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Abstract: In acute myeloid leukemia (AML), the link between ferroptosis and the immune 
microenvironment has profound clinical significance. The objective of this study was to investigate 
the role of ferroptosis-immune related genes (FIRGs) in predicting the prognosis and therapeutic 
sensitivity in patients with AML. Using The Cancer Genome Atlas dataset, single sample gene set 
enrichment analysis was performed to calculate the ferroptosis score of AML samples. To search for 
FIRGs, differentially expressed genes between the high- and low-ferroptosis score groups were 
identified and then cross-screened with immune related genes. Univariate Cox and LASSO regression 
analyses were performed on the FIRGs to establish a prognostic risk score model with five signature 
FIRGs (BMP2, CCL3, EBI3, ELANE, and S100A6). The prognostic risk score model was then used to 
divide the patients into high- and low-risk groups. For external validation, two Gene Expression 
Omnibus cohorts were employed. Overall survival was poorer in the high-risk group than in the low-
risk group. The novel risk score model was an independent prognostic factor for overall survival in 
patients with AML. Infiltrating immune cells were also linked to high-risk scores. Treatment targeting 
programmed cell death protein 1 may be more effective in high-risk patients. This FIRG-based 
prognostic risk model may aid in optimizing prognostic risk stratification and treatment of AML. 

Keywords: acute myeloid leukemia; ferroptosis; immune microenvironment; single sample gene set 
enrichment analysis; immunotherapy 

 

Abbreviations: AML: Acute myeloid leukemia; ATP: Adenosine triphosphate; AUC: Area under the 
curve; BM: Bone marrow; BMP2: Bone morphogenetic protein 2; BP: Biological processes; CC: 
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Cellular components; CCL3: C-C motif chemokine ligand 3; CNS: central nervous system; CR: 
complete remission; DCA: Decision curve analysis; DEGs: Differentially expressed genes; EBI3: 
Epstein-Barr Virus Induced 3; ELANE: Elastase: neutrophil expressed; FAB: French-American-
British; FC: Fold change; FIRGs: Ferroptosis–immune related genes; GDSC: Genomics of Drug 
Sensitivity in Cancer; GEO: Gene Expression Omnibus; GO: Gene Ontology; GSEA: Gene set 
enrichment analysis; IC50: Half-maximal inhibitory concentration; IL: Interleukin; KEGG: Kyoto 
Encyclopedia of Genes and Genomes; K-M: Kaplan-Meier; LASSO: least absolute shrinkage and 
selection operator; MAPK: Mitogen-activated protein kinase; MF: Molecular function; NF-κB: 
Nuclear factor kappa B; NS: Not significant; OS: overall survival; PD1: Programmed cell death 
protein 1; RCD: regulated cell death; ROC: Receiver operating characteristic; S100A6: S100 calcium 
binding protein A6; SHP2: SH2 containing protein-tyrosine phosphatase-2; ssGSEA: Single sample 
gene set enrichment analysis; TCGA: The Cancer Genome Atlas; TNF: Tumor necrosis factor; t-SNE: 
t-distributed stochastic neighbor embedding; PCA: principal component analysis; EDA: exploratory 
data analysis; IDI: Integrated discrimination improvement analysis 

1. Introduction  

Traditional treatment strategies for acute myeloid leukemia (AML) include intensive 
chemotherapy, hypomethylating medications, and hematopoietic stem cell transplantation. The 5-year 
overall survival (OS) rate remains poor, at no more than 30% [1]. Strategies for AML treatment have 
recently evolved away from traditional therapies toward immunotherapy and targeted therapy. 
However, more than half of the patients still experience relapse or become treatment refractory. The 
median OS for these patients is only 0.5 years [2]. It is therefore critical to find a more accurate 
prognostic risk stratification that can assist in accurately identifying patients who will respond to 
specific treatments. 

Ferroptosis is a modulated form of cell death involving iron overload and the overproduction of 
reactive oxygen species [3]. Activation of ferroptosis triggers the death of oncocytes, especially in 
cancers resistant to traditional treatment [4–6]. Although the precise effects and mechanisms of 
ferroptosis in the pathogenesis of AML remain unclear, some studies have shown that patients with 
AML frequently exhibit abnormal expression of ferroptosis-associated genes. Promoting ferroptosis 
in AML cells through treatment with the multikinase inhibitor sorafenib could help in reversing the 
drug resistance of tumor cells [7,8]. This suggests that ferroptosis could be used as a new indicator for 
AML risk stratification. 

Immunotherapy, including antibody-based treatment, tumor vaccines, immune checkpoint 
inhibitors, and adoptive cellular immunotherapy, has shown great clinical application prospects for 
AML [9]. However, research on immunotherapies for AML has achieved fewer breakthroughs, 
compared to those for plasma cell neoplasms and lymphoid malignancies. Studies have demonstrated 
interactions between ferroptosis and immune regulation in the AML microenvironment [10,11]. 
Preclinical studies have shown that some ferroptosis inducers may strengthen the clinical therapeutic 
effect of immune checkpoint inhibitors in tumors that tend to respond poorly to immunotherapy [12]. 
Immune checkpoint inhibitors and ferroptosis activators synergistically inhibit hepatocellular 
carcinoma cell proliferation. However, the mechanism underlying this has not yet been fully 
elucidated [13,14]. As a result, screening and validating the involvement of ferroptosis–immune 
related genes (FIRGs) in AML prognosis and treatment sensitivity is important.  
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The present study aimed to identify differential FIRGs in patients with AML. A risk score model 
on the foundation of five FIRGs was constructed to forecast the AML prognosis. Finally, the potential 
therapeutic value of the risk assessment model was determined. Our findings could have clinical 
implications for the prognosis and treatment of AML. 

2. Materials and methods 

2.1. Data collection from public databases 

The transcriptomic data of 129 samples from patients with AML with both clinical and 
information on survival were acquired from The Cancer Genome Atlas (TCGA) database 
(https://portal.gdc.cancer.gov/). TCGA-LAML cohort was used as the training dataset. Two validation 
datasets, both generated on the GPL96 platform, were acquired from the Gene Expression Omnibus 
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). The transcriptome data and survival information 
for 162 and 417 AML samples were obtained from GSE12417 and GSE37642, respectively. The 
GSE164894 data set was used to compare the risk score between AML patients who did and did not 
achieve complete remission (CR). The GSE60926 data set was further used to compare the risk scores 
between acute lymphoblastic leukemia patients with and without central nervous system (CNS) 
involvement. Principal component analysis (PCA) analysis was employed during exploratory data 
analysis (EDA) [15]. 

2.2. Assessment of ferroptosis-related enrichment score 

FIRGs were retrieved from the MsigDB data base (http://www.gsea-msigdb.org/gsea/msigdb/) 
and FerrDb data base (http://www.zhounan.org/ferrdb/). After merging and de-duplication, 275 FIRGs 
were identified. The ferroptosis-related enrichment score (ferroptosis score) for each AML sample 
in the TCGA-LAML dataset was calculated using single sample gene set enrichment analysis 
(ssGSEA) [16,17]. The optimal cutpoint was obtained with the surv_cutpoint function from the R 
package ‘survminer’ (v0.4.9) based on the ferroptosis score of each sample [18]. The 129 AML patients 
from TCGA database were then separated into high- and low-ferroptosis score groups based on the 
cutpoint. To compare the differences in survival of the high- and low-ferroptosis scoring groups, 
Kaplan-Meier (K-M) analysis and log-rank testing were used  [19]. Furthermore, to validate the 
relationship between the ferroptosis enrichment score and ferroptosis, differential expression of 
ferroptosis signal pathway marker genes was analyzed in the two groups. Genes involved in the 
ferroptosis pathway were obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database (https://www.kegg.jp/; map04216). 

2.3. Identification of FIRGs 

The ‘limma’ R package was used to identify differentially expressed genes (DEGs) between two 
ferroptosis score groups in the TCGA dataset [20]. The cutpoint for DEGs was P-value < 0.05 and 
log2 fold change |(FC)| > 1. To visualize the variations in genetic expression levels between the two 
groups, a Volcano plot was created. The expression of the top 50 DEGs was depicted in a heat map. 
The ImmPort database (https://www.immport.org/home) yielded a total of 1793 genes related to 
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immunity. A Venn diagram between DEGs and 1793 immune related genes were used to identify FIRGs. 

2.4. Functional and pathway enrichment analyses of FIRGs 

The ‘clusterProfiler’ program was adopted to perform gene ontology (GO) enrichment as well as 
KEGG pathway analyses on the FIRGs to explore the common functions and pathways [21]. Biological 
processes (BP), cellular components (CC), and molecular functions (MF) linked to FIRGs were mainly 
defined using GO enrichment analysis. The biological pathways associated with FIRGs were 
discovered using KEGG pathway analysis. The P-value threshold for enrichment significance was 
adjusted to 0.05. 

2.5. Construction and validation of the prognostic risk score model 

To find FIRGs that were substantially linked with the OS of AML patients in the training sample, 
univariable Cox regression analyses were used. To detect FIRG signatures and determine their 
respective coefficients value, LASSO regressive analyses of candidate FIRGs were performed [22,23]. 
Using the ‘glmnet’ R package [24], a tenfold cross verification was utilized to find optimal values for 
the alpha and lambda parameters. The following equation was introduced to calculate the risk score: 
Risk score = β1X1 + β2X2+…+ βnXn, where β refers to the regressive coefficient and X1 denotes the 
genetic expression level. The median risk score was computed via the ‘survminer’ program in R 
program to separate AML patients into high-risk and low-risk groups. The K-M analysis and log-rank 
test were then employed to contrast the OS of the two groups. The K-M ‘survival ROC’ program in R 
software was employed to plot receiver operating characteristic (ROC) curves and measure the area 
under the ROC curve (AUC) values to predictive efficiency of the risk model. Better efficiency was 
indicated by larger AUC value [25]. In addition, a risk plot was created with R software's ‘pheatmap’ 
package [26]. The effectiveness of the risk scoring model in distinguishing the high-risk group from 
the low-risk group was further assessed via t-distributed stochastic neighbor embedding (t-SNE) 
analyses [27]. This approach was used to validate both GSE12417 and GSE37642 datasets. Moreover, 
integrated discrimination improvement (IDI) analysis was performed to compare the overall 
improvement of the risk prediction models [28–30]. 

2.6. Independent prognostic analysis and construction of a nomogram 

Univariable regression and multivariable Cox regression analyses were performed to find 
independent prediction factors of OS in the TCGA-LAML dataset. Using the R packages ‘rms’ and 
‘nomogramEx’ [11], a nomogram including the risk scoring and clinicopathological parameters was 
created. Corresponding and correction curves of 1-, 3- , and 5-year OS were constructed with the 
‘regplot’ R package to further verify the accuracy of this nomogram [31]. Decision curve analysis 
(DCA) curves at 3 and 5 years were also drawn to evaluate the prognostic model [32]. 

2.7. Immune infiltration analysis by ssGSEA 

The ssGSEA was introduced to determine the enrichment score of 24 immunocytes [33]. A box 
plot was drawn to visualize the differences in infiltration of 24 immune cell types between the low- 
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and high-risk groups. Associations between the prognostic model genes and differential immune cells 
were analyzed using Spearman’s correlation analysis. Correlation coefficient |cor| > 0.3 and P-value 
< 0.05 were considered statistically significant. 

2.8. Assessment of the immunotherapeutic and chemotherapeutic responses 

Based on the half-maximal inhibitory concentration (IC50) reported for every patient on the 
Genomics of Drug Sensitivity in Cancer web site, the ‘pRRophetic’ R package was employed to study 
the chemotherapeutic response [34]. In addition, an unsupervised subclass mapping method (SubMap) 
was applied to predict response to anti-programmed cell death ligand 1 (PD1) and anti-cytotoxic T-
lymphocyte associated protein 4 (CTLA4) immunotherapy. A data file containing 47 cutaneous 
melanoma samples and expression data of 791 genes was obtained from a prior study [35]. The R 
package ‘pheatmap’ was utilized to visualize these findings. 

2.9. Statistical analyses 

The R programming language was used for all studies. The function and references for R packages 
are listed in Table S1. Data from multiple groups were compared employing the t-test, Wilcoxon rank-
sum test, Kruskal-Wallis H test, and Chi-square test. If not specified above, a P-value less than 0.05 
was considered statistically significant. 

3. Results 

3.1. Establishment and validation of ferroptosis score 

The transcriptome data and clinical features of the patients with AML were acquired from the 
TCGA and GEO databases. The TCGA-LAML cohort was chosen as the training dataset. GSE12417 
and GSE37642 were the validation datasets. Table S2 provides details on clinical characteristics of the 
training dataset and two validation datasets. Exploratory data analysis of the TCGA-LAML cohort 
revealed no major changes in the global gene expression of AML patients with various survival statuses 
or durations (Figure S1).  

The workflow for the study is shown in Figure 1. The study included 129 AML patients identified 
from the TCGA database. The ferroptosis score of every sample was obtained by ssGSEA. Using the 
median ferroptosis score as the threshold, all AML cases were separated into a high-ferroptosis score 
group and a low-ferroptosis score group. The OS of the low-ferroptosis group was superior to that of 
the high-ferroptosis group (median OS, 66 vs. 25.3 months, P < 0.05; Figure 2A). Furthermore, the 
differences in gene expression of biomarkers involved in ferroptosis signaling between two groups 
were assessed. The expression of 11 genes (ATG3, ATG5, GCLC, GCLM, GPX4, LPCAT3, PCBP1, 
PRNP, SAT1, SLC3A2, and SLC39A8) was substantially different between the two groups. These 
findings suggested a significant association between the predicted ferroptosis score and ferroptosis in 
patients with AML (Figure S2). 
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Figure 1. Schematic diagram of the study workflow. 

3.2. Identification of FIRGs and functional enrichment analyses 

Limma software was adopted to examine genetic expression changes between two groups. The 1061 
DEGs in the groups (Figure 2B, Figure S3, Table S3) included 104 downregulated DEGs and 957 
upregulated DEGs. Using the intersection of DEGs and immunity-related genes, 157 FIRGs were 
discovered (Figure 2C, Table S4). 

The FIRGs were examined by GO and KEGG enrichment analysis. GO analysis of BP revealed 
that FIRGs were most enriched in immune response, leukocyte chemotaxis, and phagocytosis. In terms 
of CC, the FIRGs were highly enhanced on the outer surface of the plasma membrane. Regarding MF, 
FIRGs were enriched in signaling receptor activator and cytokine and chemokine activity, in addition 
to receptor binding. The top ten enrichment results for each GO category are illustrated in Figure 2D. 
KEGG pathway enrichment results revealed that the FIRGs were remarkably enriched in cytokine-
cytokine receptor interplay, chemotactic factor signal path, neutrophil extracellular trap formation, 
phagosome, and signaling pathways for tumor necrosis factor (TNF), interleukin (IL)-17, mitogen-
activated protein kinase, nuclear factor-kappa B (NF-κB), and Toll-like receptor (TLR) (Figure 2E). 
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Figure 2. Screening of FIRGs and functional enrichment analysis. (A) K-M analysis of OS for 

patients in high- and low-ferroptosis score groups. (B) Volcano plot of differentially expressed 

FIRGs. Red dots indicate upregulated DEGs, green dots indicate downregulated DEGs, and black 

dots indicate genes that were not differentially expressed. (C) Venn diagram of FIRGs and 

immunity-associated genes. (D) GO and (E) KEGG enrichment analyses for FIRGs. 

3.3. Establishment and verification of five-gene prognosis risk score model based on FIRGs 

The prognostic significance of the FIRGs was evaluated using univariable Cox regression analyses 
on the training set. Thirty-three FIRGs were significantly associated with the OS of AML patients (P 
< 0.05; Figure 3A). To construct a prognosis model, these 33 FIRGs were further included in a LASSO 
regression analysis. Five FIRGs (BMP2, CCL3, EBI3, ELANE, and S100A6) were screened (Figure 3B, 
C). The risk scoring was calculated according to the expression levels and regression coefficients as: 
risk score = 0.01394 × BMP2 + 0.07846 × CCL3 + 0.11465 × EBI3 + (−0.0783) × ELANE + 0.16425 
× S100A6. Based on the average risk score, AML patients were divided into high- and low-risk groups. 
Based on the five-gene prognostic model, Figure 4J shows risk score distribution, OS results, and 
model gene expressions in the two risk groups. Patients in the high-risk group had lower survival 
durations than patients in the low-risk group. Reduced expression of ELANE and increased expression 
of the other four genes were linked to higher risk. As indicated in Figure 4A, high-risk patients had a 
much lower OS in contrast to low-risk patients (median OS, 27.9 vs. 116.8 months, P < 0.001). Time-
dependent ROC curves were constructed to illustrate predictive performance. In the training set, the 
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1-, 3-, and 5-year AUC was 0.698, 0.763, and 0.776, respectively, indicating good efficiency (Figure 4D). 
Meanwhile, t-SNE analysis confirmed that the patients in the two risk groups had been allocated 
(Figure 4G). The collective findings demonstrated that the constructed model performed well in 
predicting OS of patients with AML. 

We computed the risk scores of individuals in the GSE12417 and GSE37642 datasets to verify the 
dependability of the constructed model. The outcomes of the two validation sets' analyses were 
consistent with those of the TCGA cohort. The high-risk group in GSE12417 also exhibited a low 
survival rate (Figure 4B, K), with an AUC > 0.6 in the ROC curve at 1, 3, and 5 years (Figure 4E). The 
t-SNE analysis illustrated that the patient distributions in these two groups were remarkably diverse 
(Figure 4H). The risk model validation results from dataset GSE37642 were consistent with those from 
GSE12417 (Figure 4C, F, I, and L). The results of the analyses of the two validation sets matched the 
results from the TCGA cohort. Furthermore, we compared our risk score model to risk models utilized 
in prior AML studies (PMID: 35111195; PMID: 35359394), as identified by the IDI. The 
discrimination of our model was higher than that of two recently reported models (the model in 
PMID 35111195: IDI 10.2%; 95% CI: 3.7 to 16.5%; P = 0.018; the model in PMID 35359394: IDI 
10.2%; 95% CI: 3.2 to 16.1%; P = 0.016). The results indicated that our risk model significantly 
improved predictive accuracy (Figure S4). The five-gene prognostic model could successfully forecast 
the OS of patients with AML. 

 

Figure 3. Establishment and evaluation of a prognosis risk score model. (A) Forest plots 
of FIRGs by univariate Cox regression analysis. (B and C) Construction of prognostic gene 
signature by LASSO regression analysis.  
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Figure 4. Validation of the prognosis risk score model in TCGA-LAML and two GEO cohorts. K-

M survival curve of OS for individuals in high-risk and low-risk groups in (A) TCGA-LAML, (B) 

GSE12417, and (C) GSE37642. Time-dependent ROC curve analysis for 1-, 3-, and 5-year OS of 

the model in (D) TCGA-LAML, (E) GSE12417, and (F) GSE37642. Results of t-SNE analysis 

verifying the ability of the model to classify two groups in (G) TCGA-LAML, (H) GSE12417, and 

(I) GSE37642. Risk score distribution, OS, and gene expression in (J) TCGA-LAML, (K) 

GSE12417, and (L) GSE37642. 
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Table 1. Clinical characteristics for patients in high- and low-risk groups of TCGA-LAML cohort. 

 Total High-risk Low-risk P-value

age(year)     

Mean (SD) 53.5 (± 16.3) 58.5 (± 15.3) 48.6 (± 15.9) < 0.001

>60 55 (42.6%) 36 (56.3%) 19 (29.2%) 0.003 

<=60 74 (57.4%) 28 (43.8%) 46 (70.8%)  

Gender     

Female 60 (46.5%) 27 (42.2%) 33 (50.8%) 0.38 

Male 69 (53.5%) 37 (57.8%) 32 (49.2%)  

Race     

ASIAN 1 (0.8%) 1 (1.6%) 0 (0.0%) 0.64 

BLACK OR AFRICAN AMERICAN 10 (7.9%) 4 (6.2%) 6 (9.5%)  

WHITE 116 (91.3%) 59 (92.2%) 57 (90.5%)  

WBC (109/L)     

Mean (SD) 31.6 (± 37.5) 35.0 (± 37.2) 28.2 (± 37.8) 0.26 

<=100 118 (91.5%) 58 (90.6%) 60 (92.3%) 0.715 

>100 8 (6.2%) 5 (7.8%) 3 (4.6%)  

HB(g/dL)     

Mean (SD) 9.6 (± 1.4) 9.3 (± 1.2) 9.8 (± 1.5) 0.056 

Platelet(109/L)     

Mean (SD) 66.1 (± 55.3) 66.0 (± 58.3) 66.1 (± 52.7) 0.87 

Peripheral blasts (%)    

Mean (SD) 37.8 (± 30.9) 33.0 (± 30.1) 42.7 (± 31.1) 0.088 

Bone marrow blasts (%)    

Mean (SD) 68.3 (± 19.6) 67.4 (± 20.6) 69.2 (± 18.7) 0.56 

FAB subtype     

M0 12 (9.3%) 6 (9.4%) 6 (9.2%) < 0.001

M1 31 (24.0%) 19 (29.7%) 12 (18.5%)  

M2 31 (24.0%) 9 (14.1%) 22 (33.8%)  

M3 14 (10.9%) 1 (1.6%) 13 (20.0%)  

M4 26 (20.2%) 17 (26.6%) 9 (13.8%)  

M5 12 (9.3%) 9 (14.1%) 3 (4.6%)  

M6 2 (1.6%) 2 (3.1%) 0 (0.0%)  

M7 1 (0.8%) 1 (1.6%) 0 (0.0%)  

OS (months)     

Mean (SD) 52.1 (± 50.4) 34.7 (± 32.8) 69.2 (± 58.5) < 0.001

Vital     

Alive 51 (39.5%) 17 (26.6%) 34 (52.3%) 0.004 

Dead 78 (60.5%) 47 (73.4%) 31 (47.7%)  

     

3.4. Association between risk score model and clinicopathological features 

We explored the associated clinical data of patients with AML in TCGA to determine the 
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association between the model and clinicopathology traits. The analysis revealed that the risk scoring 
differed significantly between age groups, FAB subtypes, and OS (Table 1). Stratification analysis 
revealed the prognosis signature as a promising predictor of survival of the AML clinical subtypes. In 
addition, the CR rate in the high- and low-risk patients was explored. Patients who achieved CR 
appeared to have lower risk score compared to the patients without CR, but there was no statistical 
significance between the two groups (Figure S5A). Low-risk patients seemed to achieve non-
significantly higher CR rates than high-risk patients (Figure S5B). We then investigated the 
relationship between CNS involvement and risk score in acute lymphoblastic leukemia patients. As 
shown in Figure S6A, these patients displayed significantly higher risk score than patients without 
CNS leukemia. Patients with high-risk had a higher proportion of CNS leukemia (Figure S6B). The 
result has a potential reference value for exploring the rate of CNS leukemia in different risk score 
groups of AML patients. 

3.5. Risk factor as an independent prognostic factor and nomogram construction 

Univariable and multivariable Cox regression analyses were performed to explore if risk scoring 
could be considered a prognostic factor for individuals with AML independent of other clinical 
variables. Age, ferroptosis group, and risk score were all linked to patient prognosis in the univariate 
analysis (Figure 5A). The risk score might be utilized to predict patient prognosis independently, 
according to the multivariate Cox regression analysis (Figure 5B). In multivariate analysis, age was 
also a significant prognostic factor. 

The independent prognostic factors of age and risk score were used to create a nomogram to 
forecast 1-, 3-, and 5-year OS (Figure 5C). The nomogram’s C-index was 0.680. Calibration plots 
revealed that the nomogram succeeded in predicting the three survival probabilities in AML patients 
(Figure 5D). DCA of the risk model and nomogram was then performed to assess the prediction 
effectiveness (Figure S7A, B). 

3.6. Comparison of immune infiltration between two risk groups 

Next, ssGSEA was used to calculate the percentage of 24 immune cells in the two groups. Low-
risk patients had more T helper and Th2 cells than high-risk patients (Figure 6A). In comparison to the 
low-risk group, the high-risk group had considerably more activated dendritic cells (aDCs), CD8+ T 
cells, cytotoxic T cells, induced DCs (iDCs), neutrophils, macrophages, natural killer (NK) CD56dim 
cells, NK CD56bright cells, Th17 cells, Th1 cells, T follicular helper cells (TFHs), and regulatory T 
cells (Treg). These results suggested that the immunological milieu of the two risk groups was 
significantly different. The Pearson correlation between different immune cells and prognostic genes 
was then examined (Figure 6B). S100A6 was found to have a strong relationship with iDCs, 
macrophages, and neutrophils. T helper cell levels of chemokine (C-C motif) ligand 3 (CCL3) and 
S100A6 exhibited a significant negative correlation. TFH, Th1 cells, macrophages, Tgd, neutrophils, 
NK CD56bright cells, and iDCs were also correlated with bone morphogenetic protein 2 (BMP2). 
CCL3 was linked to macrophages, iDC, neutrophils, NK CD56bright cells, NK CD56dim cells, Th17 
cells, Th1 cells, and TFH cells. A substantial positive connection was found between Epstein-Barr 
virus-induced gene 3 (EBI3) and aDCs, NK CD56dim cells, TFHs, and macrophages. 
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Figure 5. Independent prognosis value of the five-gene signature and creation of a nomograph. (A 

and B) Forest plots of risk scores and other clinical features with univariable (A) and multivariable 

(B) Cox regressive analysis. (C) Nomogram created to forecast the OS of AML patients. (D) The 

nomogram calibration curves of survival probabilities.  

3.7. The five-gene prognostic risk model predicts the sensitivity to chemotherapy and immunotherapy 

The SubMap algorithm was utilized to predict the clinical activity of immune checkpoint 
inhibitors in the two risk groups (Figure 6C). The high-risk group was more responsive to anti-PD-1 
immunotherapy (P < 0.05). In addition, using drug sensitivity data obtained from the Genomics of 
Drug Sensitivity in Cancer website, we estimated the chemosensitivity of the two groups to 133 drugs. 
High-risk patients had larger IC50 values for midostaurin (a multitargeted kinase inhibitor), NSC 
87877 (inhibitor of Src homology-2 domain-containing protein tyrosine phosphatase-2), and 
pyrimethamine (inhibitor of dihydrofolate reductase) (Figure 6D). The findings indicate the value of 
the five-gene prognostic risk model in predicting treatment sensitivity to immunotherapy and 
targeted therapy. 
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Figure 6. Assessment of the correlations between the risk score model and immune infiltration and 

therapeutic sensitivity. (A) Immune infiltration analysis between two risk groups. (B) The Pearson 

correlation between different immune cells and prognostic genes. (C) Immunotherapeutic 

responses to anti-PD1 and anti-CTLA4 treatments. (D) Sensitivity analysis of chemotherapeutic 

response based on IC50. * P < 0.01. 

4. Discussion 

An accurate prognostic signature in patients with AML might help guide individualized treatment 
plans and improve therapeutic efficacy [36]. Ferroptosis is an iron-dependent form of cell death driven 
by the increase of lipid peroxidation to fatal levels. There is growing interest regarding the interaction 
between ferroptosis and AML treatments [37]. Furthermore, ferroptosis affects the tumor immune 
microenvironment and potentially influences the outcome of immunotherapy [38,39]. 
Comprehensive research of the role of FIRGs in AML prognosis may reveal new avenues in the 
prediction of patient prognosis. 

We used ssGSEA to determine the ferroptosis-related enrichment scores for each TCGA-LAML 
sample with a collection of known ferroptosis-related genes. The samples were subsequently separated 
into high- and low-ferroptosis score groups, with significant DEGs identified in the two groups. This 
method may provide theoretical support for the discovery of novel ferroptosis-related genes. 
Intersecting the DEGs with immune related genes identified 157 FIRGs. Functional enrichment 
analysis revealed that 157 FIRGs were enriched in the TNF, phosphoinositide 3-kinase (PI3K)-Akt, 
and IL-17 signaling pathways. These three pathways are associated with AML pathogenesis. In AML 
patients, abnormally elevated TNF-α levels could promote Treg cell development through the TNF-α–
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TNFR2 pathway, thus aggravating the progression of AML [40]. Furthermore, abnormal activation of 
the PI3K-Akt or IL-17 pathway is also linked with discouraging prognosis in AML [41,42].  

We analyzed prognosis-related FIRG signatures in patients with AML. Through univariate Cox 
and LASSO regression analyses, five signature genes (BMP2, CCL3, EBI3, ELANE, and S100A6) were 
screened for the prognostic risk score model. Among them, BMP2, CCL3, and EBI3 are related to the 
progression and recurrence of AML. For example, previous studies implicated BMP2 in the promotion 
of stemness maintenance and self-renewal in leukemia stem cells, causing drug resistance and 
recurrence of AML [43,44]. CCL3 is a poor prognostic factor for AML, and elevated CCL3 in the 
leukemic environment suppresses erythropoiesis [45]. EBI3 participates in the formation of IL-35, 
which can contribute to an immunosuppressive AML microenvironment and facilitate immune escape 
of leukemic cells [46,47]. In addition, ELANE and S100A6 may also be associated with other 
hematopoietic malignancies [48]. Their roles in AML deserves further study.  

The present study discovered that individuals with high-risk scores have poor prognosis, which 
is consistent with the prognostic effect of models based only on ferroptosis-related genes [29]. External 
validation confirmed the efficacy of this risk model in predicting the survival of AML patients. 
Importantly, the model was verified as an independent factor for OS in individuals with AML in both 
univariable and multivariable Cox regression analyses. To forecast the survival of individuals with 
AML, we developed a nomogram and assessed the validity of independent prognostic factors. Despite 
these accomplishments, further studies are required to verify the prognostic importance of the 
ferroptosis-immune related risk score. 

We also investigated the association between the risk score model and immunocyte infiltration as 
well as therapeutic sensitivity to understand more about the implications of the model for AML therapy. 
The high-risk score group showed higher infiltration of Treg, Th17, and CD8+ T cells. Tregs facilitate 
immune escape of AML, further promoting disease progression and relapse [49,50]. Treg cells inhibit 
effector T cells through direct and indirect mechanisms, including the secretion of immunosuppressive 
cytokines, increased ATP hydrolysis, and increased adenosine production [51–53]. The levels of Th17 
cells and their related cytokines (IL-17, IL-1 β, and IL-6) are increased in newly diagnosed and 
incomplete remission patients with AML, suggesting that Th17 cells may be involved in the 
pathogenesis of AML [54]. This was confirmed by the significant enrichment of FIRGs in the IL-17 
pathway, as discussed previously. Notably, we presently observed that the high-risk group had a higher 
CD8+ T cells infiltration than the low-risk group. Although CD8+ T cells are crucial effector cells 
involved in the killing of cancerous cells, their function may be suppressed by AML blasts [55]. The 
sensitivity of different risk score groups to chemotherapy and immunotherapy was also investigated. 
Anti-PD-1 treatment produced a higher response rate in the high-risk group. PD-1/PD-L1 inhibitors 
have been previously demonstrated to fully restore the functional activity of pre-existing intratumoral 
tumor-infiltrating lymphocytes [55,56]. Therefore, we speculated that PD-1 therapy may be important 
in the recovery of immune function of immunosuppressed CD8+ T cells in patients with AML with a 
high-risk score. The low-risk group appeared to be more sensitive to midostaurin, NSC 87877, and 
pyrimethamine treatments. Our findings suggest that a risk score model based FIRGs is able to forecast 
therapeutic sensitivity and could help clinicians make more personalized treatment decisions. 

5. Conclusions  

A prognostic risk score model was constructed and validated based on five ferroptosis–immune 
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associated genes to accurately predict OS of AML patients. This risk score model could provide a 
basis for optimizing individualized clinical treatments. 
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