0, η2 > 0, η3 > 0 and
η4 > 0. By solving the above inequality equations, we obtain two simplified Turing instabil-
ity regions with respect to (τ, δ), which are Region I: {0.37351 < δ < 0.52632, 0 < τ ≤ 1.7273} and
Region II:

{
1.7273 < τ < 2.4339, 0.37351 < δ < 0.9091

τ

}
. By merging the Region I and the Region II,

the range of Turing instability is obtained as shown in Figure 4, where the gray region represents
Region I and the blue region represents Region II.

Next, we simulate the trends of curves η1, η2, η3 and η4 in these two regions respectively. In Figure 5,
selected δ = 0.49 and we are easy to find the Turing instability occurs for 0 < τ < 1.34669, where
Figure 5(a) represents the trend of curves η1, η2, η3, η4 with τ > 0. Figure 5(b) represents the truncated
part of 5(a) with 0 < τ < 1.34669, where the shaded area is the Turing instability region. In Figure 6,
selected δ = 0.4 and we are easy to find the Turing instability occurs for 0 < τ < 1.7408, where
Figure 6(a) represents the solution of curves η1, η2, η3 and η4 with τ > 0. Figure 6(b) represents the
truncated part of Figure 6(a) with 0 < τ < 1.7408 and the shadow areas is the Turing instability region.
The numerical simulation is consistent with the case ii of Theorem 3.3.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12073–12103.



12085

Region I Region II

0.0 0.5 1.0 1.5 2.0 2.5

0.40

0.45

0.50

τ

δ

Figure 4. The region of Turing instability, where Region I :
{0.37351 < δ < 0.52632, 0 < τ ≤ 1.7273} and Region II :{
1.7273 < τ < 2.4339, 0.37351 < δ < 0.9091

τ

}
.
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Figure 5. The trajectories of η1, η2, η3, η4 with δ = 0.49, where (a) for τ > 0, (b) for
0 < τ < 1.34669.
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Figure 6. The trajectories of η1, η2, η3, η4 with δ = 0.4, where (a) for τ > 0, (b) for
0 < τ < 1.7408.
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From the above discussions, the Turing instability of system (2.4) and the conditions for the gen-
eration of Turing pattern are obtained, but the generation and variation of the Turing pattern are still a
problem. Therefore, in the following discussion, we will derive the amplitude equation for the Turing
pattern starting nearby τ = τc, which explains the stability of different forms of Turing pattern and the
structural transformation between them [17].

4. The amplitude equation of Turing patterns

In this section, we will use multi-scale analysis to derive the amplitude equations of the Turing
pattern of the system (2.4) near the case k2 = k2

c and τ = τc, and refer to Ouyang Qi [17] for the
detailed information of the derivation process and the relevant conclusions of the pattern. We develop
the variables u(x, y, t − τ), v(x, y, t − τ) into power series of τ and only remain the first order terms. The
effect of diffusion is always considered, and let u(x, y, t − τ) = u(t − τ), v(x, y, t − τ) = v(t − τ). Then
the abstract form of system (2.4) at the equilibrium E∗ is:

∂u(x,y,t)
∂t = a11u(x, y, t) + a13û(x, y, t) + d11∆u + d12∆v + n1,

∂v(x,y,t)
∂t = a21u(x, y, t) + a22v(x, y, t) + a24v̂(x, y, t) + d21∆u + d22∆v + n2,

∂û(x,y,t)
∂t = 1

τ
(u(x, y, t) − û(x, y, t)) + ∆û,

∂v̂(x,y,t)
∂t = 1

τ
(v(x, y, t) − v̂(x, y, t)) + ∆v̂.

(4.1)

The Turing pattern of the system (4.1) can be represented by three wave vectors k1, k2, k3 with an
included angle of 120o, which are satisfied k1+k2+k3 = 0 and |ki|

2 = k2
c , but with different directions.

We still use the symbol U = (u, v, û, v̂)T stands for the solution of the system (4.1), and rewrite it at the
critical value of Turing bifurcation:

U =


u
v
û
v̂

 =
3∑

i=1


Eu

j

Ev
j

Eû
j

Ev̂
j

 Exp (ikir) + c.c., j = 1, 2, 3,

where r = (x, y) is the spatial row vector in two-dimensional space Ω, x, y is spatial variable, c.c.
denotes the complex conjugate roots of the former term, then the system (4.1) can be rewired as:

∂U
∂t
= LU + G, (4.2)

where L is linear operator, G is nonlinear operator and we have L = Lc + (τc − τ)M with

Lc =


a11 + d11∆ d12∆ a13 0
a21 + d21∆ a23 + d22∆ 0 a24

a31 0 ∆ − a31 0
0 a31 0 ∆ − a31

 , M = (τc − τ)


0 0 0 0
0 0 0 0
m11 0 −m11 0
0 m11 0 −m11

 , G =

n1

n2

0
0


(4.3)

where a31 =
1
τc
, m11 = −

∂a31
∂τ
|τ=τc =

1
ττc

. The system (4.2) occurs the Turing bifurcation close to the
critical values k2=k2

c and the time delay τ=τc. We introduce an additional parameter κ, expand the

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12073–12103.



12087

bifurcation parameter τ near the critical value τc as follows:

U = κ


u1

v1

û1

v̂1

 + κ2

u2

v2

û2

v̂2

 + κ3

u3

v3

û3

v̂3

 + o(κ4),

G = κ2G2 + κ
3G3 + o(κ4),

τc − τ = κτ
1
c + κ

2τ2
c + κ

3τ3
c + o(κ4),

(4.4)

where

G2 =


−Bu2

1
−u1v1 − v2

1
0
0

 , G3 =


−2Bu1u2

−u2v1 − u1v2 − 2v1v2

0
0

 .
According to the chain rule of differentiation, we use the method of multi-scale analysis and intro-

duce multiple time scales T0 = t, T1 = κt, T2 = κ
2t, and the derivative of time should be transformed

into:
∂

∂t
=
∂

∂T0
+ κ
∂

∂T1
+ κ2

∂

∂T2
+ O(κ4). (4.5)

Substituting (4.3), (4.4) into the system (4.2), which can be expanded in orders of small perturbation
κ, then we get the following results:

κ : Lc


u1

v1

û1

v̂1

 = 0, (4.6)

κ2 : Lc


u2

v2

û2

v̂2

 = ∂
∂T1


u1

v1

û1

v̂1

 − τ1
cM


u1

v1

û1

v̂1

 −G2, (4.7)

κ3 : Lc


u3

v3

û3

v̂3

 = ∂
∂T1


u2

v2

û2

v̂2

 − ∂
∂T2


u1

v1

û1

v̂1

 − τ1
cM


u2

v2

û2

v̂2

 − τ2
cM


u1

v1

û1

v̂1

 −G3, (4.8)

where 0 denotes the 2×1 null matrix. Because Lc is the symbol of linear operator of the system (4.2) at
the critical point, (u1, v1, û1, v̂1)T is the linear combination of the eigenvectors correspond to eigenvalue
zero. For the first order term of κ, we solve Eq (4.6) yields:

u1

v1

û1

v̂1

 =

z1

z2

z3

1


(
Υ1Exp(ik1 · r) + Υ2Exp(ik2 · r) + Υ3Exp(ik3 · r)

)
+ c.c., (4.9)
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where z1 = z2z3, z2 = k2
cτc + 1, and z3 =

d12k4
cτc+d12k2

c
−aδ+Bk2

cτc−2Bu∗k2
cτc−2Bu∗+B−d11k4

cτc−d11k2
c
. Υ j is the amplitude of mode

Exp
(
ik jr

)
under the first order perturbation, and its form is determined by the higher order perturbation

term. For the second order term of κ, we solve Eq (4.7) yields:

κ2 : Lc


u2

v2

û2

v̂2

 = ∂
∂T1


u1

v1

û1

v̂1

 − τ1
cM


u1

v1

û1

v̂1

 −G2 =


Θu

Θv

Θû

Θv̂

 . (4.10)

From Fredholm solubility condition, the system (4.10) must be orthogonal to the zero eigenvector
of the adjoint operator L∗c corresponding to Lc, then the system has a non-trivial solution. The zero
eigenvector of L∗c is:

1
c1

c2

c3


(
Υ1Exp(−ik1 · r) + Υ2Exp(−ik2 · r) + Υ3Exp(−ik3 · r)

)
+ c.c..

Let Θ j
u, Θ

j
v, Θ

j
û, Θ

j
v̂ represent the coefficients of Θu, Θv, Θû, Θv̂ corresponding to Exp(ik j · r) in the

system (4.9). According to the orthogonality condition:

(1, c1, c2, c3)


Θ

j
u

Θ
j
v

Θ
j
û
Θ

j
v̂

 = 0,

where c1 =
−aδ+Bk2

cτc−2Bu∗k2
cτc−2Bu∗+B−d11k4

cτc−d11k2
c

(k2
cτc+1)(d21k2

c+v∗) , c2 = −
aδτc

k2
cτc+1 and c3 =

bc1c2
a , then we get:

(c3 + c1z2 + c2z3 + z1) ∂Υ1
∂T1
=
τ1c (z2−1)(c3+c2z3)

ττc
Υ1 +

(
−2Bz2

1 − 2c1z2 (z1 + z2)
)
Ῡ2Ῡ3,

(c3 + c1z2 + c2z3 + z1) ∂Υ2
∂T1
=
τ1c (z2−1)(c3+c2z3)

ττc
Υ2 +

(
−2Bz2

1 − 2c1z2 (z1 + z2)
)
Ῡ1Ῡ3,

(c3 + c1z2 + c2z3 + z1) ∂Υ3
∂T1
=
τ1c (z2−1)(c3+c2z3)

ττc
Υ3 +

(
−2Bz2

1 − 2c1z2 (z1 + z2)
)
Ῡ1Ῡ2.

(4.11)

The system (4.6) is the amplitude equation under the first-order perturbation. While the coefficient
of the second-order term is greater than zero, and the amplitude Υ j is divergent function, so we need to
introduce the higher-order perturbation to saturate with it. According to the orthogonal condition and
the formula in the reference [19, 20], the system (4.10) is calculated as follows:

u2

v2

û2

v̂2

=

u0

2
v0

2
û0

2
v̂0

2

+
3∑

j=1


u j

2
v j

2
û j

2
v̂ j

2

Exp(ik j ·r)+
3∑

j=1


u j j

2
v j j

2
û j j

2
v̂ j j

2

Exp(i2k j ·r) +


u12

2
v12

2
û12

2
v̂12

2

Exp (i (k1−k2)·r)

+


u23

2
v23

2
û23

2
v̂23

2

Exp (i (k2−k3)·r)+


u31

2
v31

2
û31

2
v̂31

2

Exp (i (k3−k1)·r)+ c.c.,

(4.12)
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and we get 
u0

2
v0

2
û0

2
v̂0

2

=


h0
1

h0
1h0

2
h0

1
h0

1h0
2


(
|Υ1|

2 + |Υ2|
2 + |Υ3|

2
)
,


u j

2
v j

2
û j

2
v̂ j

2

=

z1

z2

z3

1

Υ j,


u j j

2
v j j

2
û j j

2
v̂ j j

2

=


h2
1

h2
1h2

2
a31
r1

h2
1

a31
r1

h2
1h2

2

Υ2
j ,


u12

2
v12

2
û12

2
v̂12

2

 =


h12
1

h12
1 h12

2
a31
r4

h12
1

a31
r4

h12
1 h12

2

Υ1Ῡ2,


u23

2
v23

2
û23

2
v̂23

2

=


h12
1

h12
1 h12

2
a31
r4

h12
1

a31
r4

h12
1 h12

2

Υ2Ῡ3,


u31

2
v31

2
û31

2
v̂31

2

=


h12
1

h12
1 h12

2
a31
r4

h12
1

a31
r4

h12
1 h12

2

Υ3Ῡ1,

where

r1 = a31 + 4k2
c , r2 = a22 − 4d22k2

c , r3 = a11 − 4d11k2
c , r4 = a31 + 3k2

c ,

r5 = a22 − 3d22k2
c , r6 = a11 − 3d11k2

c , r7 = d11d22 − d12d21,

h0
1 =

2Bz2
1

a11 + a13
, h0

2 =
z2 (z1 + z2) (a11 + a13) − a21Bz2

1

(a22 + a24) Bz2
1

,

h2
1=

r1

(
a22Br1z2

1+a24a31Bz2
1+4k2

cr1

(
d12z2 (z1 + z3)−Bd22z2

1

))
(a11r1 + a13a31) (a24a31 + r1r2)−4k2

cr1
(
a22d11r1 − a21d12r1+a24a31d11−4r7r1k2

c
),

h12
1 =

2r4

(
a22Br4z2

1+a24a31Bz2
1+3k2

cr4

(
d12z2 (z1 + z3)−Bd22z2

1

))
(a11r4 + a13a31) (a24a31 + r4r5)−3k2

cr4
(
a22d11r4−a21d12r4+a24a31d11−3r7r4k2

c
),

h2
2=

z2
1B

(
42d21k4

c−a21r1

)
+4a31Bd21z2

1k2
c+z2a31 (z1 + z3) (a13 + r3)+4r3z2 (z1 + z3) k2

c

a22Br1z2
1+a24a31Bz2

1+4k2
cr1

(
d12z2 (z1 + z3)−Bd22z2

1

) ,

h12
2 =

z2
1B

(
32d21k4

c−a21r4

)
+3a31Bd21z2

1k2
c + z2a31 (z1 + z3)(a13 + r3)+3r6z2 (z1 + z3) k2

c

a22Br4z2
1+a24a31Bz2

1+3k2
cr4

(
d12z2 (z1 + z3)− Bd22z2

1

) .

For the third order of κ, we set:

Lc


u3

v3

û3

v̂3

 = ∂
∂T1


u2

v2

û2

v̂2

 − ∂
∂T2


u1

v1

û1

v̂1

 − τ1
cM


u2

v2

û2

v̂2

 − τ2
cM


u1

v1

û1

v̂1

 −G3 =


Xu

Xv

Xû

Xv̂

 . (4.13)

Similarity, we let X j
u, X

j
v, X

j
û, X

j
v̂ represent the coefficients of Xu, Xv, Xû, Xv̂ corresponding to

Exp(ik j · r) in the system (4.13). According to the orthogonality condition, we have:

(c3 + c1z2 + c2z3 + z1)
(
∂W1
∂T1
+ ∂Υ1
∂T2

)
=

c3(z2−1)+c2(z1−z3)
ττc

(
τ1

cW1 + τ
2
cΥ1

)
+

(
−2Bz2

1 − 2c1z2 (z1 + z2)
) (

W̄2Ῡ3 + W̄3Ῡ2

)
+ Υ1

[
G1

2|Υ1|
2 +G2

2

(
|Υ2|

2 + |Υ3|
2
)]
,

(c3 + c1z2 + c2z3 + z1)
(
∂W2
∂T1
+ ∂Υ2
∂T2

)
=

c3(z2−1)+c2(z1−z3)
ττc

(
τ1

cW2 + τ
2
cΥ2

)
+

(
−2Bz2

1 − 2c1z2 (z1 + z2)
) (

W̄1Ῡ3 + W̄3Ῡ1

)
+ Υ2

[
G1

2|Υ2|
2 +G2

2

(
|Υ1|

2 + |H3|
2
)]
,

(c3 + c1z2 + c2z3 + z1)
(
∂W3
∂T1
+ ∂Υ3
∂T2

)
=

c3(z2−1)+c2(z1−z3)
ττc

(
τ1

cW3 + τ
2
cΥ3

)
+

(
−2Bz2

1 − 2c1z2 (z1 + z2)
) (

W̄1Ῡ2 + W̄2Ῡ1

)
+ Υ3

[
G1

2|Υ3|
2 +G2

2

(
|Υ1|

2 + |Υ2|
2
)]
,

(4.14)
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where

G1
2 = −2Bz1

(
h2

1 + h0
1

)
− c1

[(
h2

1 + h0
1

)
z2 +

(
h2

1h2
2 + h0

1h0
2

)
(z1 + 2z2)

]
,

G2
2 = −2Bz1

(
h2

1 + h0
1

)
− c1

[(
h12

1 + h0
1

)
z2 +

(
h12

1 h12
2 + h0

1h0
2

)
(z1 + 2z2)

]
.

Let E j = Eu
j = z3Ev

j = z2Eû
j = z1Ev̂

j be the coefficients of Exp(ik j · r), then:
Eu

j

Ev
j

Eû
j

Ev̂
j

 = κ

z1

z2

z3

1

Υ j + κ
2


z1

z2

z3

1

 W j + o(κ3). (4.15)

Multiplying (4.11) and (4.14) by κ and κ2,respectively, and considering together with the variables
in (4.5) and (4.15), the amplitude equation corresponding to E j is obtained:

ς0
∂E1
∂t =µE1+hĒ2Ē3−

[
g1|Ē1|

2+g2

(
|Ē2|

2+|Ē3|
2
)]

E1,

ς0
∂E2
∂t =µE2+hĒ1Ē3−

[
g1|Ē2|

2+g2

(
|Ē1|

2+|Ē3|
2
)]

E2,

ς0
∂E3
∂t =µE3+hĒ1Ē2−

[
g1|Ē3|

2+g2

(
|Ē1|

2+|Ē2|
2
)]

E3,

(4.16)

where µ = τ−τc
τc

, ς0 =
τ(c1z2+c2z3+c3+z1)

(z2−1)(c2z3+c3) , h = τ(−2Bz2
1−2c1z2(z1+z2))

z1(z2−1)(c2z3+c3) , g1 =
G1

2τ

z2
1(z2−1)(c2z3+c3) , g2 =

G2
2τ

z2
1(z2−1)(c2z3+c3) .

Next, we analyze the stability of the amplitude equation. Each amplitude in system (4.16) can
be expressed as E j = θ jExp

(
iρ j

)
, j = 1, 2, 3, and θ j = |E j|, ρ j represents the corresponding phase

angle. Substituting E j into Eq (4.16) and separating the real and imaginary parts yields four differential
equations of the real variables as follows:

ς0
∂ρ

∂t = −h θ
2
1θ

2
2+θ

2
1θ

2
3+θ

2
2θ

2
3

θ1θ2θ3
sin(ρ),

ς0
∂θ1
∂t = µθ1 + hθ2θ3 cos(ρ) − g1θ

3
1 − g2

(
θ22 + θ

2
3

)
θ1,

ς0
∂θ2
∂t = µθ2 + hθ1θ3 cos(ρ) − g1θ

3
2 − g2

(
θ21 + θ

2
3

)
θ2,

ς0
∂θ3
∂t = µθ3 + hθ1θ2 cos(ρ) − g1θ

3
3 − g2

(
θ21 + θ

2
2

)
θ3,

(4.17)

where ρ = ρ1 + ρ2 + ρ3. Next, the linear stability of the amplitude equation (4.17) and the Turing
pattern are analyzed. According to the reaction-diffusion pattern dynamics theory [17], the properties
are summarized as follows:

Proposition 4.1. The amplitude equation (4.17) satisfies
Case i. If the system is in steady state (ρ > 0), the sum of pattern phase can only take steady states
ρ = 0 and ρ = π. In which, the solution of ρ = 0 corresponding to pattern H0 is stable for h > 0, and
the solution of ρ = π corresponding to pattern Hπ is stable.

Case ii. The spot pattern are H0 and Hπ, which is introduced by subcritical bifurcation of the equa-
tion. The stripe pattern is S p, which is introduced by the supercritical bifurcation of the equation.

Case iii. If the mode equation has a steady-state solution, the coefficients of the second order term
should satisfy g1 > 0, g2 > 0, and g2

g1
> 1.

Case iv. The bifurcation parameter of the amplitude equation is µ, the formula of the control param-
eters are:

µ1 =
−h2

4(g1 + 2g2)
, µ2 = 0, µ3 =

h2g1

(g1 − g2)2 , µ4 =
h2(2g1 + g2)

(g2 − g1)2 . (4.18)
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Proposition 4.2. If h , 0 holds, and the relationship between the critical values is µ1 < µ2 < µ3 < µ4,
then the system (4.17) has five kinds of stationary solutions, as shown below.

Case i. The stationary state: θ1 = θ2 = θ3 = 0. The stationary state is always stable for µ < µ2 = 0.
Case ii. Stripe pattern: θ1 =

√
µ

g1
, θ2 = θ3 = 0. The stripe pattern is always stable for µ > µ3 =

h2g1
(g1−g2)2 .

Case iii. When θ− = |h|±
√

h2+4(g1+2g2)µ
2(g1+2g2) , we have two kinds of spot pattern H0 and Hπ exist for µ > µ1,

where The spot pattern Hπ is always unstable for h > 0. In which, for the stationary state θ− =
|h|−
√

h2+4(g1+2g2)µ
2(g1+2g2) , then the corresponding pattern will never stable, and for the stationary state θ+ =

|h|+
√

h2+4(g1+2g2)µ
2(g1+2g2) , then the corresponding pattern is stable for µ1 < µ < µ4

Case iv. There is spot-stripe mixture pattern when g2 > g1, one is θ1 =
|h|

g2−g1
, the others are θ2 = θ3 =√

µ−g1θ
2
1

g2+g1
, and it is always unstable for µ > g1θ

2
1.

5. System identification

In this subsection, we make sensitivity analysis on the system (2.4) with k = 0, and discuss the
influence of fire frequency δ to the density distribution of trees and grasses. Then we studied the
effect of fire frequency δ to the Turing pattern generation of tree-grass coexistence system (2.4) on the
basis of numerical simulation by Matlab, which were based on the above sensitivity analysis results.
For the tree-grass model (2.4), we are very interested in the self-organizing variation of its Turing
pattern, so we chose the Neumann boundary condition(zero flux), which means that external input is
not considered.

5.1. Sensitivity analysis

Sensitivity analysis is a method to judge the sensitivity of change in a state or output variable
of nonlinear dynamic model to system environmental parameters. Therefore, sensitivity analysis of
tree-grass model parameters is a very important step in the generation of vegetation pattern. The
model (2.2) involves many parameters, among which the fire frequency δ has a great effect on tree-
grass coexistence. and the delay effect τ of fire frequency also cannot be ignored.

Table 2. The value of parameters or environmental factors in Model (2.2).

Parameter rw rg Mw(a) Mg(b) δ

Parameter Value 0.08year−1 1.5year−1 0.1year−1 0.05year−1 0 − 2year−1

Reference [6] [6] [6] [6] [38]

In order to verify whether the system (2.4) can truly reflect the influence of δ on the density distribu-
tion of trees and grasses, we will make sensitivity analysis on the model (2.4) without considering the
effect of spatial diffusion. Refer to the parameters value shown in Table 2 and the other parameters are
τ = 1.23, B1(B) = rw/rg = 0.533, δ = 1.7 , Time step ∆t = 2500. Reducing mathematical expression
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by simplifying variables, the sensitivity equation of model (2.4) with itk = 0 is:
u̇(t) = Bu(t) (1 − u(t)) − aδu(t − τ),
v̇(t) = v(t) (1 − u(t) − v(t)) − bδv(t − τ),

Ṡ 1(t) = BS 1(t) (1 − 2u(t)) − aδS 1(t − τ) − au(t − τ),
Ṡ 2(t) = S 2(t) (1 − u(t) − 2v(t)) − bδS 2(t − τ) − S 1(t)v(t) − bv(t − τ),

(5.1)

where the sensitivity of trees and grasses to fire frequency are set as:

S 1 (t) =
∂u (t)
∂ f
, S 2 (t) =

∂v (t)
∂ f
, S 1 (t − τ) =

∂u (t − τ)
∂ f

, S 2(t − τ) =
∂v (t − τ)
∂ f

.

To eliminate influence of dimension the relative sensitivity of trees and grasses to fire frequency
are δS 1(t)/u(t), δS 2(t)/v(t). We will use the RK − 4 method to carry out sensitivity analysis for the
system (5.1), and the variation trend of the sensitivity and relative sensitivity of trees u(t) and grasses
v(t) to fire frequency was obtained, as shown in Figures 7 and 8.

(a) (b)

Figure 7. The sensitivity to fire frequency δ, where (a) the sensitivity of δ to u(t), (b) The
sensitivity of δ to v(t).

(a) (b)

Figure 8. The relative sensitivity to fire frequency δ, where (a) the relative sensitivity of δ to
u(t), (b) The relative sensitivity of δ to v(t).

In Figures 7(a) and 8(a), both the sensitivity S 1 and the relative sensitivity δS 1(t)/u(t) to δ showed a
trend of less than 0, which means that the biomass of trees decreases as the increases of fire frequency.
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According to discrete data of the program, when t = 20, we have S 1 = −0.185 < 0 and δS 1(t)/u(t) =
−0.4617. This indicates that when the fire frequency δ increases by 10%, which will reduce the biomass
of trees by 4.617%. From the perspective of biology, model (2.4) regard adult trees and young trees as
the tree species, and believe that the extinction rate of tree species is not only inhibited by its growth,
but also directly related to fire disturbance, so the occurrence of fire will lead to the death of some
trees, especially young trees. Some scholars have found that adult trees are hardly affected by the
incipient fire, because the water content of trees is higher than that of grasses, and the bark protects the
crown and stem higher than the flame area [38]. When the frequency of fire increases, adult trees will
gradually become the fuel for fire and support its continuous burning. However, the tree growth cycle
is too long, resulting in the tree species can not recover in time, and the tree biomass will decrease
steadily, interspersed with relatively rare supplementary events [31]. If the fire frequency exceeds the
threshold, it will eventually lead to the extinction of tree species, and the extreme phenomenon of
complete grassland or desertification will occur in the forest steppe ecotone.

In Figures 7(b) and 8(b), both the sensitivity S 2 and the relative sensitivity δS 2(t)/v(t) to δ showed a
trend of being less than 0, then greater than 0, and finally stabilized in this region. According to discrete
data of the program, we divided the above change trend into two stages: when t ∈ [0, 1.7], we have
S 2(t) ≤ 0, δS 2(t)/v(t) ≤ 0, and when t > 1.7 we have S 2(t) > 0, δS 2(t)/v(t) > 0. In which, when
t = 0.8, the sensitivity and relative sensitivity of grass species to fire frequency δ reach the minimum
value S 2(t) = −0.004254 and δS 2(t)/v(t) = −0.02987. In other words, the fire frequency δ increases
by 10%, which will reduce the biomass of grass species by 0.2987%. When t= 25, the sensitivity
and relative sensitivity of grass species to fire frequency are S 2(t) = 0.1362, δS 2(t)/v(t) = 0.9762,
and finally reach a stable equilibrium. In other words, the fire frequency δ increases by 10%, the
biomass of grasses will increase by 9.762%. From the perspective of biology, another state variable
in the model (2.4) is grass species, whose extinction rate is not only inhibited by its own growth,
but also directly related to the growth of tree species and fire feedback. The grass species is the
main fuel for fire, and it needs enough grass biomass accumulation to burn continuously, so grasses
will be significantly reduced in the early stage of fire. However, the short growth cycle of grasses
makes it able to the recovery partial growth within the interval of fire frequency rapidly. In addition,
with the increase of fire frequency, the biomass of trees always decreases at a stable rate. When the
dominant competitor(trees) decreases, the grass biomass begins to increase slowly due to the lack
of inhibition by tree species, and finally reaches a stable balance. The above ecological phenomena
exactly correspond to the change trend that grass biomass first decreases and then increases with the
increase of fire frequency.

In conclusion, the theoretical analysis of the sensitivity and relative sensitivity of tree-grass biomass
to fire frequency δ accords with the practical ecological significance. The analysis shows that the
regeneration capacity of trees, grasses and the fire frequency δ are the key to predict the coexistence and
balance of species in the Savanna, and the model (2.4) without diffusion can well reflect the different
effects of fire frequency on trees and grasses. Next, we take the time delay τ as the Turing bifurcation
parameter, and carry out numerical simulation on the spatial Turing pattern introduced by diffusion in
the system (2.4) to verify the theoretical analysis.
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5.2. Numerical simulation and pattern structure

In this section, the Matlab program is used to verify the influence of fire frequency δ and time delay
τ on the Turing pattern of the model (2.4). For the tree-grass model, we are very interested in the
self-organizing changes of its Turing pattern, so we select Neumann boundary conditions in specific
numerical simulation, which means there is no external input.

According to the significance of cross-diffusion d21 of the tree-grass model (2.4) in the second
part 2, we performed numerical simulation with the two aspects of cross-diffusion coefficient d21 > 0
and d21 < 0, respectively. The numerical algorithm of reaction-diffusion system is often complicated
and requires tedious Matlab programming. For a more comprehensive theoretical analysis of the effects
of δ and τ, we use the different programs to approximate the solutions of reaction-diffusion model (2.4)
and (4.1). Among them, the semi-implicit difference method (with respect to time) is used for d21 > 0,
and the finite difference method is used for d21 < 0.

The case of d21 > 0
We mainly analyze the influence of the time delay τ on the Turing pattern of the system (2.4) with

the semi-implicit difference method, which is an improvement on the method of Garvie [39]. The
method involves approximations at the current time level tn and the previous time level tn−1, introduce
delay τ in the iteration process, and finally get the sparse, banded and linear system of algebraic
equations. Take Ω ⊂ R2, we carry out the simulation algorithm on a discrete square region with sides
of [400× 400], the distance between adjacent lattices is △h = 0.25, and the time step is △t = 10−6. The
diffusion coefficients are d11 = 0.4, d12 = 0.5, d21 = 0.396 (d21 > 0) and d22 = 0.495. Let a1 = aδ,
b1 = bδ and the other related parameters reference to Table 2, then we have E∗ = (0.675, 0.309),
τc = 1.23 and k2

c = 884.
Let τ = ϵτ△t and tϵ = ϵ△t. First, we denote f̂i and ĝi, (i = 1, 2) as the discrete functions correspond-

ing to fi and gi, respectively. Discretizing system (2.4) as follows: ∂ui, j(ϵ)
∂t = d11∆ui, j(ϵ) + d12∆vi, j(ϵ) + a1ui, j(ϵ − ϵτ) + ĝ1

(
ui, j(ϵ), vi, j(ϵ)

)
∂vi, j(ϵ)
∂t = d21∆ui, j(ϵ) + d22∆vi, j(ϵ) + b1vi, j(ϵ − ϵτ) + ĝ2

(
ui, j(ϵ), vi, j(ϵ)

)
,

(5.2)

where i, j = 0, 1, · · · , L
△h . Denote H1(ϵ) = a1ui, j(ϵ − ϵτ) + ĝ1

(
ui, j(ϵ), vi, j(ϵ)

)
,

H2(ϵ) = b1vi, j(ϵ − ϵτ) + ĝ2

(
ui, j(ϵ), vi, j(ϵ)

)
,

and we get (
B1 0
0 B2

) (
ui, j(ϵ + 1)
vi, j(ϵ + 1)

)
=

(
ui, j(ϵ) + △tH1(ϵ)
vi, j(ϵ) + △tH2(ϵ)

)
,

where the constant matrices B1 and B2 can be referred to [39].
According to the formula (4.18), we have µ1 = −0.292578 < µ2 = 0 < µ3 = 5.66835 < µ4 =

22.7874, h = 138.065 > 0 and g2/g1 ≈ 2.02011. From Proposition 4.1, the pattern H0(ρ = 0) is always
stable, and from Proposition 4.2, the expression of the stripe patter S p, the spot pattern Hπ and H0

± are
as follows:

S p =

√
µ

g1
, Hπ =

−h +
√

h2 + 4µ(g1 + 2g2)
2(g1 + 2g2)

, H±0 =
h ±

√
h2 + 4µ(g1 + 2g2)
2(g1 + 2g2)

, (5.3)
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Then the bifurcation diagram of the amplitude equation (4.17) is as follows: Then the bifurcation
diagram of the amplitude equation (4.17) is as follows:

Hπ

H0

Sp

μ1 μ4μ3μ2 5 10 15 20 25
μ

0.02

0.04

0.06

0.08

0.10

θ

Figure 9. Turing bifurcation diagram of amplitude equation (4.17) with µ1 = −0.292578,
µ2 = 0, µ3 = 5.66835 and µ4 = 22.7874

.

Figure 9 shows the bifurcation of the model (4.17) for h > 0, in which the amplitude is a function of
the control parameter µ, which is used to describe the bifurcation of stripe pattern S p and spot pattern
H±0 , respectively. when µ > µ1, the pattern H0 and the uniform state are always stable, then there
exists a first bistable region µ1 < µ < µ2 with respect to µ. When the parameter gradually increase
from µ1 < 0 to µ2 = 0, the steady state begins to lose stability, and part of the spot pattern in the region
µ2 < µ < µ3 deforms into the stripe, that is, the stripe pattern S p appears but it is unstable. With the
change of parameters, the stripe pattern S p tends to be stable when µ > µ3. At this time, both pattern
H0 and stripe pattern S p are stable, and there is a second bistable region µ3 < µ < µ4 with respect to
µ. When µ > µ4, the spot pattern H0 begins to lose its stability. According to Proposition 4.1, 4.2, then
we have the following proposition:

Proposition 5.1. Under the Turing conditions, the time delay τ is chosen as the critical value of
Turing bifurcation with τ = τc(1 + µ) and k2 = m2 + n2, (m, n) ∈ N+0 . Then the Turing instability of
system (2.4) occurs near τ = τc, and we have the following conclusions.

Case i. When τ ∈ ((1 + µ1) τc, τc), which is correspond to the interval µ ∈ (µ1, µ2), and there exist
stable spot pattern H0 and stable stationary state.

Case ii. When τ ∈ (τc, (1 + µ3) τc), the spot pattern Hπ appears and is always unstable for τ > τc,
which is correspond to the interval µ > µ2.

Case iii. When τ ∈ (τc, (1 + µ3) τc), the stripe pattern S p appears, which is unstable in interval
τ ∈ (τc, (1 + µ3) τc) and stable in interval τ ∈ ((1 + µ3) τc, (1 + µ4) τc).

Case iv. When τ ∈ ((1 + µ3) τc, (1 + µ4) τc), the spot pattern H+0 and the stripe pattern S p are all
stable, which are correspond to the interval µ ∈ (µ3, µ4).

Case v. When τ ∈ ((1 + µ4) τc,∞), the spot pattern H+0 is no longer stable, while the stripe pattern
S p is still stable, which are correspond to the interval µ > µ4.

In the numerical simulation, the evolution process of different types of trees u(x, y, t) and grasses
v(x, y, t) patterns can be observed. Here, we only give the tree species density distribution pattern
u(x, y, t), see Figures 10 and 11.
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(a) (b) (c)

Figure 10. Snapshots of contour pictures of the time evolution of the tree species u(x, y, t) at
different instants with τ = 1.2. (a) 1000 iteration, (b) 80,000 iterations, (c) 300,000 iterations.
In which m = 22, n = 20, and τ ∈

[
τc (1 + µ1) , τc

]
. The spot pattern H0 is exist and stable

with the initial value of the random perturbation around the equilibrium point E∗.

(a) (b) (c)

Figure 11. Snapshots of contour pictures of the time evolution of the tree species u(x, y, t)
at different instants with τ = 2.02. (a) 1000 iteration, (b) 60,000 iterations, (c) 300,000
iterations. In which m = 22, n = 20, and τ ∈

[
τc (1 + µ3) , τc (1 + µ4)

]
. The mixed pattern of

spot and stripe are exist and stable with the initial value of the random perturbation around
the equilibrium point E∗.
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In Figure 10, take τ = 1.2, from Proposition 5.1 we have τ ∈ (τc(1+µ1), τc) = (0.87, 1.23), which
is equivalent to µ = −0.02439 ∈ (µ1, µ2). It shows the evolution process of the spatial patterns of tree
species u(x, y, t) after 0 iteration, 80, 000 iterations and 300, 000 iterations, in which the spot pattern H0

occupied the whole domain eventually, and we find that this pattern needs a long iteration to stabilize.
Starting from Figure 10(a) with a homogeneous state E∗, and the random interference will cause more
and more noticeable spots appears eventually, see Figure 10(b)(c). In fact, we should pay attention to
the situation that µ = −0.02439 is very close to the critical value µ2. According to the analysis above,
there should be only H0 spot patterns under this situation. In other words, the numerical simulations
illustrate well the theoretical analysis. From the viewpoint of biology, in the case of hot spot patterns,
the tree species u(x, y, t) lies in the isolated cycle region with high-density, and the remainder region is
composed of low-density.

In Figure 11, take τ = 2.02, from Proposition 5.1 we have τ ∈ (τc(1+µ3), τc(1+µ4)) = (1.82, 2.93),
which is equivalent to µ = 8.9178 ∈ (µ3, µ4). It shows the evolution process of the spatial patterns of
the tree species u(x, y, t) species after 0 iteration, 60, 000 iterations and 300, 000 iterations, in which
the spot pattern H0 and the stripe pattern S p occupied the whole domain eventually. Through random
disturbance and long time iteration, the spatial pattern is finally stable in the coexistence of spot and
stripe, which is well illustrated by the numerical simulation, see Figure 11(a). When the control
parameter τ is far away from the Turing critical value τc, some spot patterns gradually evolve into
stripe patterns, see Figure 11(b) and (c). Theoretically, there is a bistable state between spot pattern
and stripe pattern. With the increase of τ, the pure stripe pattern does not exist, because the amplitude
equation can only explain the spatial pattern near the critical value τc.

The case of d21 < 0.
We mainly analyze the influence of the time delay τ on the Turing pattern of the system (4.1)

with the finite difference method. Suppose the boundary is a discrete square region Ω = [2 × 2],
and the distance between adjacent lattices is △h = 0.02. The diffusion coefficients are d11 = 0.0004,
d12 = 0.005, d21 = −0.0001 (d21 < 0), d22 = 0.00495, and the other parameters are B = 0.5, a1 = 0.95,
b1 = 1.1 and (u∗, v∗) = (0.63, 0.392), then τc = 1.8553, k2

c = 330. Refer to the formula 4.18, we have
µ1 = −0.0004 < µ2 = 0 < µ3 = 0.2415 < µ4 = 0.6918, h = 138.065 > 0 and g2/g1 = 1.156 > 1.

From Proposition 4.1, 4.2, the spot pattern H0 is always stable, the expressions of S p, Hπ and
H±0 refer to (5.3), the theoretical analysis of Turing bifurcation for the control parameters µ of the
system (4.17) is consistent with subsection 5.2.1, and the bifurcation diagram refer to Figure 9. For
the convenience of recording simulation results, we set u(x, y, t) = u1(x, y, t), v(x, y, t) = v1(x, y, t),
û(x, y, t) = u2(x, y, t) and v̂(x, y, t) = v2(x, y, t). Since variables u2(x, y, t) and v2(x, y, t) are obtained by
expanding the power series with delay τ in variables u1(x, y, t) and v1(x, y, t) respectively. Therefore, in
the simulation results, the pattern u2(x, y, t) and v2(x, y, t) can reflect the pattern of variables u1(x, y, t)
and v1(x, y, t) from another Angle.

Figure 12 shows the density pattern of variables u1(x, y, t), v1(x, y, t), u2(x, y, t) and v2(x, y, t) with
the time steps ∆t = 5 × 10−10, m = 11, n = 15 at the time T = 1000. Selected τ = 1.8555 belong
to the region (τc (1 + µ1) , τc) = (1.8553, 1.8556), that is, the control parameter µ ∈ (µ1, µ2). At this
time, there exist two kinds of pattern: one is a stable spot pattern , the other is a stationary state, and
the numerical simulation results agree well with theory analysis.

Figure 13 shows the density pattern of variables u1(x, y, t), v1(x, y, t), u2(x, y, t) and v2(x, y, t) with
the time steps ∆t = 5 × 10−10, m = 11, n = 15 at the time T = 1000. Selected τ = 2.2556 belong to the
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Figure 12. The density distribution of tree-grass u1(x, y, t), u2(x, y, t), v1(x, y, t) and v2(x, y, t)
in µ ∈ (µ1, µ2). In which, τ = 1.8555, m = 11, n = 15, T = 1000, and the spot pattern
is exist and stable with the initial value of the random perturbation around the equilibrium
point E∗.

Figure 13. The density distribution of tree-grass u1(x, y, t), u2(x, y, t), v1(x, y, t) and v2(x, y, t)
in µ ∈ (µ3, µ4). In which, τ = 2.2556, m = 11, n = 15, T = 1000, and the spot-stripe
mixture pattern is exist and stable with the initial value of the random perturbation around
the equilibrium point E∗.

region ((1 + µ3) τc, (1 + µ4) τc) = (2.12962, 2.63433), that is, the control parameter µ ∈ (µ3, µ4). At
this time, there exist a stable mixture pattern with coexistence of spots and stripes, and the numerical
simulation results agree well with theory analysis.

In order to more clearly observe the influence of time delay τ on the spatial self-organization struc-
ture change of trees and grasses, take τ = 2.3556 in µ ∈ (µ3, µ4) and simulate the snapshot graph of
population density of variables u1(x, y, t), u2(x, y, t) at time T = 50, T = 200, T = 500 and T = 1000,
respectively, See Figures 14 and 15. In this region, the pattern structure of u1(x, y, t), u2(x, y, t) are
similar to v1(x, y, t), v2(x, y, t) respectively, and all of them always present a stable spot-stripe mixture
pattern, but only the slightly change in value, so the simulated pattern of v1(x, y, t) and v2(x, y, t) are
ignored. From the biological point of view, with the increase of the frequency of fire cycle τ, which
means that fires are getting less frequent. To some extent, the fire will promote the coexistence balance
of trees and grasses, and the density distribution of tree-grass will present the spot-stripe mixture pat-
tern, and finally reach the coexistence balance. The numerical simulation results are consistent with
the theoretical analysis.

Figure 14. Snapshot graph of population density of variable u1(x, y, t) at time T = 50, T =
200, T = 500 and T = 1000, respectively, where τ = 2.3556, m = 11, n = 15, ∆t = 5×10−4

and the initial condition is a random disturbance near the equilibrium point E∗.
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Figure 15. Snapshot graph of population density of variable u2(x, y, t) at time T = 50, T =
200, T = 500 and T = 1000, respectively, where τ = 2.3556, m = 11, n = 15, ∆t = 5×10−4

and the initial condition is a random disturbance near the equilibrium point E∗.

5.3. Tree-grass spatial pattern in Hulunbuir

From the analysis of tree-grass simulation pattern in part 5.2, when the generation conditions of
Turing pattern are true, the range of environmental parameters is determined by theoretical analysis.
With the change of control parameters µ (related to fire frequency δ) near the critical point, the tree-
grass density distribution shows a pattern of hexagonal(spot), stripe and spot-stripe mixture. Hulunbuir
is located in eastern Inner Mongolia in China, in a semi-arid and semi humid area, and it has a rich
spatial patterns of the forest-steppe ecotone. Go deep into the forest-steppe ecotone in Hulunbuir and
observe the spatial self-organization structure of tree-grass vegetation distribution by UAV, as shown
in Figures 16 and 17.

Figure 16. Aerial photographs showing tree-grass vegetation patterns in Hulunbuir Grass-
land (spot), july 10, 2021.

Figure 16 shows tree-grass vegetation pattern is located at 120o38
′

E and 49o05
′

N on July 10, 2021,
which is taken by UAV. By observing the vegetation pattern in the forest-steppe ecotone, it is verified
that the spatial self-organizing structure of tree-grass presents spot pattern.

Figure 17 shows tree-grass vegetation pattern is located at 120o31
′

E and 49o05
′

N on June 30,
2021, which is taken by UAV. By observing the vegetation pattern in the forest-steppe ecotone, it is
verified that the spatial self-organizing structure of tree-grass presents spot-stripe mixture pattern.

From the comparison, it is found that the simulation results of Turing pattern in theoretical anal-
ysis are consistent with the spatial patterns of tree-grass density distribution in Hulunbuir ecotone,
such as the simulation of Turing spot pattern in Figure 10, Figure 12 correspond to the actual space-
construction of tree-grass density distribution in Figure 16, the simulation of Turing spot-stripe mixture
pattern 11, 13, 14 and 15 correspond to the actual space-construction of tree-grass density distribution
in Figure 17. Although the vegetation patterns obtained by numerical simulation are likely to be overly
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Figure 17. Aerial photographs showing tree-grass vegetation patterns in Hulunbuir Grass-
land (spot-stripe mixture), june 30, 2021.

regular and change over time, so that it is difficult to find the tree-grass vegetation spatial structure in
the actual background which is highly similar to it, however, these types of tree-grass pattern (spot,
stripe and spot-stripe mixture) do exist in the forest-steppe ecotone. Therefore, the dynamic proper-
ties of vegetation pattern induced by Turing bifurcation can predict the biological characterization of
spatial structure of tree-grass density distribution.

6. Conclusions

In this paper, we study a tree-grass competition model (2.4) with diffusion term and delay effect τ
caused by fire frequency. We mainly discuss the Hopf bifurcation induced by delay, the Turing bifur-
cation induced by the diffusion, and the dynamic behaviors of the system near the bifurcation critical
value mathematically. By analyzing the characteristic equation corresponding to the linearization, the
sufficient conditions of Turing instability are obtained. Based on multi-scale analysis, the amplitude
equation of the system (2.4) is derived, which helps us to determine the selection and competition of
Turing pattern. The influence of trees and grasses to fire frequency δ was obtained through sensitivity
analysis, which showed that changes of δ affected pattern generation of tree-grass, and the rationality
of the tree-grass model (2.4) is confirmed. Finally, a series of numerical simulation experiments are
carried out to try to understand the characteristics of tree-grass vegetation pattern under the biological
background. With the effect of fire frequency, the density distribution of trees and grasses will eventu-
ally present different types of spatial steady-state patterns (include spot, stripe and spot-stripe mixture),
which is consistent with the spatial structure of tree-grass density distribution in Hulunbuir ecotone,
China (see section 5.3 for details).

In the spatial structure of vegetation, the connection and fusion of pattern of tree-grass density dis-
tribution are caused by the mathematical mechanism of bifurcation in the model (2.4). At present, we
mainly focus on the relationship between the Turing pattern and bifurcation parameters, and find that
the Turing pattern is highly dependent on these parameters (include fire frequency and cross-diffusion).
For our study, the fire frequency was taken as the control parameter, so the Turing pattern has a great
relationship with the fire frequency, moreover the direct factor affecting fire frequency is biomass diffu-
sion (cross-diffusion). Generally speaking, if we can establish the corresponding relationship between
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state variables and environmental parameters of tree-grass model, then it can provide certain guidance
for predicting the regularity of fire frequency feedback intensity on the coexistence and balance of trees
and grasses by comparing the pattern structures, so as to reduce unnecessary loss of human resources.
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