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Abstract: A model with both casual and long-term partnerships is considered with respect to the
impact of a pre-exposure prophylaxis (PrEP) on the spread of HIV. We consider the effect of the
effectiveness of PrEP, the rate that susceptible individuals choose to take PrEP, and compliance with
the daily dose of the pre-exposure prophylaxis. The rate of infection in long-term partnerships is
computed using a linearized expected value as a means for including the nonlocal effects of long-term
partnerships while maintaining computational feasibility. The reproduction numbers for models with
casual partnerships, long-term partnerships, and a combination of both are analytically computed and
global stability of both disease-free and endemic equilibria is shown. Sensitivity and PRCC analysis
results suggest that increasing the compliance among the current PrEP users is a more effective strategy
in the fight against the HIV epidemic than increased coverage with poor compliance. Furthermore, an
analysis of the reproduction number shows that models with either casual or monogamous long-term
partnerships can reach the desired R0 < 1 threshold for high enough levels of compliance and uptake,
however, a model with both casual and monogamous long-term partnerships will require additional
interventions. Methods highlighted in this manuscript are applicable to other incurable diseases or
diseases with imperfect vaccines effected by long-term partnerships.

Keywords: pre-exposure prophylaxis (PrEP); HIV prevention; long-term partnerships; PrEP
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1. Introduction

The Center for Disease Control (CDC) estimates that over 1 million adults and adolescents in the
USA are currently living with HIV. Gay, bisexual, and other men who have sex with men are the
population most affected by HIV. In 2018, 86% of the 37,832 new HIV diagnoses were among males,
while gay and bisexual men, in particular, accounted for 69% [1, 2]. In 2019 the U.S. Department
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of Health and Human Services (HHS) proposed the Ending the HIV Epidemic: A Plan for America
initiative [3] to end the HIV epidemic in the United States within 10 years. This initiative will leverage
critical scientific advances in HIV prevention, diagnosis, treatment, and care by coordinating the highly
successful programs, resources, and infrastructure of many HHS agencies and offices.

Although HIV testing and promotion of condom use will always be core strategies for reducing risk,
a more radical approach is needed for people at high risk who do not have HIV and whose condom use
is inconsistent. One such approach is encouraging the use of antiretroviral pre-exposure prophylaxis
(PrEP), the FDA-approved daily oral medication regimen, such as Truvada (approved in 2012) or
Descovy (approved in 2019), designed to protect people from HIV infection. To qualify for PrEP, a
person must be HIV-negative, sexually active, and either 1) infrequently use condoms during sex with
one or more partners of either positive or unknown HIV status who are known to be at substantial
risk of HIV infection or 2) have had a sexually transmitted infection (STI) with syphilis, gonorrhea,
or chlamydia within the past 6 months [4]. In the U.S., the CDC estimates that more than one million
people (1,232,000 [1]) are at sufficient risk for HIV to meet PrEP prescribing guidelines. In contrast,
the recent estimate (first quarter of 2017) of people currently taking PrEP (based on pharmacy data) is
approximately 120,000, making it about 10% of those who could benefit from the prophylaxis [2].

More than 15 trials (including iPrEx, PROUD, and IPERGAY) of oral PrEP have shown that, when
taken consistently and correctly, PrEP is very effective and reduces the chances of HIV infection to
near-zero [5–7]. This has led some to describe PrEP as a “game changer” for HIV prevention. The
effectiveness of PrEP is closely linked to adherence - if someone taking PrEP regularly misses daily
dose, their risk of HIV infection will increase substantially. It is therefore important that any pro-
gram offering PrEP provides a combination package of prevention initiatives, based on an individual’s
circumstances - with support and advice on the importance of PrEP adherence.

In the clinical research world, researchers use the term “men who have sex with men” (MSM) to
describe gay and bisexual men, transgender women, and others who were born male and who have sex
with men but who may or may not identify as gay or bisexual. The CDC estimates MSM population
in the USA to be over 7 million. Current guidelines and recommendations for PrEP use include MSM
as one of the priority populations for PrEP implementation. In these guidelines, PrEP is indicated for
MSM who are at “substantial risk” of infection, defined primarily by three behavioral criteria: un-
protected anal intercourse (UAI) in HIV status-unknown monogamous partnerships, UAI outside of
monogamous partnership, and anal intercourse in a known-serodiscordant (mixed HIV-status) partner-
ship [4]. Although approximately 25% of HIV-uninfected MSM aged between 18 and 59 years who
report past-year sex with a man meet indications for PrEP use, current PrEP treatment coverage is
well below the half million who are eligible [8]. Understanding the impact of increased PrEP uptake
on population-level HIV incidence should help the public health officials with increasing the PrEP
awareness, administration, and adherence.

Mathematical models provide one approach to estimating PrEP impact, but PrEP models of MSM
to date have been limited and often differ from the CDC guidelines. A variety of methods have been
used to study HIV transmission dynamics in the presence of PrEP. For instance, Kim et al. [9] in South
Korea, Punyacharoensin et al. [10, 11] in the UK, and Li et al. [12] in China, used compartmental
mathematical models with varying number of compartments based on the stages of disease progression,
disease diagnosis and treatment. Recently Steinegger et al. [13] used network models to demonstrate
that efficacy of PrEP determines the best strategy to reducing HIV spread, and that targeting those at
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highest risk is optimal only if the efficacy of PrEP is above a calculated threshold. Alternatively Jenness
et al. [14] in the US used an agent-based model in which uniquely identifiable sexual partnership
dyads were simulated and tracked over time. The findings published by all of the authors confirmed
the positive impact of PrEP on the HIV dynamics. Jenness et al. [14] estimated the percentage of
infections averted and the number of individuals needed to be treated with PrEP in order to prevent
one new infection. Their results suggested that with 40% coverage of high-risk MSM and 62% high
adherence among those covered, PrEP would eliminate 33% of new infections among MSM in the USA
over the next 10 years. Increasing coverage and adherence jointly raises the percentage of infections
averted, but reduction to the number of individuals needed to treat was associated with better adherence
only. Across all levels of coverage, increasing the proportion of MSM receiving PrEP who are highly
adherent will strongly affect the efficiency of PrEP: the number needed to treat could be reduced from
approximately 50 with poor adherence to 20 with optimal adherence [14].

This work will focus on the spread of HIV with implementation of PrEP in a homogeneous
(sexually-active MSM) population, where the transmission of a disease due to homosexual acts is
the highest mode of infection. Unlike the data simulation models presented above, ours will be an
analytic model described by the autonomous system of ordinary differential equations. This approach
will allow us to understand the effect of different parameter values on the dynamics of the disease, to
explore the impact of varying conditions associated with PrEP use, and to define the conditions under
which the disease can be eliminated or brought to steady state. The novel feature of our model is
consideration of various partnership scenarios, including casual and long-term partnerships. Among
the many parameters, the presented model takes into the account rates of acquiring new partners, du-
ration of the long partnerships, rates at which susceptibles start and stop the pre-exposure prophylaxis
program, treatment adherence rate and effectiveness rate of PrEP.

A few of the recent publications have addressed some of these aspects but, as far as we are aware,
none have combined all of them. Simpson and Gumel [15] presented a model with casual partnerships,
stratifying the susceptible population using PrEP based on two levels (low and high) of treatment ad-
herence. Silva and Torres [16] focused on the population of Cape Verde in the model that includes
rates of initiating and defaulting on the presumably 100% effective PrEP treatment and hence not al-
lowing a possibility of disease transmission from that group. Hansson et al. [17] proposed a classic
pair-formation model that includes steady and casual partners among the individuals categorized as
sexually high active and low active. Different mixing patterns are considered but only those highly
active sexually are offered PrEP. In addition, those who begin using PrEP are assumed to stay on it
indefinitely, with no adherence factor present. Our work confirms that considering only casual partner-
ships does not provide accurate representation of the disease progression in the long run. Hence the
inclusion of long-term partnerships to show their significant impact on the spread of HIV. As reported
by Simpson and Gumel [15], we also show that adherence plays a very important role, possibly even
more than increasing the PrEP uptake by itself. However, while Simpson and Gumel used two levels
of compliance, our adherence parameter q varies continuously between 0 and 1. Thus we are able
to determine the level of compliance necessary to get the reproduction number R < 1. Hansson’s et
al. [17] approach of looking at different types or partnerships and also the level of sexual activity is
interesting but the assumption of individuals never stopping the strict PrEP regime is highly unrealistic
considering the data [1].

The model and results of this paper will be presented as follows. In Section 2 we describe the PS I
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(PrEP-treated, susceptible, infected) model and consider three cases based on the type of partnership(s)
each of them includes, calculate the corresponding rates of infection and reproduction numbers, and
lastly prove the existence and global stability of equilibria under appropriate conditions. Section 3
presents numeric results, where we look at the time series of all three cases and analyze the elasticity
of the reproduction number as well as the sensitivity of the model to its key parameters. In Section 4
we discuss our model and the results as well as point out the limitations and mention future work.

2. Models

The population being modeled here consists of sexually active MSM individuals (18 to 65 years
old), regardless of their HIV status or qualifications for PrEP. We divide the total population, assumed
to be constant N0, into two susceptible groups and one infected group. The susceptible individual
cannot spread the disease and is either currently taking PrEP (group P) or is not taking PrEP but might
be a possible candidate for it (group S ). The infected individual (group I) contracted HIV, and can
spread the disease. There is only one infectiousness group because we do not distinguish between acute
and chronic/latent phases of infection. To maintain a system that is easier to analyze, we currently do
not account for differences based on race, age or other demographic factors within the population. In
order to explore the possible effect of introducing PrEP to susceptible population before they become
sexually active, we introduce a parameter α.

S

µ

I µ

P

µ

π(1 − α)

πα

λ

(1 − qr)λ

θσ

Figure 1. Schematic diagram of the PSI model with three groups, the infected individuals
in I, the susceptible individuals in S who are not currently using PrEP and may become
infected at a rate λ, and the PrEP users in group P who may become infected at a modulated
rate (1 − qr)λ. The reduction in infectivity of P is due to effectiveness of PrEP treatment
r, and an adherence to the treatment q. The parameters θ, σ, and µ correspond to the PrEP
uptake rate, PrEP drop rate, and population removal rate, respectively.

Individuals join the sexually active population at a rate π. Assuming α is a proportion of those
starting PrEP beforehand, the individuals enter the model (Figure 1) either through the group P, at a
rate πα, or the group S , at a rate π(1 − α). People move from S to I at a rate of infection λ. However,
the rate of infection at which people move from P to I is modulated by a factor (1 − qr), which
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represents the degree of protection of PrEP users who adhere to the treatment at the level q, with the
treatment effectiveness r. In addition, the susceptible individual in S who qualifies for and starts the
PrEP treatment moves to P at a rate of θ. At the same time, the people in P who stop the treatment
move back to S at the rate of σ. Each group can be exited due to natural death, migration, or changes
in sexual behavior, at a combined removal rate µ. We assume that the individuals diagnosed as HIV
positive have ready access to highly effective HAART treatment. HAART treatment cannot cure HIV;
it can, however, delay or prevent the onset of symptoms or progression to AIDS, thereby prolonging
survival in people infected with HIV [18]. With that in mind, we do not consider death or other removal
from population due to disease.

The equations governing the model in Figure 1 are given by

dP
dt
= πα + θS − (1 − qr)λP − (σ + µ)P,

dS
dt
= π(1 − α) + σP − λS − (θ + µ)S ,

dI
dt
= λS + (1 − qr)λP − µI.

(2.1)

The parameters present in the Figure 1 and in the model (2.1) are listed in Table 1. Values of the
rates of starting (θ), stopping (σ), and adherence (q) to the PrEP treatment, are assumed minimal due
to variability and range of values mentioned in current literature [2, 10, 16].

Table 1. General parameters in the PS I model illustrated in Figure 1 and described by
model (2.1).

Parameter Description Value Ref
N0 Total population 7.1 (in millions) [2]
µ Population removal rate 1/61 (1/years) [2]
π Recruitment rate µN0

α Fraction of the newly recruited PrEP users 0.1 [2]
θ Rate of starting PrEP 0.1 assumed
σ Rate of stopping PrEP 0.01 assumed
q Level of adherence to PrEP treatment 70% assumed
r PrEP effectiveness 90% [3]

For the simplicity of work that follows, it is convenient to transform the model (2.1) into an equiv-
alent model with proportions v = P

N0
, s = S

N0
, and i = I

N0
denoting fractions of the classes P, S , and I in

the constant population N0, and satisfying v + s + i = 1:

dv
dt
= µα + θs − (1 − qr)λv − (σ + µ)v,

ds
dt
= µ(1 − α) + σv − λs − (θ + µ)s,

di
dt
= λs + (1 − qr)λv − µi.

(2.2)
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Due to invertibility of the transformation used, the two systems are equivalent, and the scaled
model (2.2) inherits all the properties of the original model (2.1), including existence and stabil-
ity of a disease-free equilibrium (DFE) (v∗, s∗, 0) =

(
P∗
N0
, S ∗

N0
, 0

)
and any endemic equilibria (EE)

(v∗∗, s∗∗, i∗∗) =
(

P∗∗
N0
, S ∗∗

N0
, I∗∗

N0

)
.

2.1. Partnerships

Partnerships play an important role in disease transmission of HIV. Here we consider both ca-
sual and long-term partnerships [19]. A casual partnership constitutes a single instance of a sexual
encounter, whereas a long-term partnership consists of repeated sexual acts between the same two in-
dividuals over a longer period of time τ, that represents the average long-term partnership duration.
The following cases will be described and analyzed:

• Case I: Casual-only partnerships: susceptible individual of interest, X, is not in any long-term
partnership but engages only in casual sexual behavior.
• Case II: Monogamous long-term partnerships: susceptible individual of interest, X, is in a

monogamous long-term partnership with infected individual Y. The individual X does not en-
gage in any casual sexual behavior outside of this partnership.
• Case III: Non-monogamous long-term partnerships: susceptible individual of interest, X, is in a

long-term partnership with infected individual Y but at the same time X may have a casual sexual
encounter with another infected individual, outside of the long-term partnership.

We assume that all individuals mix randomly with constant casual and long-term partner acquisition
rates. Additionally, all sexual encounters are independent of each other and since all considered part-
nerships are serodiscordant, no transitive transmission of infection can ever take place, meaning that
the susceptible individual of interest cannot become infected due to his long-term partner’s involve-
ment in a casual partnership with another infected individual. The case of concurrent partnerships
among two susceptible individuals, which would allow for transitive infectivity, is our ultimate goal
and will be a subject of our future work. We further assume that the risk factors are fixed across time
and do not differ among the individuals, meaning that no susceptible person has a higher chance of
contracting HIV than others within the same group, at any given time. The parameters pertaining to
the above cases, based on the type of partnership considered, are listed in Table 2.

Table 2. Partnership-specific parameters in the PS I model.

ParameterDescription Value Ref
z Average number of casual partners per year 7.31 (1/year) [20]
β Transmission rate per one sexual act 0.0075 [20]
τ Mean duration of long-term partnership 3.57 (years) [20]
p
τ

Average number of long-term partners per year 0.203 (1/year) calculated
n Number of sexual acts over the duration of long-term partnership104τ [20]
ce f f Condom effectiveness 87% [20]
cu Condom usage by infected long-term partners 85% [20]
c Transmission rate adjustment factor due to condom use (1 − cuce f f )
χ Transmission rate from the infected long-term partner per year p

τ
(1 − (1 − cβ)n)
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A widely-studied approach of studying sexually transmitted diseases is a pair-formation model [17,
21–23]. It captures the complex dynamics of partnership duration and infection duration but requires
explicit description of every combination of characteristics within pairs. This quickly increases the
number of differential equations needed to describe the dynamics. Another limitation of pair forma-
tion models is that concurrent partnerships can only be added using moment closure methods. Our
goal is to overcome these limitations and propose a novel approach. In [19], we compared two pair for-
mation models with a long-term partnership model. Numerical simulations showed that the long-term
partnership model without concurrency (transitive infections) mimics the pair formation models. We
also concluded that the corresponding reproduction numbers are comparable, and the overall dynamics
of these models are almost identical, even with the low concurrency rate. A significant advantage of the
long-term partnership model is that having fewer equations allows for analytic calculations in addition
to numerical simulations.

2.2. Case I: PS I model with casual-only partnerships

In this case, the susceptible individual X does not have any long-term partners but engages in casual
sexual acts. The infection rate from casual partners, denoted λz, follows the classic law of mass action
with a zero inherent length infection contact. It assumes that the transmission rate from an infected
individual in I is zβ, where z is the rate of casual sexual encounters and β is the transmission probability
per sexual encounter with an infected individual, and is calculated as

λ = λz = zβi. (2.3)

The reproduction number is calculated using the next generation method [24]. In the absence of

PrEP (i.e., σ = θ = α = 0), the basic reproduction number is Rz
0 =

zβ
µ

. When PrEP is present, we

obtain the threshold parameter, often referred to as a ‘vaccine’ reproduction number,

Rz = Rz
θ =

zβ
µ

[
1 −

qr(θ + µα)
σ + µ + θ

]
= Rz

0

[
1 −

qr(θ + µα)
σ + µ + θ

]
. (2.4)

We use subscript θ to emphasize the role of the PrEP treatment uptake, θ, in controlling the spread
of the disease, and a superscript z to indicate the reproduction number was calculated for the casual
partnerships. It is worth noting that Rz

θ ≤ Rz
0. Using standard procedure we calculate the disease-free

equilibrium

(v∗, s∗, i∗) =
(
θ + αµ

σ + µ + θ
,
σ + µ − αµ

σ + µ + θ
, 0

)
(2.5)
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and, with help of Mathematica, the endemic equilibrium:

v∗∗ =
1

2zβqr(1 − qr)
{µ + σ + (1 − qr)(θ − µ + zβ)

−
√

[(1 − qr)(θ + zβ) + µqr + σ]2 − 4µqr(θ + αzβ)(1 − qr)
}
,

s∗∗ =
1

2zβqr
{µ − σ − (1 − qr)(θ + µ + zβ)

+
√

[(1 − qr)(θ + zβ) + µqr + σ]2 − 4µqr(θ + αzβ)(1 − qr)
}
,

i∗∗ = −
1

2zβ(1 − qr)
{µ + σ + (1 − qr)(θ + µ − zβ)

−
√

[(1 − qr)(θ + zβ) + µqr + σ]2 − 4µqr(θ + αzβ)(1 − qr)
}
.

(2.6)

Since the effectiveness of PrEP, r, is approximately 95% [3] and it is unlikely we get adherence to
daily dosages, q, to be 100%, we assume that qr , 1. The unlikely case of qr = 1 would correspond to
having a perfect vaccine.

2.2.1. Stability of the equilibria

Before proving stability, we will show the existence and uniqueness of equilibria when Rz > 1.
Substituting s = 1 − v − i into the last two equations in (2.2), gives a reduced system

di
dt
= i(zβ − µ − zβi − zβqrv),

dv
dt
= µα + θ − θi − (σ + µ + θ)v − (1 − qr)zβiv.

(2.7)

It is straightforward to check that (0, v∗) from (2.5) is always a disease-free equilibrium of (2.7).
The positive (endemic) equilibria in the interior of D are determined by equations:

zβi + zβqrv = zβ − µ,

θi + (σ + µ + θ)v + (1 − qr)zβiv = µα + θ.
(2.8)

We begin our investigation of endemic equilibria for model (2.7) by considering two extreme special
cases. First, suppose that 1 − qr = 1, i.e., the PrEP treatment is completely ineffective. Recall that q is
the level of adherence to PrEP treatment and r is PrEP effectiveness, thus qr = 0. This reduces Rz to

Rz
0 =

zβ
µ

. Now, with Rz
0 > 1, i asymptotically approaches

(
1 − 1

Rz
0

)
and, consequently, v, the fraction of

the population taking PrEP, approaches
µα+θ 1

Rz
0

θ+µ+σ+zβ
(
1− 1

Rz
0

) . Here we observe the classical threshold behavior

of the basic reproduction number. If instead, we suppose that 1−qr = 0, so that the PrEP is completely
effective and with full adherence, then we find one (stable) endemic equilibrium, which also exists only
for Rz > 1.

Now we want to address the existence of endemic equilibria for 0 < 1− qr < 1. Eliminating v from
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the system (2.8) gives: h(i) B Ai2 + Bi +C = 0, where

A = −zβ(1 − qr) < 0,
B = (zβ − µ − θ)(1 − qr) − (µ + σ),

C =
zβ − µ

zβ
(θ + µ + σ) − qr(µα + θ) =

µ

zβ
(µ + θ + σ)(Rz − 1).

(2.9)

Note that h(0) = C, h(1) = A+B+C = −µ[1−qr(1−α)]− µzβ (σ+µ+ θ) < 0, and that h’s vertex lies
to the left of i = 1 (i = 1 means that the entire population is infected) at i = − B

2A <
zβ(1−qr)
2zβ(1−qr) =

1
2 . Since

an endemic equilibrium corresponds to a solution of h(i) = 0 on the unit interval [0, 1], by examining
the quadratic h, we can see that when Rz > 1 there is exactly one such i, indicating that there is a unique
endemic equilibrium (i∗∗, v∗∗), as in (2.6) whenever Rz > 1.

We now look at the case when Rz < 1, which means C < 0. If at the same time B < 0 then the
quadratic function has no real roots. Therefore we are left with the last case, namely B > 0 (i.e.,
0 < − B

2A =
1
2 −

(µ+θ)(1−qr)+(µ+σ)
2zβ(1−qr) < 1

2 , and abscissa of a vertex is 0 < i < 1) and B2 − 4AC > 0 (i.e.,
h(i) has two real zeros), which, together with C < 0, would guarantee two real solutions of h(i) = 0
on the unit interval [0, 1]. The condition B2 − 4AC > 0 is quadratic, but can be simplified using the
condition B > 0. The two conditions cannot, however, be reduced to one, but can be written in terms
of zβ, which is linearly correlated with Rz. The condition B > 0 is satisfied when zβ > µ + θ +

µ + σ

1 − qr
,

while B2 − 4AC > 0 requires

zβ > µ + θ +
µ + σ

1 − qr
+

2
1 − qr

√
µ(1 − qr)(θ + µ + σ)(1 − Rz). (2.10)

Notice that as Rz → 1− , the square root in (2.10) heads to 0+. Using parameter values in Table 2,
we see that zβ ≈ 0.0548, µ + θ +

µ + σ

1 − qr
> 0.0428 + θ, and, when Rz < 1, qr > 0.7, which collectively

forces θ to be negative in order to satisfy condition (2.10). Therefore, we have just shown the following
result.

Theorem 2.1. For the system (2.7), with Rz as defined previously,

1) When Rz > 1, there exists a unique endemic equilibrium (i∗∗, v∗∗).
2) When Rz < 1, there does not exist any endemic equilibrium.

The local stability of the DFE is analyzed using the eigenvalues of the Jacobian for the model (2.2)
with the rate of infection (2.3). The three real eigenvalues are λ1 = −µ, λ2 = −(µ + θ + σ), and

λ3 = −µ+zβ
[
1 −

qr(θ + µα)
σ + µ + θ

]
, with the first two always being negative and the third one being negative

only when µ > zβ
[
1 −

qr(θ + µα)
σ + µ + θ

]
= µRz. We conclude the classic result of DFE being locally stable

when Rz =
zβ
µ

[
1 −

qr(θ + µα)
σ + µ + θ

]
< 1 and unstable when Rz > 1. To prove the global stability we will use

the method of Lyapunov functions but first we will state and prove few necessary and helpful results.

Lemma 2.2. The closed set D = {(v, s, i) ∈ R3
+ : 0 ≤ v + s + i ≤ 1} is positively invariant with respect

to model (2.2).
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Proof. Define x = v + s + i. It follows from the model (2.2) that
dx
dt
= µ − µx, which gives x(t) =

1 − (1 − x(0))e−µt. Thus, 0 ≤ x(t) ≤ 1 for all values of t > 0, if 0 ≤ x(0) ≤ 1 (i.e. x(t) ∈ D for all t > 0
if x(0) ∈ D). Hence, D is positively invariant.

Lemma 2.3. Suppose x1, . . . , xn > 0 and
∏n

j=1 x j = 1. Then

n − x1 − · · · − xn ≤ 0.

Proof. Consider the Volterra function g(x) = x − 1 − ln x, with g(x) ≥ 0 for all x > 0.
Note that

ln(x1) + · · · + ln(xn) = ln

 n∏
j=1

x j

 = ln 1 = 0.

Then

n − x1 − · · · − xn = n − x1 − · · · − xn + ln(x1) + · · · + ln(xn)

= −

n∑
j=1

[x j − 1 − ln(x j)] = −
n∑

j=1

g(x j) ≤ 0.

Corollary 2.4. Let (v, s, i), (v̂, ŝ, î) ∈ D. Since
v̂
v
·

v
v̂
=

ŝ
s
·

s
ŝ
=

v̂
v
·

s
ŝ
·

vŝ
sv̂
= 1, by Lemma 2.3,

2 −
ŝ
s
−

s
ŝ
≤ 0, 2 −

v̂
v
−

v
v̂
≤ 0 and 3 −

v̂
v
−

s
ŝ
−

vŝ
v̂s
≤ 0.

Lemma 2.5. Given (v, s, i), (v̂, ŝ, î) ∈ D such that v + s + i = v̂ + ŝ + î, we have (v − v̂)(s − ŝ) ≤ 0

Proof. We can write (s − ŝ) = (v̂ − v) + (î − i) and (ŝ − s) = (v − v̂) + (i − î), then consider two cases.
If i > î then (s − ŝ) < (v̂ − v) and (v − v̂)(s − ŝ) ≤ (v − v̂)(v̂ − v) = −(v − v̂)2 ≤ 0.
If i < î then (ŝ − s) < (v − v̂) and (v − v̂)(s − ŝ) = −(v − v̂)(ŝ − s) ≤ −(v − v̂)2 ≤ 0.

Theorem 2.6. The DFE of the transformed model (2.2), given by (v∗, s∗, 0) in (2.5), is globally asymp-
totically stable in D whenever Rz ≤ 1 and qr , 1.

Proof. Define the nonlinear Lyapunov function of Goh-Volterra type [25, 26]

L = s − s∗ − s∗ ln
s
s∗
+ v − v∗ − v∗ ln

v
v∗
+ i,

with Lyapunov derivative given by

L̇ =

(
1 −

s∗

s

)
ṡ +

(
1 −

v∗

v

)
v̇ + i̇,

where a dot represents differentiation with respect to time. Substituting model (2.2) gives
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L̇ =

(
1 −

s∗

s

)
[µ(1 − α) + σv − λs − (θ + µ)s]+

+

(
1 −

v∗

v

)
[µα + θs − (1 − qr)λv − (σ + µ)v] + λs + (1 − qr)λv − µi

= µ(1 − α)
(
1 −

s∗

s

)
+ σv

(
1 −

s∗

s

)
− λs + λs∗ + (θ + µ)s∗

(
1 −

s
s∗

)
+

+

(
1 −

v∗

v

)
(µα + θs) − λv(1 − qr) + λv∗(1 − qr) + (σ + µ)v∗

(
1 −

v
v∗

)
+ λs + (1 − qr)λv − µi.

After extensive simplifying, using the facts that µ(1−α)+σv∗−(θ+µ)s∗ = 0 and µα+θs∗−(σ+µ)v∗ =
0, obtained from evaluating the equilibrium equations at DFE, we get

L̇ = µ(1 − α)
(
2 −

s∗

s
−

s
s∗

)
+ µv∗

(
2 −

v∗

v
−

v
v∗

)
+ σv∗

(
3 −

v∗

v
−

vs∗

v∗s
−

s
s∗

)
+

+ λs∗ + (1 − qr)λv∗ − µi +
θ

v
(v − v∗)(s − s∗).

Now, considering that i > i∗ = 0, using Lemma 2.5 together with the identity s∗ + (1 − qr)p∗ =

1 −
qr(θ + µα)
σ + µ + θ

, we can write

L̇ ≤ µ(1 − α)
(
2 −

s∗

s
−

s
s∗

)
+ µv∗

(
2 −

v∗

v
−

v
v∗

)
+ σv∗

(
3 −

v∗

v
−

vs∗

v∗s
−

s
s∗

)
+ µi

[
zβ
µ

[
1 −

qr(θ + µα)
σ + µ + θ

]
− 1

]
= µ(1 − α)

(
2 −

s∗

s
−

s
s∗

)
+ µv∗

(
2 −

v∗

v
−

v
v∗

)
+ σv∗

(
3 −

v∗

v
−

vs∗

v∗s
−

s
s∗

)
+ µi [Rz − 1] .

Using the results from the Corollary 2.4 we can finally conclude that L̇ ≤ 0 when Rz ≤ 1. Thus, by
Lyapunov stability theorem, and LaSalle’s Invariance Principle, every solution (in D) to the equations
of the transformed model (2.2) approaches the DFE as t → ∞ for Rz ≤ 1 and qr , 1.

It follows that the use of PrEP will lead to the elimination of the disease from the community
whenever Rz ≤ 1 and qr , 1.

Theorem 2.7. The unique EE of the model (2.2), given by (v∗∗, s∗∗, i∗∗) in (2.6), is globally asymptoti-
cally stable in D whenever Rz > 1 and qr , 1.

Proof. Define the non-linear Lyapunov function of Goh-Volterra type [25, 26] (similar to the proof of
Theorem 2.6)

M = s − s∗∗ − s∗∗ ln
s

s∗∗
+ v − v∗∗ − v∗∗ ln

v
v∗∗
+ i − i∗∗ − i∗∗ ln

i
i∗∗
.

The proof here follows the same ideas as in the proof of Theorem 2.6, where we show Ṁ ≤ 0 using
the model (2.2), identities obtained from evaluating the equilibrium equations at EE, and the results of
the Corollary 2.4 and the Lemma 2.5.

Hence, by Lyapunov stability theorem, and LaSalle’s Invariance Principle, every solution (in D) to
the equations of the transformed model (2.2) approaches the unique EE as t → ∞ for Rz > 1 (and
qr , 1).
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As evidenced above, the equilibria of the model (2.2) collide and exchange the stability when Rz = 1,
meaning the (transcritical) bifurcation occurs at Rz = 1. Under certain conditions, to be determined
below, this could potentially become a ‘backward’ (subcritical) bifurcation, which would mean the
endemic equilibria exist for Rz < 1 as well as for Rz > 1. In that case, there would be some critical
value of Rz below 1, where a pair of endemic equilibria would be created at a second, saddle-node type
bifurcation point. We would find this bifurcation point for Rz, by solving B2 − 4AC = 0 [27], obtained
earlier using (2.9). Recalling that C =

µ

zβ
(µ+ θ+σ)(Rz − 1), the equation B2 − 4AC = 0 would become

B2 + 4µ(1 − qr)(1 − Rz)(µ + θ + σ) = 0, or Rz = 1 −
B2

4µ(1 − qr)(µ + θ + σ)
,

which similarly to (2.10) cannot be satisfied without forcing θ to be negative.
Using the same technique as before, we could also try to identify the bifurcation point in terms of

zβ by rewriting B2 − 4AC = 0 as

zβ = −
θ(1 − qr) + µqr + σ − 2µqrα

1 − qr
+

2
1 − qr

√
µqr[(1 − α)(1 − qr)(θ + µα) − µα(1 − α) − ασ].

However the conclusion would still be the same, namely, with feasible values of the parameters
present in the model, there is no backward bifurcation and the unique endemic equilibrium exists only
when Rz > 1.

2.3. Case II: PS I model with monogamous long-term partnerships

This case assumes that both the susceptible individual X and his infected long-term partner Y are
exclusive with each other and do not engage in any sexual acts outside of their partnership. Since there
are no casual sexual acts, the susceptible can only become infected through the infected long-term
partner at a rate λp. We assume that the rate of transmission of infection within a long-term partnership
with an infected individual in I is χ. The probability of transmission per partner depends upon the
average number of contacts per partner and the mean probability of transmission per contact. Just as
with the casual sexual partnership, the infected partner in I can possibly infect the susceptible partner in
a single sexual act, at a probability of β. In the case of long-term partnerships with infected individual,
we assume that the partners mitigate the infection risk with condoms approximately 85% of the time
(see parameter cu in Table 2). However, the probability of an individual being fully protected also
depends on the condom effectiveness ce f f and is hence equal to ce f f ·cu. If we define the reduction factor
due to condom effectiveness and usage as c = 1−ce f f ·cu, then the term cβ is the transmission probability
per sexual contact. Consequently, the probability of not being infected in a single act is (1 − cβ), and
the probability of not being infected after n sexual acts is (1 − cβ)n. Here, the exponent n = 104τ
reflects the number of sexual contacts over the duration of long-term partnership τ = 1/(b+2µ), with µ
being the population removal rate (by death or due to ceasing sexual activity) and b denoting the rate at
which long-term partnerships dissolve [28]. In λz we used the average rate of having casual encounters
per year, z. Similarly, in λp we use the rate of acquiring long-term partners per year, p/τ. It is derived
using the number of lifetime long-term partners M = f /(µ( f τ + 1)), defined for pair formation model
by [19, 22], where f is the pair formation rate, τ is the partnership duration, and 1/µ is the lifetime.
Thus, the number of long-term partners per year becomes Mµ = f /(1+ f τ), which is our definition for
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p/τ. Following Kretzschmar and Heijne [22], parameter p is a fraction of population in a long-term
partnership but also describes the fraction of his lifetime that an individual is cumulatively in long-term
partnerships. Therefore, the probability that the susceptible long-term partner will be infected after n
sexual acts with the long-term partner in I is our rate of transmission χ = (p/τ) (1 − (1 − cβ)n).

When deriving the rate of infection λp from an infected partner, we assume that the infected partner
has not transmitted the infection before a given time t. In short, the rate of infection by the fraction of
infected long-term partners out of the total population is the expected value of the rate of infection due
to partners initially chosen while infectious,

λ = λp = E
[
χi

]
.

The probability that an infected partner, who is acquired at time κ, transmits the infection at a later
time t, is given by the product of the following probabilities, multiplied by the rate of transmission χ:

1) The probability that a partner acquired at time κ was already infected: P(X(κ) ∈ I) = i(κ).
2) The probability that a partner acquired at time κ will still be a partner at time t: P(X(t) ∈ Partner).

In our calculation, we use the definition of the expected value of a continuous random variable X
with range [a, b] and probability distribution function g(x),

E[X] =
∫ b

a
xg(x)dx.

We can interpret the formula for E[X] as a weighted integral of the values x of random variable X,
where the weights are the probabilities g(x)dx. We assume that the probability (see item 2.3 above)
of the partnership lasting through time t can be described by a distribution function that is a decaying
exponential scaled by the length of an average long-term partnership, τ,

P(X(t) ∈ Partner) =
1
τ

e−(t−κ)/τ.

With that in mind, and remembering that κ ∈ [−∞, t], our expected value of the rate of infection is

E
[
χi

]
=

∫ t

−∞

χi(κ)
1
τ

e−(t−κ)/τdκ =
∫ t

−∞

χi(κ)
τ

e−(t−κ)/τdκ. (2.11)

Since we are dealing with a nonlinear and a non-local problem, it is not feasible to keep track of
the number of infected individuals for all time prior to the instant t at which the infection occurs. To
make the calculations tractable, we will define λp to be a linear approximation to the expected value,
with i(κ) ≈ i(t)+ i′(t)(κ− t), and i′(t) = λs(t)+ (1− qr)λv(t)− µi(t) directly from our ODE model (2.2),
giving us

i(κ) ≈ (1 + µτ)i(t) − λτs(t) − λτ(1 − qr)v(t)

in the integrand of (2.11). In other words, we are approximating the fraction of infectious individuals
i(κ) at time κ as the fraction of infected at time t plus the fraction of infected who died (1 + µτ)i(t) and
subtracting off the fraction of the individuals λτ(s(t)+ (1−qr)v(t)) who became infected between times
κ, when the long-term relationship began, and the current time t with τ = t − κ.
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Therefore

E
[
χi

]
=

∫ t

−∞

χi(κ)
τ

e−(t−κ)/τdκ

≈
χ

τ
((1 + µτ)i(t) − λτs(t) − λτ(1 − qr)v(t))

∫ t

−∞

e−(t−κ)/τdκ

= χ(1 + µτ)i(t) − χλτ[s(t) + (1 − qr)v(t)].

Then the rate of infection from the infected long-term partner is

λ = λp ≡ E
[
χi

]
≈ χ(1 + µτ)i(t) − χλτ[s(t) + (1 − qr)v(t)].

Solving the above equation explicitly for λ, we get:

λ =
χ(1 + µτ)i(t)

1 + χτ[s(t) + (1 − qr)v(t)]
. (2.12)

As in Case I (Section 2.2), the reproduction number is calculated using the next generation method.
In the absence of PrEP (i.e., σ = θ = α = 0) we get the basic reproduction number, Rp

0 =
χ(1+µτ)
µ(1+χτ) . When

PrEP is present, we once again obtain the so-called threshold parameter, aka.‘vaccine’ reproduction
number,

Rp = Rp
θ =
χ(1 + µτ)
µ(1 + χτ)

[
1 −

qr(θ + µα)
(σ + µ + θ)(1 + χτ) − qr(θ + µα)χτ

]
= Rp

0

[
1 −

qr(θ + µα)
(σ + µ + θ)(1 + χτ) − qr(θ + µα)χτ

]
,

(2.13)

which only makes sense (i.e., is positive) when σ + µ + θ > qr(θ + µα). It is also straightforward to
check that Rp < 1 + 1

µτ
.

The disease-free equilibrium is once again calculated to be

(v∗, s∗, i∗) =
(
θ + αµ

σ + µ + θ
,
σ + µ − αµ

σ + µ + θ
, 0

)
, (2.14)

and, with help of Mathematica, the endemic equilibrium is

v∗∗ =
1

2χqr(1 − qr)
{µ + σ + (1 − qr)(θ − µ + χ)

−
√

[(1 − qr)(θ + χ) + µqr + σ]2 − 4µqr(θ + αχ)(1 − qr)
}
,

s∗∗ =
1

2χqr
{µ − σ − (1 − qr)(θ + µ + χ)

+
√

[(1 − qr)(θ + χ) + µqr + σ]2 − 4µqr(θ + αχ)(1 − qr)
}
,

i∗∗ = −
1

2χ(1 − qr)
{µ + σ + (1 − qr)(θ + µ − χ)

−
√

[(1 − qr)(θ + χ) + µqr + σ]2 − 4µqr(θ + αχ)(1 − qr)
}
.

(2.15)
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2.3.1. Global stability of equilibria

Before we prove global stability of both equilibria we will examine the existence and uniqueness of
the EE. It is again convenient to work with the simplified system, as in (2.7), but now with the rate of
infection from (2.12)

di
dt
= i

(
χ(1 + µτ)(1 − i − qrv)

1 + χτ[1 − i − qrv]
− µ

)
,

dv
dt
= µα + θ − (σ + µ + θ)v −

(
θ +
χ(1 − qr)(1 + µτ)v
1 + χτ[1 − i − qrv]

)
i.

(2.16)

It is straightforward to check that (0, v∗) from (2.14) is always a disease-free equilibrium of (2.16).
The positive (endemic) equilibria in the interior of D are determined by setting the right-hand sides of
model (2.16) to 0 and simplifying to

µ

χ
= 1 − i − qrv,

µα + θ = (σ + µ + θ)v + θi + (1 − qr)χvi.
(2.17)

Note that in order for the above to make sense we must have µ < χ , that is, the rate of population
removal is less than the transmission rate from an infected long-term partner, which is always the case
with our parameter values.

We begin our investigation of endemic equilibria for model (2.16) by considering two extreme
special cases. First, suppose that 1 − qr = 1, i.e., the PrEP treatment is completely ineffective. This

reduces Rp to Rp
0 =

χ(1+µτ)
µ(1+χτ) . Now, if Rp

0 > 1, then µ < χ, and i approaches
(
1 −
µ

χ

)
while v approaches

µ(χα + θ)
χ(θ + χ + σ)

. Here we observe classical Rp
0 threshold behavior since endemic equilibrium does not

exist if Rp
0 < 1 (i.e., µ > χ). If instead, we suppose that 1 − qr = 0, meaning the PrEP is completely

effective and with full adherence, then we find one (stable) endemic equilibrium, which exists only for
Rp > 1: 

v∗∗ =
µ(χα + θ)
σ + µ

,

i∗∗ = 1 −
µ

χ
−
µ(χα + θ)
σ + µ

.

(2.18)

Now we want to address the existence of endemic equilibria for 0 < 1 − qr < 1, in the realistic
realm of imperfect PrEP adherence and effectiveness. Eliminating v from the system (2.17) gives:
h(i) B Ai2 + Bi +C = 0 where

A = −χ2(1 − qr) < 0,
B = −χ[σ + µ + (θ − χ + µ)(1 − qr)],
C = (χ − µ)(θ + µ + σ) − χqr(µα + θ).

(2.19)

Using series of algebraic manipulations we obtain the following helpful result.
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Lemma 2.8. Given Rp and C as stated before, we can write Rp − 1 =
C

µ[Cτ + (1 + µτ)(θ + µ + σ)]
or,

equivalently, C =
µ(1 + µτ)(θ + µ + σ)

1
Rp−1 − µτ

, and deduce that when (Rp < 1) then C < 0, and if 1 < Rp <

1 + 1
µτ

then C > 0.

The rest of the analysis is summarized in the theorem below.

Theorem 2.9. For the system (2.16), with 0 < 1 − qr < 1 and Rp as defined in (2.13),

1) When 1 < Rp < 1 + 1
µτ

., there exists a unique endemic equilibrium (i∗∗, v∗∗).
2) When Rp < 1, there does not exist any endemic equilibrium.

Proof. We start with part 1, namely the case of 1 < Rp < 1+ 1
µτ

. By Lemma 2.8, C > 0 which, together
with A < 0, gives B2 − 4AC > 0. Recalling that h(1) < 0, we can conclude that h has exactly one zero
in (0, 1) and therefore the system (2.16) has a unique EE when 1 < Rp < 1 + 1

µτ
.

To prove part 2, we consider Rp < 1, and note that, from Lemma 2.8, h(0) = C < 0 and h(1) =
A + B + C = −µ[χ(1 − qr) + χqrα + θ + σ + µ] < 0. If, in addition, we assume θ > χ − µ, which
with our parameters, translates to PrEP uptake rate θ of more that 7.2%, then B < 0. In that case it

follows that h’s vertex at i = − B
2A = −

1
2
µ + σ + (θ − χ + µ)(1 − qr)

χ(1 − qr)
< 0 lies to the left of i = 0. Since

an endemic equilibrium corresponds to a solution of h(i) = 0 on the unit interval [0, 1], by examining
the quadratic h, we can see that there is no such i. If, alternatively, we consider θ < χ − µ, but keep
1−qr < − µ+σ

θ−χ+µ
, which with our parameters and advertised PrEP effectiveness would call for treatment

adherence q of at least 70%, then we still have vertex of h to the left of i = 0, and hence no possible
zeros in the interval (0, 1).

Now we look at the case when A < 0, C < 0, B > 0 (i.e., 0 < − B
2A <

1
2 since B

A =
µ+σ+(θ+µ)(1−qr)

χ(1−qr) −1 >
−1) and B2 − 4AC ≥ 0, which would collectively indicate real solutions of h(i) = 0 on the unit interval
(0, 1) when Rp < 1. The condition B2 − 4AC ≥ 0 is quadratic, but can be simplified using the condition
B > 0. The two conditions cannot, however, be reduced to one, but can be written in terms of χ,
which is linearly correlated with Rp. The condition B > 0 is satisfied when χ > µ + θ +

µ + σ

1 − qr
while

B2 − 4AC ≥ 0, simplified using Lemma 2.8, requires

χ ≥ µ + θ +
µ + σ

1 − qr
+ 2

√
(1 + µτ)(θ + µ + σ)

(1 − qr)τ

(
1 −

1
1 + µτ(1 − Rp)

)
. (2.20)

Notice that as Rp → 1− , the square root in (2.20) heads to 0+. Using parameter values in Table 2,
we see that χ ≈ 0.0883 and 0.0428 + θ < µ + θ +

µ + σ

1 − qr
< 0.1553 + θ, depending on q. With all that

in mind, combined with the relationship in Lemma 2.8, we can conclude that even undesirably low
adherence rate of 50% would force θ to be negative, in order for the condition (2.20) to be satisfied.
Hence, we can now conclude that there is no endemic equilibrium (i∗∗, v∗∗), whenever Rp < 1.

The global stability proofs are very similar to the previous case with casual partnerships and hence
we will omit some steps.
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Theorem 2.10. The DFE of the transformed model (2.2), given by (v∗, s∗, 0) in (2.14), is globally
asymptotically stable in D whenever Rp ≤ 1 and qr , 1.

Proof. Once again, define the nonlinear Lyapunov function of Goh-Volterra type [25, 26]

L = s − s∗ − s∗ ln
s
s∗
+ v − v∗ − v∗ ln

v
v∗
+ i,

with Lyapunov derivative L̇. Substituting model (2.2), as well as using the facts that µ(1 − α) + σv∗ −
(θ + µ)s∗ = 0 and µα + θs∗ − (σ + µ)v∗ = 0, while rewriting the reproduction number (2.13) as

Rp =
χ(1 + µτ)[s∗ + (1 − qr)v∗]
µ[1 + χτ[s∗ + (1 − qr)v∗]]

, we obtain

L̇ ≤ µ(1 − α)
(
2 −

s∗

s
−

s
s∗

)
+ µv∗

(
2 −

v∗

v
−

v
v∗

)
+ σv∗

(
3 −

v∗

v
−

vs∗

v∗s
−

s
s∗

)
+ iµ

[
χ(1 + µτ)

1 + χτ(s + (1 − qr)v)
·

Rp

χ[1 + µτ(1 − Rp)]
− 1

]
.

Finally, noticing that the rate of infection cannot be greater than the fraction of those infected (i.e.
transmission factor χ(1+µτ)i

1+χτ(s+(1−qr)v) ≤ 1) and recalling that χ > µ, we can write

L̇ ≤ µ(1 − α)
(
2 −

s∗

s
−

s
s∗

)
+ µv∗

(
2 −

v∗

v
−

v
v∗

)
+ σv∗

(
3 −

v∗

v
−

vs∗

v∗s
−

s
s∗

)
+ i

[
Rp

1 + µτ(1 − Rp)
− 1

]
.

Since Rp ≤ 1, using the results in Corollary 2.4 we can finally conclude that L̇ ≤ 0. Thus, by
Lyapunov stability theorem, and LaSalle’s Invariance Principle, every solution (in D) to the equations
of the transformed model (2.2) approaches the DFE as t → ∞ for Rp ≤ 1 and qr , 1.

It follows that the use of PrEP will lead to the elimination of disease from the population, with
presence of only long-term partnerships with infected partners, whenever Rp ≤ 1 and qr , 1.

Theorem 2.11. The unique EE of the transformed model (2.2), given by (v∗∗, s∗∗, i∗∗) in (2.15), is
globally asymptotically stable in D whenever Rp > 1 and qr , 1.

Proof. The proof here is analogous to the proof of Theorem 2.7 in the casual-only case, but with rate
of infection (2.12), where we define the non-linear Lyapunov function of Goh-Volterra type

M = s − s∗∗ − s∗∗ ln
s

s∗∗
+ v − v∗∗ − v∗∗ ln

v
v∗∗
+ i − i∗∗ − i∗∗ ln

i
i∗∗
,

and show Ṁ ≤ 0.

As evidenced above, when Rp = 1 the equilibria collide and their stability is exchanged, which
means that our model has the usual (transcritical) bifurcation at Rp = 1. Under certain conditions,
to be determined below, this could potentially become a “backward” (subcritical) bifurcation, which
would mean the endemic equilibria exist for Rp < 1 as well as for Rp > 1. In that case there would
be some critical value of Rp below 1, where a pair of endemic equilibria would be created at a second,
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saddle-node type bifurcation. We would find this bifurcation point by solving B2−4AC = 0 [27] (using
expressions in (2.19)) for Rp. Using Lemma 2.8 and (2.19) we can write the equation B2 − 4AC = 0 as

B2 +
4µ(1 − qr)(1 + µτ)(µ + θ + σ)

1
Rp−1 − µτ

= 0,

Rp = 1 +
B2

B2µτ − 4µ(1 − qr)(1 + µτ)(µ + θ + σ)
,

which, together with Rp < 1, would require B2µτ < 4µ(1−qr)(1+µτ)(µ+θ+σ). With the parameters in
Tables 1 and 2 the above condition cannot be satisfied without forcing θ to be negative. Our conclusion
is that with feasible values of the parameters present in the model, there is no backward bifurcation
and the unique endemic equilibrium exists only when 1 < Rp < 1 + 1

µτ
.

2.4. Case III: PS I model with non-monogamous long-term partnerships

This case assumes that the susceptible individual of interest, X, is in a long-term partnership with
infected individual, Y, but at the same time X may have a casual sexual encounter with another infected
individual, outside of the long-term partnership. In essence, this is a combination of the casual only
and the monogamous long-term cases of our model (2.1). It is important to note that the occurrence
of infection transmission from an infected casual partner is independent of the transmission from an
infected long-term partner, so the probability that a susceptible individual becomes infected is a sum
of the probabilities of infection in both cases. Therefore, we can describe the rate of infection, using
previously calculated rates λz ((2.3) in casual-only case) and λI

p ((2.12) in monogamous long-term
case), as

λ = λz + λp = zβi(t) + χ(1 + µτ)i(t) − λχτ[s(t) + (1 − qr)v(t)].

Solving the above equation explicitly for λ, we obtain the rate of infection for non-monogamous
long-term case

λ =
[zβ + χ(1 + µτ)]i(t)

1 + χτ[s(t) + (1 − qr)v(t)]
. (2.21)

Once again, the reproduction number is calculated using next generation method and expressed as

Rθ =
zβ + χ(1 + µτ)
µ(1 + χτ)

[
1 −

qr(θ + µα)
(σ + µ + θ)(1 + χτ) − qr(θ + µα)χτ

]
, (2.22)

with R0 =
zβ+χ(1+µτ)
µ(1+χτ) being the basic reproduction number in the absence of PrEP. The disease-free

equilibrium and endemic equilibrium are calculated, respectively, as

(v∗, s∗, i∗) =
(
θ + αµ

σ + µ + θ
,
σ + µ − αµ

σ + µ + θ
, 0

)
, (2.23)
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and 

v∗∗ =
1

2(zβ + χ)qr(1 − qr)
{µ + σ + (1 − qr)(θ − µ + zβ + χ)−

−
√

[(1 − qr)(θ + zβ + χ) + µqr + σ]2 − 4µqr(θ + αχ)(1 − qr)
}
,

s∗∗ =
1

2(zβ + χ)qr
{µ − σ − (1 − qr)(θ + µ + zβ + χ)+

+
√

[(1 − qr)(θ + zβ + χ) + µqr + σ]2 − 4µqr(θ + αχ)(1 − qr)
}
,

i∗∗ = −
1

2(zβ + χ)(1 − qr)
{µ + σ + (1 − qr)(θ + µ − (zβ + χ))−

−
√

[(1 − qr)(θ + zβ + χ) + µqr + σ]2 − 4µqr(θ + αχ)(1 − qr)
}
.

(2.24)

2.4.1. Global stability of equilibria (with qr , 1)

Once again, before we prove global stability of both equilibria, we will examine the existence and
uniqueness of EE, all using the simplified model equations

di
dt
= i

[
[zβ + χ(1 + µτ)](1 − i − qrv)

1 + χτ[1 − i − qrv]
− µ

]
,

dv
dt
= µα + θ − (σ + µ + θ)v −

[
θ +

(1 − qr)[zβ + χ(1 + µτ)]v
1 + χτ[1 − i − qrv]

]
i,

(2.25)

with the rate of infection λ =
[zβ + χ(1 + µτ)]i

1 + χτ[s + (1 − qr)v]
derived in (2.21).

It is straightforward to check that (0, v∗) from (2.23) is always a disease-free equilibrium of (2.25).
The positive (endemic) equilibria in the interior of D are determined by setting the right-hand sides of
(2.25) to zero and simplifying to

µ

zβ + χ
= 1 − i − qrv,

µα + θ = (σ + µ + θ)v + θi + (1 − qr)(zβ + χ)vi.
(2.26)

Note that in order for the above to make sense we must have µ < zβ + χ, which, as in earlier cases,
is satisfied with our parameter values. Since this case is a combination of Case I (Section 2.2) and
Case II (Section 2.3), the analysis of existence and stability of equilibria is very similar to the case with
monogamous long-term partnerships. Therefore, we will state the main results while omitting some
details in the calculations as well as in the proofs of the theorems.

Assuming 0 < 1 − qr < 1 and eliminating v from (2.26) gives h(i) B Ai2 + Bi +C = 0, where

A = −(zβ + χ)2(1 − qr) < 0,
B = −(zβ + χ)[σ + µ + (θ + µ − zβ − χ)(1 − qr)],
C = (zβ + χ − µ)(θ + µ + σ) − (zβ + χ)qr(µα + θ),

(2.27)

with h(0) = C and h(1) = A+ B+C = −µ[χ(1− qr)+χqrα+ θ+σ+ µ] < 0. Thus the number of zeros
of h will depend on the signs of C and the discriminant.
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Lemma 2.12. We can write Rθ − 1 =
(zβ + χ)C

µ[Cχτ + (zβ + χ + µχτ)(θ + µ + σ)]
or, equivalently, C =

−
(zβ + χ + µχτ)(θ + µ + σ)

µχτ + zβ+χ
1−Rθ

and deduce the following:

1) If Rθ < 1 then C < 0 and if 1 < Rθ < 1 + zβ+χ
µχτ

then C > 0.
2) When 1 < Rθ < 1+ zβ+χ

µχτ
then h(0) > 0 and hence, by IVT, h(i) = 0 has exactly one real solution in

(0, 1).
3) When Rθ < 1 and zβ + χ < θ + µ then

• h(0) < 0 and B < 0,
• h’s vertex lies to the left of i = 0 since − B

2A < 0,

and hence h(i) = 0 has no real solutions in (0, 1).
4) When Rθ < 1 and B > 0 then

• h(0) = C < 0, h(1) < 0,
• h’s vertex lies to the left of i = 1

2 since B
A =

µ+σ+(θ+µ)(1−qr)
(zβ+χ)(1−qr) − 1 > −1 and 0 < − B

2A <
1
2 ,

and hence h(i) = 0 will have real solutions in (0, 1) only if B2 − 4AC > 0. However,

B2 − 4AC > 0 requires zβ+χ ≥ µ+ θ+
µ + σ

1 − qr
+ 2

√
(θ + µ + σ)

(1 − qr)

(
1 −

(zβ + χ)Rθ
zβ + χ + µχτ(1 − Rθ)

)
,

which cannot be satisfied with feasible values of parameters.

Now we can state the main results that follows from the above Lemma 2.12 as well as the stability
proofs in previous cases.

Theorem 2.13. For the system (2.25), with Rθ as defined previously,

1) When 1 < Rθ < 1 + zβ+χ
µχτ

, there exists a unique endemic equilibrium (i∗∗, v∗∗).
2) When Rθ < 1, there does not exist any endemic equilibrium.

Theorem 2.14. The DFE of the transformed model (2.2), given by (v∗, s∗, 0) in (2.23), is globally
asymptotically stable in D whenever Rθ ≤ 1 and qr , 1.

Proof. Defining the non-linear Lyapunov function of Goh-Volterra type [25, 26]

L = s − s∗ − s∗ ln
s
s∗
+ v − v∗ − v∗ ln

v
v∗
+ i,

with corresponding Lyapunov derivative, after substituting model (2.2) and extensive simplifying, us-
ing the facts that µ(1 − α) + σv∗ − (θ + µ)s∗ = 0 and µα + θs∗ − (σ + µ)v∗ = 0, and rewriting the

reproduction number (2.22) as Rθ =
[zβ + χ(1 + µτ)][s∗ + (1 − qr)v∗]
µ[1 + χτ[s∗ + (1 − qr)v∗]]

, we obtain

L̇ ≤ µ(1 − α)
(
2 −

s∗

s
−

s
s∗

)
+ µv∗

(
2 −

v∗

v
−

v
v∗

)
+ σv∗

(
3 −

v∗

v
−

vs∗

v∗s
−

s
s∗

)
+ iµ

[
zβ + χ(1 + µτ)

1 + χτ[s + (1 − qr)v]
·

Rθ
zβ + χ[1 + µτ(1 − Rθ)]

− 1
]
.
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Then, noticing that the rate of infection cannot be greater than the fraction of infected individuals
(i.e. transmission factor [zβ+χ(1+µτ)]

1+χτ(s+(1−qr)v) ≤ 1) and recalling that zβ + χ > µ, we can write

L̇ ≤ µ(1 − α)
(
2 −

s∗

s
−

s
s∗

)
+ µv∗

(
2 −

v∗

v
−

v
v∗

)
+ σv∗

(
3 −

v∗

v
−

vs∗

v∗s
−

s
s∗

)
+ iµ

[
Rθ

µ[1 + χτ(1 − Rθ)]
− 1

]
.

Since 1 + χτ(1 − Rθ) ≥ 1, the last term can be further simplified to give

L̇ ≤ µ(1 − α)
(
2 −

s∗

s
−

s
s∗

)
+ µv∗

(
2 −

v∗

v
−

v
v∗

)
+ σv∗

(
3 −

v∗

v
−

vs∗

v∗s
−

s
s∗

)
+ iµ

[
(zβ + χ)Rθ

zβ + χ
− 1

]
,

= µ(1 − α)
(
2 −

s∗

s
−

s
s∗

)
+ µv∗

(
2 −

v∗

v
−

v
v∗

)
+ σv∗

(
3 −

v∗

v
−

vs∗

v∗s
−

s
s∗

)
+ i(Rθ − 1).

Using the results in Corollary 2.4 we can finally conclude that L̇ ≤ 0. Thus, by Lyapunov stability
theorem, and LaSalle’s Invariance Principle, every solution (in D) to the equations of the transformed
model (2.2) approaches the DFE as t → ∞ for Rθ ≤ 1 and qr , 1.

It follows that the use of PrEP will lead to the elimination of the disease from the population with
both casual and long-term partnerships with infected partners whenever Rθ ≤ 1 and qr , 1.

Theorem 2.15. The unique EE of the transformed model (2.2), given by (v∗∗, s∗∗, i∗∗) in (2.24), is
globally asymptotically stable in D whenever 1 < Rθ < 1 + zβ+χ

µχτ
and qr , 1.

Proof. Once again, we define the non-linear Lyapunov function of Goh-Volterra type [25, 26]

M = s − s∗∗ − s∗∗ ln
s

s∗∗
+ v − v∗∗ − v∗∗ ln

v
v∗∗
+ i − i∗∗ − i∗∗ ln

i
i∗∗
,

and follow the same steps as in the proofs of Theorems 2.7 and 2.11, to conclude that Ṁ ≤ 0. Thus, by
Lyapunov stability theorem, and LaSalle’s Invariance Principle, every solution (in D) to the equations
of the transformed model (2.2) approaches the unique EE as t → ∞ for Rθ > 1 (and qr , 1).

As shown in the previous cases, here we can also conclude that with feasible values of the pa-
rameters present in the model, we observe the usual (transcritical) bifurcation at Rθ = 1, there is no
backward bifurcation, and the unique endemic equilibrium exists only when 1 < Rθ < 1 + zβ+χ

µχτ
.

3. Results

In this section, we investigate the impact of PrEP in the reduction of HIV transmission in three cases,
differed based on the types of partnerships involved. We assume that the total population is a constant
N0, with recruitment rate π = µN0 and population removal rate µ = 1/61, as stated in Table 1. The
initial conditions (in 10,000) are given by P(0) = 7, S (0) = 640, I(0) = 63 [1,2]. We start our numerical
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simulations assuming that α = 0.1, meaning that 10% of the individuals entering the population are
already using PrEP, and 10% of the susceptible individuals start PrEP, that is θ = 0.1, with the stopping
rate of 1%, i.e., σ = 0.01. The remaining parameters, N0 the total population, µ the population removal
rate, π the recruitment rate, α the fraction of the newly recruited PrEP users, q the level of adherence
to PrEP treatment, r the effectiveness of PrEP, z the average number of casual partners per year, β the
transmission rate per one sexual act, τ the mean duration of long-term partnership, p/τ the average
number of long-term partners per year, n the number of sexual acts over the duration of long-term
partnership, c the transmission rate adjustment factor due to condom use, and χ the transmission rate
from the infected long-term partner per year take on the values listed in Tables 1 and 2.

3.1. Time series

Figure 2 illustrates the disease progression in the three cases analyzed in earlier sections: only
casual partnerships (Figure 2a,b); only long-term partnerships with infected individuals (Figure 2c,d);
and lastly, the combination of both (Figure 2e,f). For each of the cases, we are plotting (bold curves)
the fractions of population in the three groups over time (in years) to show the long-term effect of PrEP
on the number of susceptible and infected individuals, with thin lines illustrating the steady states.
Solid green “—” represents susceptible PrEP users (P), dashed blue “- -” refers to susceptibles not
using PrEP (S), and dotted red “···” indicates infected (I). It is important to note that the results are
based on the average number of casual partners per year z, total number of long-term partners p, mean
duration of long-term partnerships τ, and other parameters with values as listed in Table 2.

We observe the similar behavior in all three cases, with the susceptible group S (dashed blue curve)
decreasing and the infected group I (dotted red curve) increasing. However, when comparing the
graphs in the right column, it is evident that the time to equilibration varies significantly, with the
longest being when only casual partnerships are considered and the shortest when both casual and
long-term are included. On the other hand, the equilibrium value of the fraction of infected individuals
(indicated by the thin dotted red lines on every graph) is the lowest in the casual-only case and roughly
50 − 80% higher in the long-term and combined cases, respectively. This confirms the importance of
considering long-term partnerships, suggesting that when long-term partnerships with infected indi-
viduals are taken into account then the effect of PrEP on curbing the spread of the disease and lowering
the number of infected individuals is not as strong as when only casual partnerships are included in the
model.

Another interesting observation relates to the change in the behavior of curves around the 20–30
years mark. After the relatively fast incline, the fraction of individuals using PrEP (solid green curves)
peaks around the 20–30 years mark, and then starts to decline at a much slower but steady rate. At
the same time, the number of infected individuals grows at an approximately constant rate. This could
indicate that even if the implemented strategies of dealing with the spread of HIV produce plausible
results, they might not be sufficient for the future generations.
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(a) Case I: Casual ONLY (b) Case I: Casual ONLY

(c) Case II: Long-term ONLY (d) Case II: Long-term ONLY

(e) Case III: Casual & Long-term (f) Case III: Casual & Long-term

Figure 2. Time series comparison of the three cases including casual-only (Figure 2a,b),
long-term only (Figure 2c,d), and casual with long-term (Figure 2e,f) partnerships. Corre-
sponding graphs show all three groups as fractions of population (bold curves) over 30 years
(Figure 2(a,c,e)) and over significantly longer time (Figure 2(b,d,f)), needed to reach the en-
demic equilibria (thin lines). Solid green “—” illustrates susceptible PrEP users (P), dashed
blue “- -” refers to susceptibles not using PrEP (S), and dotted red “···” indicates infected (I).
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3.2. Uncertainty and sensitivity analysis

Uncertainty and sensitivity analysis are necessary to explore the behavior of the epidemiological
models because their structural complexity comes with a high degree of uncertainty in estimating the
values of many of the input parameters. Uncertainty analysis may be used to assess the variability in
the outcome variable that is due to the uncertainty in estimating the values of the input parameters.
A sensitivity analysis can extend an uncertainty analysis by identifying which input parameters are
important (due to their estimation uncertainty) in contributing to the prediction imprecision of the
outcome variable.

3.2.1. Normalized forward sensitivity (Elasticity) of R

(a) Case I: Casual ONLY (b) Case II: Long-term
ONLY

(c) Case III: Casual & Long-
term

(d) Case I: Casual ONLY (e) Case II: Long-term
ONLY

(f) Case III: Casual & Long-
term

Figure 3. Normalized forward sensitivity of reproduction number R with respect to selected
control parameters z, θ, σ, q, p, τ, that are present in each of the three cases. Elasticity (sen-
sitivity) indices in Figures 3a to 3c were calculated assuming the baseline parameter values
listed in Table 2, with θ = 0.1 and σ = 0.01, while in Figures 3d to 3f the PrEP uptake and
default rates were increased to θ = 0.6 and σ = 0.3, respectively.

Knowledge of the relative importance of the different factors responsible for transmission is useful
to determine best control measures. Initially disease transmission is related to reproduction number R
and sensitivity predicts which parameters have a high impact on its value. The sensitivity index of R

with respect to a parameter ω is
∂R
∂ω

. Another measure is the elasticity index (normalized sensitivity

index) that measures the relative change of R with respect to ω, denoted by FR
ω, and defined as

FR
ω =
∂R
∂ω
×
ω

R
.
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The sign of the elasticity index specifies whether R increases (positive sign) or decreases (negative
sign) with the parameter; whereas the magnitude determines the relative importance of the parameter.
If R is known explicitly, then the elasticity index for each parameter can be computed explicitly, and
evaluated for a given set of parameters. The magnitude of the elasticity indices depends on these
parameter values, which are often only estimates.

For our model, we will focus on control parameters: the number of casual partners, z, rate of starting
PrEP, θ, rate of stopping PrEP, σ, level of adherence to PrEP regime, q, average number of long-term
partners per year times the mean duration of long-term partnership, p, and the mean duration of long-
term partnership, τ. We use previously calculated expressions for the reproduction number R in each
of the three cases, as well as the values of parameters given in Table 2 as our baseline parameter values
to obtain and present the results in Figure 3. Figure 3 displays the values of the normalized sensitivity
indices in all three cases, for the aforementioned control parameters, and calculated assuming the
baseline values listed in the Table 2, with θ = 0.1 and σ = 0.01 (Figures 3a to 3c), while in Figures 3d
to 3f the PrEP uptake and default rates were increased to θ = 0.6 and σ = 0.3, respectively. Each index
value can be thought of as a ratio of the effective change in the reproduction number with respect to
the applied change in the given parameter. For example, when we look at Case III in Figure 3c, for
every 10% increase in the fraction of population in long-term partnerships, p, the reproduction number
will increase by 5.13%. However, it will decrease by 8.67% for every 10% increase in the PrEP use
adherence, q.

We observe that in the case with only casual partnerships (Figure 3a,d), the reproduction number
R is very sensitive to changes in the average number of casual partners per year, z. However, once
long-term partnerships are considered (Figure 3(b,c,e,f)), then the portion of individuals in long-term
partnerships, p, has similar impact on the reproduction number.

When looking at all three cases, it is important to point out the commonality and significance of the
difference in the impact that both PrEP uptake rate, θ, and the adherence to the PrEP treatment, q, have
on the value of R. The high magnitude of q and very low magnitude of θ in Figures 3a to 3c might
suggest that enforcing strict regime of the daily medication among those already in treatment could
potentially slow down the disease progression faster than increasing the number of new PrEP users
without perfect adherence. However, in Figures 3d to 3f, where we increased the PrEP uptake and
default rates to θ = 0.6 and σ = 0.3, respectively, we notice decrease in the magnitude of q, possibly
indicating lower impact of adherence once the uptake rate is high enough.

3.2.2. Global uncertainty analysis

In the deterministic model, the output is completely determined by the input parameters and struc-
ture of the model. The same input will produce the same output if the model were simulated multiple
times. Therefore, the only uncertainty affecting the output is generated by input variation. Input fac-
tors for most mathematical models consist of parameters and initial conditions for independent and
dependent model variables. These, however, are not always known with a sufficient degree of certainty
because of natural variation, error in measurements, or simply a lack of current techniques to measure
them. The purpose of uncertainty analysis is to quantify the degree of confidence in the existing ex-
perimental data and parameter estimates [29]. To consider the implications of our model in a more
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comprehensive manner, in this section we conduct global uncertainty and sensitivity analysis through
Latin Hypercube Sampling (LHS) and Partial Rank Correlation Coefficients (PRCC). This enables a
better understanding of the effects of parameter values on the amplification patterns we observe across
our model simulations. In our analysis we include 6 model parameters and assign a uniform proba-
bility density function (pdf) to each. PRCC is usually the first step in assessing the global sensitivity
of a model on the uncertainties in its parameters. The local analysis (done mainly through calcu-
lating/approximating the derivatives with respect to the parameters), such as the normalized forward
sensitivity discussed earlier, provides direct information on the effect of small parameter perturbations
about their nominal values, but it does not indicate the effect of concurrent, large perturbations in all
model parameters (in bio-mathematics that is almost always the case). In order to calculate PRCC
we simulate exactly those simultaneous large perturbations in model parameters. The PRCC provides
good insight on global sensitivity, that is which parameters are most influential even if other parameters
are simultaneously perturbed [30].

(a) Case I: Casual ONLY (b) Case II: Long-term
ONLY

(c) Case III: Casual & Long-
term

Figure 4. PRCC values for the fraction of infected individuals. The bars indicate the mag-
nitude and the sign of correlation coefficients for the selected parameters (labeled below the
bar) in each of the cases. The parameters are recalled at the beginning of Section 3 with
baseline parameter values given in Tables 1 and 2.

Figure 4 displays the results of PRCC analysis, where we mainly consider the parameters with
PRCC values > 0.5 (for direct relation) or < −0.5 (for inverse relation) and with corresponding small
p-values (< 0.05) as the most influential parameters for the model. The closer the PRCC value is to ±1,
the more strongly the LHS parameter influences the outcome measure. The sign indicates the qualita-
tive relationship between the input variable and the output variable. A negative sign indicates that the
LHS parameter is inversely proportional to the outcome measure (fraction of infected individuals i in
our case). From the plots we could conclude that in our model, parameter q, the level of adherence to
PrEP treatment, is a very likely contributor to uncertainty (PRCC values: 0.7 to 0.79 or −0.7 to −0.79)
but it is the parameters z, the average number of casual partners per year, p, the average number of
long-term partners per year times the mean duration of long-term partnership, and θ, the rate of start-
ing PrEP, that have the most important influence on the model as a whole (PRCC values: 0.8 to 0.99
or −0.8 to −0.99). The small p-values associated with them indicate that they are highly significant in
the prediction of disease dynamics.
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3.3. PrEP uptake and adherence

Sensitivity analysis revealed the degree to which each parameter affects our model. We saw that the
level of adherence q to a daily regime of PrEP medication (assumed to be 90% effective) and the rate
θ of starting the treatment both have a significant impact on the HIV transmission dynamics. Figure 5
shows the impact of these two parameters on the value of the reproduction number R in each of the three
partnership scenarios, when all remaining parameters remain unchanged, with values as in Tables 1
and 2. The thicker contour line on some of the plots denotes the threshold value of reproduction
number, i.e., R = 1. Absence of such line means that the threshold value cannot be reached with the
given parameter values. We observe that when only casual partnerships are considered (Figure 5a) then
regardless of the rate of starting PrEP, we can always pinpoint the rate of compliance needed to reach
R < 1, and eventually (as seen in time series plots in Figure 2) eliminate the disease. In a population
with only monogamous long-term partnerships (Figure 5b), the 10% PrEP uptake rate is not enough
to lower the reproduction number to 1, regardless of the patients’ compliance level. However, once
we increase θ to at least 40%, then, as long as the adherence is near perfect (above 95%), the model
will eventually approach the disease-free equilibrium. Lastly, when we look at the case with both
casual and long-term partnerships (Figure 5c), we notice that even with maximum values of θ, the rate
of starting PreP, and q, the level of adherence, (both set to 99%) we cannot lower the reproduction
number below unity, if the remaining parameters stay at the baseline values listed in Tables 1 and 2.
In Figure 6 we explore the impact of changes in two parameters (α, the fraction of the newly recruited
PrEP users, and r, the effectiveness of PrEP) on the value of the reproduction number. Figure 6a shows
that if all individuals enter population as PrEP users (α = 0.99), then even perfect adherence to 90%
effective PrEP treatment would not be enough to eventually bring down the number of infections to 0.
However, if the effectiveness of PrEP was 95% (Figure 6b) or 99% (Figure 6c), then, with high enough
level of compliance to the treatment, it would be possible to reach R = 1 at any PrEP uptake rate above
θ = 0.45 and θ = 0.25, respectively.

(a) Case I: Casual ONLY (b) Case II: Long-term ONLY (c) Case III: Casual & Long-
term

Figure 5. Contours of reproduction number R plotted as a function of θ, the rate of starting
PreP, and q, the level of adherence, assuming the baseline parameter values listed in Tables 1
and 2 and PrEP effectiveness of 90%. Each region shows the PrEP uptake rates and levels of
compliance needed to reach values of R between the corresponding contour curves.

Another noteworthy observation is the minimal (less than 5%) difference in the adherence needed to
lower the reproduction number to less than 1, when the rate of starting PrEP θ doubles. Specifically, in
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the casual-only case (Figure 5a), when PrEP uptake rate is 60%, then 82% compliance is needed, and
nearly the same level (85%) is sufficient when only 30% of susceptible individuals start the treatment.
Similarly, when only long-term partnerships are present in the population (Figure 5b), then the minimal
threshold adherence would be 98% with θ being 0.6. This, once again, suggests that increasing the level
of compliance among those already using PrEP could possibly be a better strategy than recruiting more
patients into treatment.

(a) α = 0.99, r = 90% (b) α = 0.10, r = 95% (c) α = 0.10, r = 99%

Figure 6. Impact of the changes in the parameters α, the fraction of the newly recruited
PrEP users, and r, the effectiveness of PrEP, on the reproduction number R in Case III. The
contours represent the values of reproduction number R, plotted as a function of θ, the rate of
starting PreP, and q, the level of adherence. Each plot corresponds to different combination
of the fraction of newly recruited PrEP users, α, and PrEP effectiveness, r. The remaining
parameters are set at their baseline values listed in Tables 1 and 2.

4. Conclusions

In this paper, we used the deterministic PS I model with casual sexual encounters and long-term
partnerships to study the effects of pre-exposure prophylaxis (PrEP) on HIV transmission dynamics
among MSM. We assumed that PrEP does not provide full protection but lowers the probability of
becoming infected by a factor of (1 − qr), with q and r denoting treatment adherence and effective-
ness, respectively. We derived the rates of infection, calculated the reproduction numbers, and proved
global stability of disease-free and endemic equilibria in three different cases, based on the partnerships
considered. We also addressed the uniqueness of the endemic equilibrium in each case.

Time series plots (Figure 2) provide a good overview of the differences in the disease progression
among the three different cases, showing that the time to equilibration varies from 100 to 400 years.
The endemic fraction of infected individuals also ranges from 42%, in casual-only case, to 81% when
both casual and long-term partnerships are taken into account.

We recognize that the presented results come with certain limitations. In our previous work [19]
we acknowledged the differences in the levels of infectivity among those in the acute and chronic
stages of infection, but in this paper we instead focused on the effects of PrEP and hence included only
one infected group. In addition, when considering long-term partnerships, we only considered those
with already infected individuals, leaving the case of non-monogamous long-term partnerships with
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initially susceptible individuals for future work. Introduction of the exclusivity parameter will allow
us to study all possible partnership formation scenarios in the model but will add significant level of
difficulty when calculating the corresponding rate of infection and then performing full analysis of the
disease transmission.

Simpson and Gumel [15] indicated the possibility of backward bifurcation when PrEP is introduced
to their model, even with no disease mortality. Using the techniques of Martcheva [27], we derived
the conditions needed to investigate the existence of backward bifurcation when R < 1 in our model.
Our continuum of the rate of PrEP adherence, rather than two distinct levels used by Simpson and
Gumel [15], allowed us to go one step further and carefully show that the bifurcations conditions could
not be satisfied within the feasible ranges of parameter values. We were able to conclude the lack of
backward bifurcation in all three cases, which was also supported with the proofs of global stability of
equilibria.

The rate at which susceptible individuals start using PrEP is an important aspect of the fight against
the HIV, hence increasing the PrEP coverage may seem like logical intervention. However, the most
common concerns among the health professionals and policy makers are the high cost of the treat-
ment per individual and the lowered effectiveness of PrEP when daily medication regime is not strictly
followed. With that in mind, proper estimates of PrEP uptake and adherence are very important. Un-
fortunately, the values of parameters related to PrEP use vary widely in the literature. Punyacharoensin
et al. [11] used 0.0252 and 2.7 × 10−7 as the respective rates of initiating and terminating the PrEP
treatment in the UK. Simpson and Gumel [15] assumed 0.01 overall rate of administration and 0.005
(0.0001) rate of cessation of PrEP by low-adherent (high-adherent) users in Minnesota, USA. On the
other hand, in the number of different studies across USA, the PrEP discontinuation rate was observed
to be 38% (Hojilla et al. [31]) and 40% (Chan et al. [32]). The estimates of the PrEP adherence rate
in the literature also vary, with researchers assuming it to range from 20% to 100% [14, 15, 33], and
possibly including over-reporting [34]. We assumed the parameter values listed in Table 1 and used
our model to look closely at the effects of varying the uptake rate θ and the degree of compliance q on
the disease dynamics.

Our sensitivity analysis (Figure 3) shows very high impact of adherence to daily PrEP regime on
the reproduction number. With the base values of θ = 0.1 and q = 0.7, we observe that increasing q by
10% decreases R by 8 − 10%, depending on the types of partnerships considered. On the other hand,
increasing θ by 10% decreases R less than 3%. Related to that are the conclusions we made based on
Figures 5 and 6 when looking for the values of parameters that would help eliminate the disease. We
noticed a very small difference in the PrEP adherence needed among the users, even when the uptake
rate is doubled. Our results are consistent with the work of Jenness et al. [14], who used agent-based
model simulations to suggest that lower PrEP coverage with optimal adherence is more effective than
increased coverage with poor overall adherence.

Finally, the role of long-term partnerships in the spread of incurable diseases is an important consid-
eration in the study of disease dynamics. We showed that the disease dynamics differed depending on
the types of partnerships considered in the model. Conditions that imply stability of the disease-free
equilibrium are more difficult to achieve, given realistic parameter values, when long-term partner-
ships are considered. Previous work by Gurski et al. [19] compared the long-term partnership model
described here to traditional partnership models that explicitly track partnerships for both HIV and
HSV-2, both incurable diseases effected by long-term partnerships. The techniques presented in this
paper are applicable to a wide range of incurable diseases affected by long-term partnerships.
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