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Abstract: This paper makes a survey about the recent development of optimal control based on
adaptive dynamic programming (ADP). First of all, based on DP algorithm and reinforcement learning
(RL) algorithm, the origin and development of the optimization idea and its application in the control
field are introduced. The second part introduces achievements in the optimal control direction, then
we classify and summarize the research results of optimization method, constraint problem, structure
design in control algorithm and practical engineering process based on optimal control. Finally, the
possible future research topics are discussed. Through a comprehensive and complete investigation of
its application in many existing fields, this survey fully demonstrates that the optimal control algorithms
via ADP with critic-actor neural network (NN) structure, which also have a broad application prospect,
and some developed optimal control design algorithms have been applied to practical engineering
fields.
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1. Research and development of optimization control algorithms

1.1. Origin and development of optimal control design

The research on optimal control for nonlinear systems plays a significant role in industry and
military fields. Due to the influence of the environment and the limitations of the engineering system,
it is very tough to maximize or minimize the performance index of the controlled system in practical.
Therefore, optimization problem is a difficult problem in current control field, and has gradually been
the focus of attention. The optimal control problems of nonlinear systems are finally transformed into
the solutions of Hamilton-Jacobi-Bellman (HJB) partial differential equations.

However, because the HJB equation is a nonlinear partial differential equation, it is difficult to
obtain an analytical solution. Therefore, how to obtain the analytical solution of HJB equation then
realize the optimization performance index of the system, is the key points to resolve the optimization
issue.
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In order to avoid the problems encountered in solving HJB equation, Kalman [1] proposed the
inverse-optimal-based control method for the first time. On the basis of [1], Freeman and
Kokotovic [2] studied inverse optimization control of nonlinear systems. The basic idea of inverse
optimization control is not to minimize the cost function by designing the controller, but to minimize
the cost function by designing the appropriate control Lyapunov function(CLF). Therefore, the
solution of HJB equation comes down to seeking the CLF of the controlled system, thus avoiding the
shortcoming of directly solving HJB equation.

Besides, aiming at the above problems, Bellman [3] proposed the theory of dynamic programming
(DP). However, the issue of “dimension disaster” would be caused in the process of DP control
design, that is, the complexity of space storage and computation increases exponentially with the
increase of the dimension of control vectors and states. Therefore, in order to overcome the
phenomenon of “dimension disaster” in the process of optimal control design, an adaptive optimal
control design method combining NNs is proposed by Werbos [4], which is called RL or adaptive/

approximate dynamic programming (ADP). In the control field, RL can effectively solve the
“dimension disaster” problem in DP. In [5], Werbos retrospected the classic econometric approach
and proposed a robust method. In [6], Werbos defined a more limited design called “brain-like
intelligent control”, it discusses the brain as a member of intelligent control, which implies a property
to be sought in future research.

1.2. Development of optimization control algorithms

Since then, inspired by [4], large amounts of optimal control methods via APD have been
developed, see [7, 8]. Among them, for continuous-time (CT) systems, in offline situations,
Abu-Khalaf and Lewis [9] presented an offline algorithm via RL to solve the optimal control issue of
CT nonlinear systems. Since the offline control algorithms cannot be adopted to adjust online in real
time, thus, to overcome this disadvantage, Vamvoudak and Lewis [10] proposed an online adaptive
method via policy iteration. In [11], Li et al. investigated the Lyapunov stability problem for
impulsive systems via event-triggered impulsive control. In [12], Li et al. considerd a class of
nonlinear impulsive systems with delayed impulses, based on impulsive control theory and the ideas
of average dwell-time (ADT), a set of Lyapunov-based sufficient conditions for globally exponential
stability were obtained. However, we need to know the accurate knowledge of CT nonlinear systems
in [9, 10]. Since nonlinear systems usually contain uncertain nonlinear functions, it it difficult to
acquire the analytical solution of the HJB equation.

In order to solve this problem, by choosing an appropriate cost function to reflect uncertainty
regulation, the authors in [13] proposed a robust optimization controller design strategy based on an
online strategy iterative algorithm for a class of continuous nonlinear systems with nonlinearities.
Zhang et al. [14] designed a new data-driven robust identified optimization tracking controller via the
acquired data-driven model for a kind of nonlinear CT systems.

2. Development of the adaptive optimal control for affine nonlinear systems

2.1. Design of optimal control for affine nonlinear systems

Consider a class of affine nonlinear system as:
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ẋ(t) = g(x(t))u(t) + f (x(t)), x(0) = x0 (2.1)

where f (x) and g(x) are the uncertain smooth functions, which satisfy that f (0) = 0, g(0) = 0. u is
the control input, x ∈ Rn is the state vector. For the above system, some adaptive optimization control
strategies have been proposed.

In [15], for a class of affine nonlinear CT systems with unknown internal dynamics, Liu and Wang
et al. developed an online method based on ADP, which constructed a critic neural network to facilitate
the solution of the modified HJB equation. In [16], Liu et al. developed an online optimization control
algorithm for CT affine nonlinear systems with infinite horizon cost. And in [17], Wen and Chen et al.
studied an adaptive optimized tracking control method via RL algorithm and NNs.

For [16, 17], value function is selected as:

V(z) =

∫ ∞

t
r(z(r), u(z))dτ (2.2)

where r(z, u) = zT (t)Q(x)z(t) + uT u is the value function, and Q(x) = q(x)qT (x) ∈ Rn×n is a positive
definite matrix. The HJB equation is defined as:

H(z, u,Vz) = VT
z (z)z(t) + r(z, u)

= VT
z ( f (x) + g(x)u − yd(t)) + zT Q(x)z(t) + uT u

(2.3)

where Vz ∈ Rn is the partial gradient of Vz, yd(t) ∈ Rn is the ideal tracking trajectory, z(t) = x(t) − yd(t)
is the tracking error. When considering the input constraint control and saturation constraints control
issue, Liu and Yang developed a robust optimal adaptive optimal control method via RL for a kind
of uncertain nonlinear systems. In [18, 19], there exists a symmetric definite matrix Q, and the value
function is selected as:

V(x(t)) =

∫ ∞

t
[xT Qx +$(u)]ds, (s ≥ t) (2.4)

where $(u) is positive. For the sake of solving the constraint control issue, define $(u) as:

$(u) = 2κ
∫ u

0
(ψ−1(υ/κ))T Rdv

= 2κ
m∑

i=1

∫ u

0
(ψ−1(υi/κ))T Ridv

(2.5)

where R = diag[r1, · · · , rn] with ri > 0, (i = 1, · · · ,m), ψ(·) is a bounded one-to-one function with
|ψ(·)| ≤ 1, ψ ∈ Rm, ψ−1 = (ψ−1)T , ψ−1(υ/κ) = [ψ−1(υ1/κ), · · · , ψ−1(υm/κ)]T , u(x) ∈ Ξ,
Ξ = {u|u ∈ Rm, |ui| ≤ κ, i = 1, 2, · · · ,m}, κ > 0 is a constant. Define the HJB equation and the value
function as:

H(x,Vx, u) = VT
x ( f (x) + g(x)u) + r(x, u) (2.6)

where Vx ∈ Rn is the partial derivative of V(x) with respect to x .
In the previous article, since there exist the unknown nonlinear functions f (x) and g(x), the

analytic solution of the equation cannot be received when resolving the HJB equation. Because of
their properties and fault tolerance, attributes of nonlinearity, adaptivity, the identified solution of the
HJB equation can be obtained symmetric via NNs.
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2.2. Development of identifier-actor-critic-based optimization control

Because the system (2.1) contains unknown dynamics, we can identify the system for receiving the
optimal control. In [20], Yang et al. presented identifier-actor-critic (IAC) structure, where the actor
NN is carried out control actions, and critic NN is employed to estimated these actions, and then returns
the evaluations to actor, and the dynamics of uncertain system robust dynamic can be approximate by
NN identifiers. From system (2.1), we have that:

ẋ = g(x)u + f (x) = g(x)u + Ax + z(x) (2.7)

where A ∈ Rn×n is a certain constant matrix, z(x) = f (x) − Ax.
A NN is applied to identify z(x) as follows:

z(x) = WT
1 σ(x) + ε1(x) (2.8)

where ε1(x) ∈ Rn is the NN function reestablishment error, σ(x) is the activation function, WT
1 ∈ Rn×n

is the NN weight. By using (2.8), (2.7) can be developed by:

ẋ(t) = g(x)u + ε1(x) + Ax + WT
1 σ(x) (2.9)

The NN identifier is designed as:

˙̂x(t) = g(x̂)u + v(t) + Ax̂ + ŴT
1 σ(x̂) (2.10)

where x̂ ∈ Rn is the identifier NN state, Ŵ1 ∈ Rn×n is weight estimation, and v(t) is the robust feedback
term.

The optimal value function can be expressed by NN as:

V∗(x̂) = WTφ(x̂) + εv(x̂) (2.11)

The optimal control can be expressed by NN as:

u∗(x̂) = −
1
2

R−1gT (x̂)(φ
′

(x̂)T W + ε
′

v(x̂)T ) (2.12)

where εv(·) ∈ R is the function reestablishment error, φ(x̂) = [φ1(x̂), φ2(x̂), · · · , φN(x̂)]T ∈ RN , φ′(x̂) =
4∂φ(x̂)
∂x̂ and W ∈ RN are uncertain desired NN weights, N is the number of neurons.

The critic-actor V̂(x̂) and û, which can learn the optimization value function and adjust the
optimization control online, is expressed as:

V̂(x̂) = ŴT
c φ(x̂) (2.13)

û(x̂) = −
1
2

R−1gT (x̂)φ
′T (x̂)Ŵa (2.14)

where Ŵc(t) ∈ RN and Ŵa(t) ∈ RN estimate the ideal weights of the critic-actor NNs. Whereas the
system dynamics are estimated online by using the identification error x̃(t) = x(t) − x̂(t). The overall
planning diagram of the control algorithm is given in Figure 1.
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Figure 1. Developed control scheme for affine non-linear systems.

Besides Bhasin et al. [21] proposed an online adaptive solution via RL for the unbounded
optimization control nonlinear systems with CT uncertain problem. The advantage of using the IAC
structure is that the learning of critics, actors, and identifiers is successive and simultaneous, removing
the knowledge of system drift dynamics.

However, the above proposed control design algorithm for the affine nonlinear systems cannot be
used to solve the optimal control issues for unmatching condition nonlinear systems, because it cannot
guarantee the optimization of each subsystem.

3. Adaptive optimization control based on backstepping for strict nonlinear systems

3.1. Design of optimization control based on backstepping for strict feedback nonlinear systems

The above research methods on affine nonlinear systems cannot be applied to nonlinear systems
with unmatching conditions and the optimality of each subsystem can not be guaranteed. In order to
solve the problem of unmatching conditions, we used the backstepping technology, which can also
optimize each subsystem.

Consider the following strict feedback nonlinear systems as:
ẋi = fi(x̄i) + xi+1, i = 1, 2, · · · , n − 1
ẋn = fn(x̄n) + u

y = x1

(3.1)

where u and y are the control input and output, x is the state, x̄i = [x1, x2, · · · , xi], is the system state
vector. fi(·) is the uncertain nonlinear function ,which satisfies f (0) = 0.

In 1995, Kristic [22] firstly proposed the backstepping technology. The design idea of the
backstepping algorithm is as follows: for systems that satisfy strict feedback control structures, via
the backstepping algorithm, the Lyapunov function and controller are constructed in a systematic way.
Then, for each subsystem, local Lyapunov function and intermediate control function are designed
successively until the design of the whole controller is completed.

For the sake of solving the control issue for unmatching nonlinear systems (3.1), Wen et al. [23]
first proposed an optimized backstepping control technology, under the backstepping framework, we
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can ensure that each subsystem can be optimized. Based on [23], for a kind of nonlinear large-scale
systems with strict-feedback structure, Tong et al. [24] proposed the fuzzy decentralized adaptive
optimal control, and used FLS to identify the uncertain nonlinear function of the systems. And
in [25], for a quarter of the car active electric suspension systems, Li et al. addressed the
output-feedback adaptive NN optimization control issue.

Because there are unknown nonlinear functions, the updating laws and learning laws designed for
the above systems are very complex. In order to solve this problem, in [26], Wen et al. proposed a
simplified RL algorithm, which generates a negative gradient of a simple positive function from the
partial derivative of HJB equation, and derives a new law from the negative gradient.

Define the Hamiltonian’s approximation error as:

E = H(ẑ, u, V̂∗ẑ ) − H(z, u∗,V∗ẑ )
= H(ẑ, u, V̂∗ẑ )

(3.2)

where V∗ẑ (ẑ) is the gradient of V∗(ẑ), u∗ is the optimal control. Since V∗ẑ (ẑ) and u∗ contain the unknown
part V0

ẑ (ẑ), which can be approximated on a compact set by NNs as:

V0
ẑ (ẑ) = Θ∗TV ϕV(ẑ) + εV(ẑ) (3.3)

Since Θ∗V is an uncertain constant vector, it is not available in practical control, RL algorithm is
implemented by both critic-actor NNs.

The learning law of critic NN is designed as:

˙̂ΘVc(t) = −kcϕV(ẑ)ϕT
V(ẑ)Θ̂Vc(t) (3.4)

where kc is the critic network learning rate, Θ̂Vc(t) is the critic NN weight.
The learning law of actor NN is designed as:

˙̂ΘVa(t) = −ϕV(ẑ)ϕT
V(ẑ)(ka(Θ̂Va(t) − Θ̂Vc(t)) + kcΘ̂Vc(t)) (3.5)

where ka is the actor network learning rate, Θ̂Va(t) is the actor NN weight, ka > kc > 0.
In accordance with the above description, the optimal solution α̂(ẑ) is supposed to meet E(t) =

H(ẑ, u, V̂∗ẑ )→ 0 .
If H(ẑ, u, V̂∗ẑ ) is held and exist the unique solution, then it is equivalent to the following equation

holds:
∂H(ẑ, u, V̂∗ẑ )

∂Θ̂Va
= ϕVϕ

T
V(Θ̂T

Va(t) − Θ̂T
Vc(t)) = 0 (3.6)

The positive definite function is designed as:

P(t) = (Θ̂Va(t) − Θ̂Vc(t))T (Θ̂Va(t) − Θ̂Vc(t)) (3.7)

Clearly, the Eq (3.6) is the equivalent to P(t) = 0. Since ∂P(t)
∂Θ̂Va(t)

= −
∂P(t)
∂Θ̂Vc(t)

= 2(Θ̂Va(t) − Θ̂Vc(t)), we
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can get

∂P(t)
dt

=
∂P(t)
∂Θ̂Vc(t)

· Θ̂Vc(t) +
∂P(t)
∂Θ̂Va(t)

· Θ̂Va(t)

= −kc
∂P(t)
∂Θ̂Vc(t)

ϕVϕ
T
VΘ̂T

Vc(t)

−
∂P(t)
∂Θ̂Vc(t)

ϕVϕ
T
V[ka(Θ̂Va(t) − Θ̂Vc(t)) + kcΘ̂Vc(t)]

= −
ka

2
∂P(t)
∂Θ̂a(t)

ϕVϕ
T
V
∂P(t)
∂Θ̂a(t)

≤ 0

(3.8)

In [27], for nonlinear lithium battery systems, Pei et al. addressed adaptive NN output feedback
optimization control problem, and the stability of the nonlinear lithium battery is proved.

On the basis of [26], under the frame of backstepping control, some simplified-based adaptive
optimization control algorithms have been proposed, which require construct all intermediate control
functions and the actual control function of backstepping to be the optimization controls, hence, RL is
performed in each subsystem (see Figure 2).

Figure 2. The block diagram of optimization control method based on backstepping.

In [28], Wen et al. addressed optimization control method for nonlinear strict-feedback systems
with unknown functions. In [29], for second-order unknown nonlinear multiagent systems, Lan et al.
proposed a distributed time-varying optimization formation protocol based on an adaptive NN state
observer. In [30], Xiao et al. addressed the distributed optimization containment control issue for
multiple nonholonomic mobile robots differential game.
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3.2. State-constrained optimal control based on backstepping

It is worth mentioning that system states usually need to be confined within some preselected
compact sets due to the physical limitations of actual systems. For real systems, in [31], Jiang and
Lou considered the input-to-state stability (ISS) of delayed systems with bounded-delay impulses.
In [32], for a hydraulic servo actuator (HSA) with sensor faults, Vladimir and Ljubisa investigated the
mechanism for the fault estimation (FE) problem. However, methods in [29, 30] could not solve the
actual constraint problem. To solve this problem, various state-constrained control methodologies is
discussed.

Aiming at strict-feedback nonlinear systems, which contain immeasurable states and internal
dynamics, Li et al. [33] proposed an output-feedback adaptive NN optimization control design. Under
the backstepping control design, there will be coupling terms or cross terms at each step, which will
lead to that each subsystem is not optimal. Therefore, state constraints should be introduced to make
the coupling terms bounded to ensure that each subsystem is optimal. And all the states are limited in
the compact sets, that is, |xi| < kci, where kci > 0 .

The neoteric barrier optimization performance index functions for subsystems are designed to
ensure that the system state does not violate the constraint bounds and achieves the optimization
control objective, which is selected as:

J(z(t)) = lim
τ→∞

1
τ

∫ τ

t
q(z((t), α(z)))dz (3.9)

where τ is the terminal time, q(z, α) = ξlog[k4
b/(k

4
b−z4)]+r(α)2, ξ > 0 is a constant, α is the intermediate

control function, The following Hamiltonian can be derived as:

H(ẑ, u, V̂∗ẑ ) = ξlog
k4

b

(k4
b − z4)

+ r(α)2 +
dV∗(z)

dz
(α∗ + g(x) − yr)

(3.10)

According to the algorithm presented in [34], for power systems with stochastic character, Li et al.
designed the adaptive NN optimal tracking control to resolve the issue of state constraints and
uncertain nonlinear dynamics. In [35], Li et al. put forward an adaptive NN optimized
output-feedback control method to solve the issue of unknown nonlinear dynamics and input
saturation. In [36], for uncertain nonlinear systems with time-varying full state constraints, input
saturation and unknown control direction, Wu and Xie employed asymmetric barrier Lyapunov
functions, the auxiliary subsystem and the Nussbaum gain technique.

Based on the above published works, some adaptive optimal control methods via backstepping
control have also been applied to practical systems, for example, see [37,38]. In [37], Li et al. presented
an adaptive NN optimized control strategy for full vehicle active suspension system. And in [38], Li
et al. studied adaptive optimal formation control approach for second-order stochastic multi-agent
system, which contains unknown nonlinear dynamics.

3.3. Inverse optimization control based on backstepping

Based on the inverse optimization control method in [1], Ezal et al. [38] proposed a new robust
backstepping inverse optimal control design, which achieved both local optimization and global inverse
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optimization. For a class of nonlinear uncertain strict feedback systems, Li et al. [39] designed adaptive
fuzzy inverse optimization control by establishing an equivalent system and an auxiliary system.

System (2.1) can be rewritten as the following nonlinear system:

ẋ = G(x)u + F(x) + q(x) (3.11)

where u ∈ R is the control input, x is the state vector, x = 0 is the equilibrium point of system. q(x) is
an uncertain bounded function vector, G(x) and F(x) are smooth function vectors.

Define γ is a class K∞ function, then the derivative of γ exists and it is also a class K∞ function. An
auxiliary system is constructed for the nonlinear system (2.1):

ẋ = lγ(2|L∆V |R(x)) ×
R−2(x)(L∆V)T

(L∆V)2 + F(x) + G(x)u (3.12)

where V(x) is the control Lyapunov function. L M V = ∂ M V/∂x, LFVn = ∂Vn/∂xF(x), LGVn =

∂Vn/∂xG(x).
The cost functional is selected as:

J(u) = sup
d∈D
{lim
t→∞

[
∫ t

0
(l(x)) + uT Ru − γ(d))dτ + E(x)]} (3.13)

where D is a set of locally bounded functions of x, R(x) is matrix-valued function, which satisfied that
R(x) = R(x)T > 0. E(x) and l(x) are positive definite radially unbounded functions.

The fuzzy adaptive inverse optimization control structure is shown in Figure 3.

Figure 3. Block diagram of the inverse optimization control structure.
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And in [40], Li et al. studied a fuzzy inverse optimization fuzzy adaptive output feedback control
method based on observer for a class of nonlinear strict feedback systems. In [41], Lu et al. addressed
a fuzzy adaptive inverse optimization control issue, and a switching inverse optimization controller
is constructed by using a single parameter learning mechanism, which confirmed that the method
guarantees the input-to-state stability of the control systems.

Inspired by the above theory, the inverse optimization theory is also widely applied to some
practical systems. In [42], for vehicle active suspension system with unknown nonlinear dynamics, Li
et al. designed an adaptive fuzzy inverse optimal control method via state observer. Long et al. [43]
proposed an inverse optimal fuzzy adaptive control approach for the system of flexible spacecraft
system with fault-free actuator, which is subjected to input saturation, uncertain parameter and
external disturbances.

In addition, people hope the practical engineering will reach the stable in finite time, and use the
less control energy when achieving the satisfactory performance indicators simultaneously. Thus, how
to achieve the effective balance between control quality and control energy has become a hot research
issue. In [44], for nonlinear impulsive systems, Li and Ho studied the problem of finite-time stability
(FTS). In [45], Li and Yang developed the Lyapunov–Razumikhin method for finite-time stability
(FTS) and finite-time contractive stability (FTCS) of time-delay systems. In [46], via the power
integral control approach and backstepping control method, Yang designed a semi-global real finite
time controller. Then, according to the basic idea of inverse optimization, an appropriate objective
functional is constructed, and the constructed objective functional is minimized by adjusting the
parameters of semi-global real finite time controller.

Consider the Lyapunov function as follows:

V1 = [
r1

2v − τ
]x

(2v−τ)
r1 +

1
2
ω̄1

2 (3.14)

where ω̄1 = ω∗1 − ω̂1, ω̂1 is the estimation of the unknown parameter ω∗1, v = max{r1, p1r2}, j =

1, 2, · · · , n, p jr j+1 = r j + τ, υ = max
1≤ j≤n
{r j, p jr j+1}, j = 1, 2, · · · , n. r j and p j is the ratio of two positive

odd numbers. r1 = 1 , τ is the design parameter.
Based on [46], for a class of interlinked nonlinear systems with powers of positive odd rational

numbers, Li et al. [47] developed a series of homogeneous controllers, which are capable of
guaranteeing the local finite-time stability of the closed-loop systems by using the adding one power
integrator approach and backstepping technique.

Most of the existing optimization finite-time control methods are limited by complicated design and
updating process, which vastly affect the ideal property of optimization finite-time control. In order
to solve this issue, in [48], Lu et al. first proposed an immediate fuzzy adaptive inverse optimization
approach to receive a switching-type inverse optimization controller and a one parameter learning
mechanism. The inverse optimal stabilization is solvable, and there exists a matrix-valued function
P(x) , which satisfied that P(x) = P(x)T > 0, then the cost function is defined as:

J(u) = lim
t→∞

∫ t

0
[L(x) + ~(|P(x)

1
2 u)]dτ} (3.15)

where ~ and its derivative ~′ are K∞ functions, L(x) is positive functions, u(x) is away from the origin
in succession with u(x) = 0.
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For a kind of robotic manipulator system, which contains uncertain dynamics and input saturation,
the authors in [49] proposed a fixed-time trajectory tracking control approach based on RL. For the
sake of guaranteeing that e1 and e2 convergence to diminutive neighborhood around 0 in a uniformly
bounded convergence time Ts, where Ts stands alone with the original states. A noval nonsingular
fixed-time fast terminal sliding mode is proposed as:

s = K(e1e1) + sigυ1(e2) (3.16)

where Ke1 = diag[ke11, ke12, · · · , ke1n] is a diagonal matrix. ke1i, i = 1, 2, · · · , n , are designed as:

ke1i = (α|e1i|
p−1/(kυ1) + β|e1i|

g−1/(kυ1))kυ1 (3.17)

where p and g are positive scalars with gk > 1 and 1/υ1 < pk < 1, α > 0, β > 0, k > 1, υ1 > 1.
Obviously, the above developed control method can effectively solve the finite/fixed-time optimal

control problems and can make the minimize the cost function. Besides, in [50], Hu et al. considered
the fixed-time stability of delayed neural networks with impulsive perturbations.

4. Conclusions

It can be seen from this review that optimization control design for unknown nonlinear systems via
RL and ADP has been diffusely studied in control area and has achieved fruitful results. The origin and
the development of optimization algorithms have been introduced, the research results of optimization
control of affine nonlinear systems have been summarized. Then, under the frame of backstepping
control, the adaptive optimal control, finite-time inverse optimal control, constraint control have also
been described for strict-feedback nonlinear systems. At the same time, we have summarized the
applications development of adaptive optimization control methods. In addition, as a novel hot issue in
this field, finite/fixed-time optimal control via backstepping and RL/ADP for nonlinear systems have
attracted considerable attentions, both theory and practical applications also need to be further studied
in the future.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No.
61822307.

Conflict of interest

The authors declare there is no conflict of interest.

References

1. R. E. Kalman, When is a linear control system optimal, J. Basic Eng., 86 (1964), 51–60.
https://doi.org/10.1115/1.3653115

2. R. A. Freeman, P. V. Kokotovic, Inverse optimality in robust stabiliztion, SIAM J. Control Optim.,
34 (1998). https://doi.org/10.1137/S0363012993258732

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12058–12072.

http://dx.doi.org/https://doi.org/10.1115/1.3653115
http://dx.doi.org/https://doi.org/10.1137/S0363012993258732


12069

3. R. Bellman, Dynamic programming, Science, 153 (1966), 34–37.
https://doi.org/10.1126/science.153.3731.34

4. P. J. Werbos, New Tools for Prediction and Analysis in the Behavioral Sciences, Ph.D thesis,
Harvard University, 1974.

5. P. J. Werbos, Advanced forecasting methods for global crisis warning and models of intelligence,
Gen. Syst., 1977 (1977), 25–38. https://doi.org/10.1086/292050

6. P. J. Werbos, Optimization methods for brain-like intelligent control, in Proceedings
of 1995 34th IEEE Conference on Decision and Control, 1 (1977), 579–584.
https://doi.org/10.1109/CDC.1995.478957

7. G. A. Rovithakis, M. A. Christodoulou, Adaptive control of unknown plants using
dynamical neural networks, IEEE Trans. Syst. Man Cybern., 24 (1994), 400–412.
https://doi.org/10.1109/21.278990

8. J. J. Murray, C. J. Cox, G. G. Lendaris, R. Saeks, Adaptive dynamic programming,
IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., 32 (2002), 140–153.
https://doi.org/10.1109/TSMCC.2002.801727

9. M. Abu-Khalaf, F. L. Lewis, Nearly optimal control laws for nonlinear systems with
saturating actuators using a neural network HJB approach, Automatica, 41 (2010), 779–791.
https://doi.org/10.1016/j.automatica.2004.11.034

10. K. G. Vamvoudakis, F. L. Lewis, Online actor–critic algorithm to solve the continuous-
time infinite horizon optimal control problem, Automatica, 46 (2010), 878–888.
https://doi.org/10.1016/j.automatica.2010.02.018

11. X. D. Li, D. X. Peng, J. D. Cao, Lyapunov stability for impulsive systems via
event-triggered impulsive control, IEEE Trans. Autom. Control, 65 (2020), 4908–4913.
https://doi.org/10.1109/TAC.2020.2964558

12. X. D. Li, S. J. Song, J. H. Wu, Exponential stability of nonlinear systems with
delayed impulses and applications, IEEE Trans. Autom. Control, 64 (2019), 4024–4034.
https://doi.org/10.1109/TAC.2019.2905271

13. D. Wang, D. R. Liu, H. L. Li, Policy iteration algorithm for online design of robust control for a
class of continuous-time nonlinear systems, IEEE Trans. Autom. Sci. Eng., 11 (2014), 627–632.
https://doi.org/10.1109/TASE.2013.2296206

14. H. G. Zhang, L. L. Cui, X. Zhang, Y. H. Luo, Data-driven robust approximate optimal tracking
control for unknown general nonlinear systems using adaptive dynamic programming method,
IEEE Trans. Neural Networks, 22 (2011), 2226–2236. https://doi.org/10.1109/TNN.2011.2168538

15. D. R. Liu, D. Wang, F. Y. Wang, H. L. Li, X. Yang, Neural-network-based online HJB solution
for optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems, IEEE
Trans. Cybern., 44 (2014), 2834–2847. https://doi.org/10.1109/TCYB.2014.2357896

16. D. R. Liu, X. Yang, H. L. Li, Adaptive optimal control for a class of continuous-time affine
nonlinear systems with unknown internal dynamics, Neural Comput. Appl., 23 (2013), 1843–
1850. https://doi.org/10.1007/s00521-012-1249-y

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12058–12072.

http://dx.doi.org/https://doi.org/10.1126/science.153.3731.34
http://dx.doi.org/https://doi.org/10.1086/292050
http://dx.doi.org/https://doi.org/10.1109/CDC.1995.478957
http://dx.doi.org/https://doi.org/10.1109/21.278990
http://dx.doi.org/https://doi.org/10.1109/TSMCC.2002.801727
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2004.11.034
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2010.02.018
http://dx.doi.org/https://doi.org/10.1109/TAC.2020.2964558
http://dx.doi.org/https://doi.org/10.1109/TAC.2019.2905271
http://dx.doi.org/https://doi.org/10.1109/TASE.2013.2296206
http://dx.doi.org/https://doi.org/10.1109/TNN.2011.2168538
http://dx.doi.org/https://doi.org/10.1109/TCYB.2014.2357896
http://dx.doi.org/https://doi.org/10.1007/s00521-012-1249-y


12070

17. G. X. Wen, C. L. Philip Chen, S. Z. Sam Ge, H. L. Yang, X. G. Liu, Optimized adaptive nonlinear
tracking control using actor-critic reinforcement learning strategy, IEEE Trans. Ind. Inf., 15 (2019),
4969–4977. https://doi.org/10.1109/TII.2019.2894282

18. X. Yang, D. R. Liu, Y. Z. Huang, Neural-network-based online optimal control for uncertain
non-linear continuous-time systems with control constraints, IET Control Theory Appl., 7 (2013),
2037–2047. https://doi.org/10.1049/iet-cta.2013.0472

19. D. R. Liu, X. Yang, D. Wang, Q. L. Wei, Reinforcement-learning-based robust controller design
for continuous-time uncertain nonlinear systems subject to input constraints, IEEE Trans. Cybern.,
45 (2015), 1372–1385. https://doi.org/10.1109/TCYB.2015.2417170

20. X. Yang, D. R. Liu, Q. L. Wei, Online approximate optimal control for affine non-linear systems
with unknown internal dynamics using adaptive dynamic programming, IET Control Theory Appl.,
8 (2014), 1676–1688. https://doi.org/10.1049/iet-cta.2014.0186

21. S. Bhasin, R. Kamalapurkar, M. Johnson, K. G. Vamvoudakis, F. L. Lewis, W. E. Dixon, A novel
actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems,
Automatica, 49 (2013), 82–92. https://doi.org/10.1016/j.automatica.2012.09.019

22. M. Krstic, P. V. Kokotovic, I. Kanellakopoulos, Nonlinear and Adaptive Control Design, John
Wiley & Sons, 1995.

23. G. X. Wen, S. Z. Sam Ge, F. W. Tu, Optimized backstepping for tracking control of
strict-feedback systems, IEEE Trans. Neural Networks Learn. Syst., 29 (2018), 3850–3862.
https://doi.org/10.1109/TNNLS.2018.2803726

24. S. C. Tong, K. K. Sun, S. Sui, Observer-based adaptive fuzzy decentralized optimal control design
for strict-feedback nonlinear large-scale systems, IEEE Trans. Fuzzy Syst., 26 (2017), 569–584.
https://doi.org/10.1109/TFUZZ.2017.2686373

25. Y. M. Li, T. C. Wang, W. Liu, S. C. Tong, Neural network adaptive output-feedback optimal
control for active suspension systems, IEEE Trans. Syst. Man Cybern.: Syst., 52 (2021), 4021–
4032. https://doi.org/10.1109/TSMC.2021.3089768

26. G. X. Wen, C. L. Philip Chen, W. N. Li, Simplified optimized control using reinforcement
learning algorithm for a class of stochastic nonlinear systems, Inf. Sci., 517 (2020), 230–243.
https://doi.org/10.1016/j.ins.2019.12.039

27. X. X. Pei, Y. M. Li, S. D. Yi, Adaptive neural network optimal control of hybrid
electric vehicle power battery, J. Jilin Univ. (Eng. Technol. Edition), 2021 (2021).
https://doi.org/10.13229/j.cnki.jdxbgxb20211422

28. G. X. Wen, C. L. Philip Chen, S. Z. Sam Ge, Simplified optimized backstepping control for a class
of nonlinear strict-feedback systems with unknown dynamic functions, IEEE Trans. Cybern., 51
(2020), 4567–4580. https://doi.org/10.1109/TCYB.2020.3002108

29. J. Lan, Y. J. Liu, D. X. Yu, G. X. Wen, S. C. Tong, L. Liu, Time-varying optimal
formation control for second-order multiagent systems based on neural network observer
and reinforcement learning, IEEE Trans. Neural Networks Learn. Syst., 2022 (2022), 1–12.
https://doi.org/10.1109/TNNLS.2022.3158085

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12058–12072.

http://dx.doi.org/https://doi.org/10.1109/TII.2019.2894282
http://dx.doi.org/https://doi.org/10.1049/iet-cta.2013.0472
http://dx.doi.org/https://doi.org/10.1109/TCYB.2015.2417170
http://dx.doi.org/https://doi.org/10.1049/iet-cta.2014.0186
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2012.09.019
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2018.2803726
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2017.2686373
http://dx.doi.org/https://doi.org/10.1109/TSMC.2021.3089768
http://dx.doi.org/https://doi.org/10.1016/j.ins.2019.12.039
http://dx.doi.org/https://doi.org/10.13229/j.cnki.jdxbgxb20211422
http://dx.doi.org/https://doi.org/10.1109/TCYB.2020.3002108
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2022.3158085


12071

30. W. B. Xiao, Q. Zhou, Y. liu, H. Y. Li, R. Q. Lu, Distributed reinforcement learning containment
control for multiple nonholonomic mobile robots, IEEE Trans. Circuits Syst. I Regul. Pap., 69
(2021), 896–907. https://doi.org/10.1109/TCSI.2021.3121809

31. B. X. Jiang, Y. J. Lou, J. Q. Lu, Input-to-state stability of delayed systems with bounded-delay
impulses, Math. Modell. Control, 2 (2022), 44–54. https://doi.org/10.3934/mmc.2022006

32. V. Djordjevic, L. Dubonjic, M. M. Morato, D. Prsic, V. Stojanovic, Sensor fault estimation for
hydraulic servo actuator based on sliding mode observer, Math. Modell. Control, 2 (2022), 34–43.
https://doi.org/10.3934/mmc.2022005

33. Y. M. Li, Y. J. Liu, S. C. Tong, Observer-based neuro-adaptive optimized control of strict-feedback
nonlinear systems with state constraints, IEEE Trans. Neural Networks Learn. Syst., 33 (2022),
3131–3145. https://doi.org/10.1109/TNNLS.2021.3051030

34. Y. M. Li, Y. L. Fan, K. W. Li, W. Liu, S. C. Tong, Adaptive optimized backstepping control-based
RL algorithm for stochastic nonlinear systems with state constraints and its application, IEEE
Trans. Cybern., 2021 (2021), 1–14. https://doi.org/10.1109/TCYB.2021.3069587

35. Y. M. Li, J. X. Zhang, W. Liu, S. C. Tong, Observer-based adaptive optimized control for stochastic
nonlinear systems with input and state constraints, IEEE Trans. Neural Networks Learn. Syst.,
2021 (2021), 1–15. https://doi.org/10.1109/TNNLS.2021.3087796

36. Y. Wu, X. J. Xie, Robust adaptive control for state-constrained nonlinear systems with input
saturation and unknown control direction, IEEE Trans. Syst. Man Cybern.: Syst., 51 (2019),
1192–1202. https://doi.org/10.1109/TSMC.2019.2895048

37. Y. M. Li, J. X. Zhang, S. C. Tong, Fuzzy adaptive optimized leader-following formation control
for second-order stochastic multi-agent systems, IEEE Trans. Ind. Inf., 18 (2021), 6026–6037.
https://doi.org/10.1109/TII.2021.3133927

38. K. Ezal, Z. G. Pan, P. Kokotovic, Locally optimal and robust backstepping design, IEEE Trans.
Autom. Control, 45 (2000), 260–271. https://doi.org/10.1109/9.839948

39. Y. M. Li, X. Min, S. C. Tong, Adaptive fuzzy inverse optimal control for uncertain
strict-feedback nonlinear systems, IEEE Trans. Fuzzy Syst., 28 (2019), 2363–2374.
https://doi.org/10.1109/TFUZZ.2019.2935693

40. Y. M. Li, X. Min, S. C. Tong, Observer-based fuzzy adaptive inverse optimal output feedback
control for uncertain nonlinear systems, IEEE Trans. Fuzzy Syst., 29 (2020), 1484–1495.
https://doi.org/10.1109/TFUZZ.2020.2979389

41. K. X. Lu, Z. Liu, C. L. Philip Chen, Y. N. Wang, Y. Zhang, Inverse optimal design of direct
adaptive fuzzy controllers for uncertain nonlinear systems, IEEE Trans. Fuzzy Syst., 30 (2022),
1669–1682. https://doi.org/10.1109/TFUZZ.2021.3064678

42. X. Min, Y. M. Li, S. C. Tong, Adaptive fuzzy output feedback inverse optimal
control for vehicle active suspension systems, Neurocomputing, 403 (2020), 257–267.
https://doi.org/10.1016/j.neucom.2020.04.096

43. H. H. Long, J. K. Zhao, J. Q. Lai, H∞ inverse optimal adaptive fault-tolerant attitude control for
flexible spacecraft with input saturation, J. Shanghai Jiaotong Univ. (Sci.), 20 (2015), 513–527.
10.1007/s12204-015-1659-y

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12058–12072.

http://dx.doi.org/https://doi.org/10.1109/TCSI.2021.3121809
http://dx.doi.org/https://doi.org/10.3934/mmc.2022006
http://dx.doi.org/https://doi.org/10.3934/mmc.2022005
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2021.3051030
http://dx.doi.org/https://doi.org/10.1109/TCYB.2021.3069587
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2021.3087796
http://dx.doi.org/https://doi.org/10.1109/TSMC.2019.2895048
http://dx.doi.org/https://doi.org/10.1109/TII.2021.3133927
http://dx.doi.org/https://doi.org/10.1109/9.839948
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2019.2935693
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2020.2979389
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2021.3064678
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2020.04.096
http://dx.doi.org/10.1007/s12204-015-1659-y


12072

44. X. D. Li, D. W. C. Ho, J. D. Cao, Finite-time stability and settling-time
estimation of nonlinear impulsive systems, Automatica, 99 (2019), 361–368.
https://doi.org/10.1016/j.automatica.2018.10.024

45. X. D. Li, X. Y. Yang, S. J. Song, Lyapunov conditions for finite-time
stability of time-varying time-delay systems, Automatica, 103 (2019), 135–140.
https://doi.org/10.1016/j.automatica.2019.01.031

46. Y. M. Li, T. T. Yang, S. C. Tong, Adaptive neural networks finite-time optimal control for a
class of nonlinear systems, IEEE Trans. Neural Networks Learn. Syst., 31 (2019), 4451–4460.
https://doi.org/10.1109/TNNLS.2019.2955438

47. Y. M. Li, T. T. Yang, L. Liu, G. Feng, S. C. Tong, Finite-time optimal control for
interconnected nonlinear systems, Int. J. Robust Nonlinear Control, 30 (2020), 3451–3470.
https://doi.org/10.1002/rnc.4944

48. K. X. Lu, Z. Liu, H. Y. Yu, C. L. Philip Chen, Y. Zhang, Adaptive fuzzy inverse optimal fixed-
time opntrol of uncertain nonlinear systems, IEEE Trans. Fuzzy Syst., 45 (2000), 260–271.
https://doi.org/10.1109/TFUZZ.2021.3132151

49. S. J. Cao, L. Sun, J. J. Jiang, Z. Y. Zuo, Reinforcement learning-based fixed-time trajectory
tracking control for uncertain robotic manipulators with input saturation, IEEE Trans. Neural
Networks Learn. Syst., 2021 (2021), 1–12. https://doi.org/10.1109/TNNLS.2021.3116713

50. J. T. Hu, G. X. Sui, X. X. Lv, X. D. Li, Fixed-time control of delayed neural networks
with impulsive perturbations, IEEE Trans. Neural Networks Learn. Syst., 23 (2018), 904–920.
https://doi.org/10.15388/NA.2018.6.6

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12058–12072.

http://dx.doi.org/https://doi.org/10.1016/j.automatica.2018.10.024
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2019.01.031
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2019.2955438
http://dx.doi.org/https://doi.org/10.1002/rnc.4944
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2021.3132151
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2021.3116713
http://dx.doi.org/https://doi.org/10.15388/NA.2018.6.6
http://creativecommons.org/licenses/by/4.0

	Research and development of optimization control algorithms
	Origin and development of optimal control design
	Development of optimization control algorithms

	Development of the adaptive optimal control for affine nonlinear systems
	Design of optimal control for affine nonlinear systems
	Development of identifier-actor-critic-based optimization control

	Adaptive optimization control based on backstepping for strict nonlinear systems
	Design of optimization control based on backstepping for strict feedback nonlinear systems 
	State-constrained optimal control based on backstepping
	Inverse optimization control based on backstepping

	Conclusions

