
http://www.aimspress.com/journal/mbe

MBE, 19(11): 10731–10740.
DOI: 10.3934/mbe.2022502
Received: 28 May 2022
Revised: 10 July 2022
Accepted: 25 July 2022
Published: 28 July 2022

Research article

Efficient algorithms for scheduling equal-length jobs with processing set
restrictions on uniform parallel batch machines

Shuguang Li∗

School of Computer Science and Technology, Shandong Technology and Business University, Yantai
264005, China

* Correspondence: Email: sgliytu@hotmail.com; Tel: +8618753509226.

Abstract: We consider the problem of scheduling jobs with equal lengths on uniform parallel batch
machines with non-identical capacities where each job can only be processed on a specified subset
of machines called its processing set. For the case of equal release times, we give efficient exact
algorithms for various objective functions. For the case of unequal release times, we give efficient
exact algorithms for minimizing makespan.

Keywords: scheduling; uniform parallel batch machines; processing set restrictions; equal job
lengths; exact algorithms

1. Introduction

The problem of scheduling uniform parallel batch machines with processing set restrictions can
be defined as follows. Let J = {1, 2, . . . , n} be a set of jobs and M = {M1,M2, . . . ,Mm} be a set of
uniform parallel batch machines. Job j (j = 1, 2, . . . , n) becomes available at its release time r j ≥ 0
and requires p j ≥ 0 units of processing called its length. For each job j, let M j ⊆ M be the set of
the eligible machines which are capable of processing the job, called its processing set. Each job will
be assigned to exactly one machine and job preemption is not allowed. Machine Mi (i = 1, 2, . . . ,m)
has a speed vi ≥ 1 and a capacity Ki < n. The impact of the speed is that Mi can carry out vi units of
processing in one time unit. That is, if job j is assigned to machine Mi, then it requires p j/vi processing
time to be completed. Machine Mi can process several jobs as a batch simultaneously as long as the
total number of these jobs does not exceed Ki. The length of a batch is the maximum of the lengths of
the jobs belonging to it. Jobs in the same batch have a common start time and a common completion
time. The goal is to schedule the jobs on the machines in a manner that optimizes one or more objective
functions.

Two classes of objectives are considered: the min-sum objective and the min-max objective.

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2022502

10732

Specifically, let f j : [0,+∞) → [0,+∞) (j = 1, 2, . . . , n) be a non-decreasing function. Additional
parameters that may be included for job j are its due date d j and its weight w j. For a particular
schedule σ, let C j(σ) denote the completion time of job j in σ. Let T j(σ) = max{C j(σ) − d j, 0} denote
the tardiness of job j in σ. Let U j(σ) = 1 if C j(σ) > d j and U j(σ) = 0 otherwise. (In the rest of this
paper, we safely ignore σ in the notations without causing confusion.) The objectives of minimizing∑n

j=1 f j(T j) and max j=1,2,...,n{ f j(T j)} will be considered. Following [1, 2], the models can be denoted as
Q|r j, d j,M j, p − batch,Ki|

∑
f j(T j) and Q|r j, d j,M j, p − batch,Ki|max{ f j(T j)}.

Many popular scheduling objectives are covered by the two models, such as total weighted
completion time (

∑
w jC j) minimization, total weighted tardiness (

∑
w jT j) minimization, weighted

number of tardy jobs (
∑

w jU j) minimization, makespan (Cmax = max C j) minimization, and
maximum weighted tardiness (max{w j(T j)}) minimization. As shown in [3–5], most of such problems
are NP-hard even for the special cases where all vi = 1, all Ki = 1 and all M j = M. Thus, we are
interested in polynomial time exact algorithms for some important special cases of the problems [6].

In this paper, we focus on an important special case where all jobs have equal lengths (and equal
release times). The problems under study can be denoted as Q|p j = p, d j,M j, p − batch,Ki|

∑
f j(T j)

(the special case of Q|r j, p j = p, d j,M j, p − batch,Ki|
∑

f j(T j) where all r j = 0) and
Q|p j = p, d j,M j, p − batch,Ki|max{ f j(T j)} (the special case of
Q|r j, p j = p, d j,M j, p − batch,Ki|max{ f j(T j)} where all r j = 0). Li [7] presented polynomial time
algorithms for uniform parallel machine scheduling problems Q|p j = p, d j,M j|

∑
f j(T j) and

Q|p j = p, d j,M j|max{ f j(T j)} (the special cases of Q|p j = p, d j,M j, p − batch,Ki|
∑

f j(T j) and
Q|p j = p, d j,M j, p − batch,Ki|max{ f j(T j)} where all Ki = 1). We extend the results obtained in [7] to
uniform parallel batch machines, allowing the machines to have non-identical capacities. Moreover,
for minimizing makespan, we allow unequal release times and get an algorithm for arbitrary
processing set restrictions.

Although the above problem setting appears simple, it captures important aspects of a wide range
of applications. There are many problems arise as its special or similar cases in networking and
information systems. For example, Low [8] studied the problem in the context of retrieving data
blocks from disks in video on demand systems. Suri et al. [9] considered the problem in peer-to-peer
systems. The problem was also studied for workload balancing among packet queues [10], for data
aggregation in wireless sensor networks [11]. Recently, Champati and Liang [12] studied a very
similar problem where each machine has its own convex cost functions, aiming to minimize the sum
cost and the maximum differential cost of the machines.

The remainder of this paper is organized as follows. In Section 2, the related researches are
reviewed. In Section 3, we consider the case of equal release times. We present an algorithm with
running time O(n3m + n2m log(mn)) for Q|p j = p, d j,M j, p − batch,Ki|

∑
f j(T j), as well as an

algorithm with running time O(n5/2m3/2 log(mn)) for Q|p j = p, d j,M j, p − batch,Ki|max{ f j(T j)}. In
Section 4, we consider the case of unequal release times. We present an algorithm with running time
O(n5/2m3/2 log(mn)) for Q|r j, p j = p,M j, p − batch,Ki|Cmax. Section 5 presents the conclusions and
future directions of research.

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10731–10740.

10733

2. Literature review

Leung and Li [13] discussed several special cases of processing set restrictions. The processing sets
of the jobs are inclusive, if for any two jobs j1 and j2, eitherM j1 ⊆ M j2 , orM j2 ⊆ M j1 . The processing
sets are nested, if for any two jobs j1 and j2, eitherM j1 ∩M j2 = ∅, orM j1 ⊆ M j2 , orM j2 ⊆ M j1 . The
processing sets are interval, if for any job j, M j = {Ma j ,Ma j+1, . . . ,Mb j} for some 1 ≤ a j ≤ b j ≤ m.
The processing sets are tree-hierarchical, if each machine is represented by a tree node, and each job j
is associated with a tree node Ma j , such thatM j is exactly the set of the machines consisting of all the
nodes on the unique path from Ma j to the root of the tree.

The problem studied in this paper combines two important sub-fields of scheduling theory:
scheduling with processing set restrictions and parallel batch scheduling. The two sub-fields have
received intense study in the literature, see the survey papers [13] and [14–16] respectively. There are
also a few papers which combined the two-subfields into a unified framework [17–23]. In the
problems studied in these papers except the last two, each job has a size and a machine can process
several jobs simultaneously as a batch as long as the total size of these jobs does not exceed its
capacity. Any machine cannot process the jobs whose sizes are larger than its capacity. Thus, for each
job, the machines whose capacities are not less than its size form its processing set. Clearly, the
processing sets of the jobs are inclusive. In [22], Li presented two algorithms with approximation
ratios 3 and 9/4 for the problem of minimizing makespan on parallel batch machines with inclusive
processing set restrictions, where the jobs have arbitrary lengths and the machines have the same
speed. In [23], Li studied parallel batch scheduling with nested processing set restrictions to minimize
makespan, and presented a (3 − 1/m)-approximation algorithm for the case of equal release times and
a polynomial time approximation scheme (PTAS) for the case of unequal release times.

For scheduling with processing set restrictions, the review focuses on the case of equal job lengths.
Lin and Li [24] obtained an algorithm for P|p j = p,M j|Cmax (the special case of
Q|r j, p j = p,M j|Cmax where all r j = 0 and all vi = 1) that runs in O(n3 log n) time, and generalized the
algorithm to solve Q|p j = p,M j|Cmax in O(n3 log(nvlcm)) time, where vlcm denotes the least common
multiple of v1, v2, . . . , vm. They also obtained an algorithm for P|p j = p,M j(interval)|Cmax (the
special case of P|p j = p,M j|Cmax with interval processing set restrictions) that runs in O(m2 + mn)
time. Harvey et al. [25] independently developed an algorithm for P|p j = p,M j|Cmax that runs in
O(n2m) time. Brucker et al. [26] presented algorithms running in O(n2m(n + log m)) time for
Q|p j = p, d j,M j|

∑
w jT j, Q|p j = p, d j,M j|

∑
w jU j , P|r j, p j = 1, d j,M j|

∑
w jT j and

P|r j, p j = 1, d j,M j|
∑

w jU j. Li [7] presented an algorithm for Q|p j = p, d j,M j|
∑

f j(T j) that runs in
O(n3m + n2m log(mn)) time. For the special cases where f j(T j) = C j or f j(T j) = U j, the running time
of the algorithm can be improved to O(n5/2m log n). He also presented an algorithm for
Q|p j = p, d j,M j|max{ f j(T j)} that runs in O(n5/2m log(mn)) time. For the special cases where
f j(T j) = C j (i.e., Q|p j = p,M j|Cmax), the running time of the algorithm can be improved to
O(n2(m + log(nvmax)) log n), where vmax = max{v j}. Lee et al. [27] showed that Q|r j, p j = p,M j|Cmax

can be solved in O(m3/2n5/2 log(mn)) time, and P|r j, p j = p,M j|Cmax(the special case of
Q|r j, p j = p,M j|Cmax where all vi = 1) can be solved in O(m3/2n5/2 log n) time. Shabtay et al. [28]
obtained various results for several problems of scheduling uniform machines with equal length jobs,
processing set restrictions and job rejection. Hong et al. [29] studied P|r j, p j = p,M j|

∑
C j. For the

problem with a fixed number of machines, they provided a polynomial time dynamic programming

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10731–10740.

10734

algorithm. For the general case, they presented two polynomial time approximation algorithms with
approximation ratios 3/5 and 5/7 respectively. Jiang et al. [30] presented a comprehensive overview
(including their new findings) of ideal schedules for various scheduling problems in different machine
environments and with different job characteristics. An ideal schedule is a schedule that
simultaneously minimizes the total completion time and makespan. They pointed out that in most
problems that are known to have an ideal schedule, the jobs have equal processing times. Along with
other results, they proved that any optimal schedule for Q|p j = p,M j|

∑
C j also minimizes makespan.

Jing et al. [31] studied the problem of scheduling high multiplicity jobs to minimize makespan on
parallel machines with processing set restrictions, setup times and machine available times. High
multiplicity means that jobs are partitioned into several groups and in each group all jobs are
identical. Whenever there is a switch from processing a job of one group to a job of another group, a
setup time is needed. They formulated the problem as a mixed integer programming and proposed a
heuristic for it.

Pinedo [32] and Glass and Mills [33] presented algorithms for P|p j = p,M j(nested)|Cmax (the
special case of P|p j = p,M j|Cmax with nested processing set restrictions) that run in time O(n log n)
and O(m2) time respectively. Li and Li [34] presented algorithms for P|r j, p j = p,M j(inclusive)|Cmax

and P|r j, p j = p,M j(tree)|Cmax (the special cases of P|r j, p j = p,M j|Cmax with inclusive and
tree-hierarchical processing set restrictions) that run in O(n2 + mn log n) time. For uniform machines,
they showed that Q|r j, p j = p,M j(inclusive)|Cmax and Q|r j, p j = p,M j(tree)|Cmax can be solved in
O(mn2 log m) time. Later, Li and Lee [35] developed an improved algorithm for
P|r j, p j = p,M j(inclusive)|Cmax that runs in O(min{m, log n}n log n) time, and an improved algorithm
for P|r j, p j = p,M j(tree)|Cmax that runs in O(mn log n) time.

For parallel batch scheduling, the review focuses on equal job lengths or uniform parallel batch
machines. Liu et al. [36] presented an algorithm for P|r j, p j = p, p − batch, B|Cmax (the special case of
Q|r j, p j = p,M j, p−batch,Ki|Cmax where allM j =M, all Ki = B and all vi = 1) that runs in O(n log n)
time. Ozturk et al. [37] presented a 2-approximation algorithm for the problem of scheduling jobs with
equal lengths, unequal release times and sizes on identical parallel batch machines (all Ki = B) to
minimize makespan. Wang and Leung [18] studied the problem of scheduling jobs with equal lengths
and arbitrary sizes on parallel batch machines (all vi = 1) with non-identical capacities. The problem
fits into the model of scheduling with inclusive processing set restrictions, since each job can only be
processed by the machines whose capacities are not less than the size of the job. Wang and Leung [18]
presented a 2-approximation algorithm, as well as an algorithm with asymptotic approximation ratio
3/2 for the problem. Li et al. [38] proposed several heuristics for the problem of scheduling jobs with
unequal lengths, release times and sizes on uniform parallel batch machines with identical capacities
to minimize makespan. Zhou et al. [39] presented an effective discrete differential evolution algorithm
for the problem of scheduling jobs with unequal lengths and sizes on uniform parallel batch machines
with non-identical capacities to minimize makespan. Both [38] and [39] have not included processing
set restrictions.

3. Equal release times

In this section, we consider the case of equal release times. We will present algorithms for Q|p j =

p, d j,M j, p − batch,Ki|
∑

f j(T j) and Q|p j = p, d j,M j, p − batch,Ki|max{ f j(T j)}.

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10731–10740.

10735

Since f j (j = 1, 2, . . . , n) is a non-decreasing function, for both
Q|p j = p, d j,M j, p − batch,Ki|

∑
f j(T j) and Q|p j = p, d j,M j, p − batch,Ki|max{ f j(T j)}, there is an

optimal schedule in which the first batch on each machine starts at time zero, and the batches on each
machine are processed successively. Moreover, we can assume that there are ni empty batches on
machine Mi (i = 1, 2, . . . ,m) to which the jobs may be assigned, where ni denotes the smallest integer
such that niKi ≥ n. The k-th batch on Mi,Bk,i, completes at time kp/vi, k = 1, 2, . . . , ni. To find a
feasible schedule, we need only to assign the jobs to

∑m
i=1 ni empty batches such that all jobs obey the

processing set restrictions.
First, we consider Q|p j = p, d j,M j, p − batch,Ki|

∑
f j(T j).

If job j is assigned to Bk,i and Mi ∈ M j, then the cost incurred is defined to be c jki = f j(max{kp/vi−

d j, 0}), j = 1, 2, . . . , n, k = 1, 2, . . . , ni, i = 1, 2, . . . ,m. Let C = max j,k,ic jki. By regarding each job
j ∈ J as a vertex in X, and each empty batch Bk,i as Ki vertices yk1, yk2, . . . , ykKi in Y , we construct a
bipartite graph G with bipartition (X,Y), where j is joined to yk1, yk2, . . . , ykKi if and only if Mi ∈ M j,
and the incurred costs are equal to c jki, j = 1, 2, . . . , n, k = 1, 2, . . . , ni, i = 1, 2, . . . ,m. Then we use
the Successive Shortest Path algorithm to solve the bipartite weighted matching problem [40] and get
a matching of minimum cost that saturates every vertex in X. From this matching we can construct an
optimal schedule easily.

The Successive Shortest Path algorithm runs in O(|X| · S (|X| + |Y | , |X| |Y | ,C)) time, where S (|X| +
|Y | , |X| |Y | ,C) is the time for solving a shortest path problem with |X| + |Y | vertices, |X| |Y | edges (these
edges have non-negative costs), and maximum coefficient C. Currently, S (u, a,C) = O(a+u log u) [41].
Note that |X| = n and |Y | ≤ 2mn. We get:

Theorem 3.1. There is an exact algorithm for Q|p j = p, d j,M j, p − batch,Ki|
∑

f j(T j) that runs in
O(n3m + n2m log(mn)) time.

Next, we consider Q|p j = p, d j,M j, p− batch,Ki|max{ f j(T j)}. Let OPT denote the objective value
of an optimal schedule.

Recall that we are focusing on an optimal schedule in which machine Mi (i = 1, 2, . . . ,m) processes
ni batches (some batches may be empty), where ni denotes the smallest integer such that niKi ≥ n.
Each batch on Mi has Ki positions to accommodate jobs, and there are at most 2n positions on Mi,
i = 1, 2, . . . ,m. Therefore, there are at most 2mn positions in total. Since each position has at most n
choices of accommodating a job, there are at most 2mn2 possible values for OPT . We can sort these
values in ascending order in O(mn2 log(mn)) time. Then, we perform a binary search in the interval to
determine OPT in O(log(mn)) iterations.

For each value λ selected, we test whether there is a feasible schedule whose objective value is no
more than λ. To this end, we construct a bipartite graph G with bipartition (X,Y) as follows. Regard
each job j ∈ J as a vertex in X, and each empty batch Bk,i as Ki vertices yk1, yk2, . . . , ykKi in Y , where j is
joined to yk1, yk2, . . . , ykKi if and only if Mi ∈ M j and f j(kp/vi−d j) ≤ λ, j = 1, 2, . . . , n, k = 1, 2, . . . , ni,
i = 1, 2, . . . ,m. Then we use the algorithm in [42] to solve the maximum cardinality bipartite matching
problem. If the obtained matching saturates every vertex in X, then the procedure succeeds and we
search the lower half of the interval. Otherwise, the procedure fails and we search the upper half of the
interval.

The algorithm in [42] runs in O(
√
|X| + |Y | · |X| |Y |) time. Note that |X| = n and |Y | ≤ 2mn. We get:

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10731–10740.

10736

Theorem 3.2. There is an exact algorithm for Q|p j = p, d j,M j, p− batch,Ki|max{ f j(T j)} that runs in
O(n5/2m3/2 log(mn)) time.

4. Unequal release times

In this section, we consider the case of unequal release times. We will present an algorithm for
Q|r j, p j = p,M j, p − batch,Ki|Cmax, which generalizes the one in [27] for Q|r j, p j = p,M j|Cmax (the
special case of Q|r j, p j = p,M j, p − batch,Ki|Cmax where all Ki = 1). Let OPT denote the makespan
of an optimal schedule for Q|r j, p j = p,M j, p − batch,Ki|Cmax. Let Λ = {λ|λ = r j + kp/vi; j, k ∈
{1, 2, . . . n} and i ∈ {1, 2, . . .m}}. The following lemma, adopted from [27], still holds for Q|r j, p j =

p,M j, p − batch,Ki|Cmax.

Lemma 4.1. The set Λ, as defined above, contains all candidates for OPT.

Since |Λ| ≤ mn2, there are at most mn2 possible values for OPT . We can sort these values in
ascending order in O(mn2 log(mn)) time. Then, we perform a binary search to determine OPT in
O(log(mn)) iterations.

For each value λ selected, we use the following procedure, AssignJobs, to test whether there is a
feasible schedule whose makespan is no more than λ.

AssignJobs (λ):

Step 1. Assign bi = min{ni, bλ · vi/pc} empty batches of length p and capacity Ki to machine Mi,
where ni denotes the smallest integer such that niKi ≥ n. The k-th batch on Mi,Bk,i, starts at time
λ − (bi − k + 1)p/vi and completes at time λ − (bi − k)p/vi, k = 1, 2, . . . , bi, i = 1, 2, . . . ,m.

Step 2. Construct a bipartite graph G with bipartition (X,Y) as follows. Regard each job j ∈ J as
a vertex in X, and each empty batch Bk,i as Ki vertices yk1, yk2, . . . , ykKi in Y , where j is joined
to yk1, yk2, . . . , ykKi if and only if Mi ∈ M j and r j ≤ λ − (bi − k + 1)p/vi, j = 1, 2, . . . , n,
k = 1, 2, . . . , bi, i = 1, 2, . . . ,m.

Step 3. Use the algorithm in [42] to solve the maximum cardinality bipartite matching problem. If
the obtained matching saturates every vertex in X, then the procedure succeeds and terminates.
Otherwise, the procedure fails and terminates.

Lemma 4.2. If OPT ≤ λ, then AssignJobs will generate a feasible schedule in O(n5/2m3/2) time for
Q|r j, p j = p,M j, p − batch,Ki|Cmax whose makespan is at most λ.

Proof. Let σ∗ denote an optimal schedule. Consider machine Mi, i = 1, 2, . . . ,m. Since OPT ≤ λ, in
σ∗, Mi processes at most bi batches. Without loss of generality, assume that there are bi batches (some
of which may be dummy empty batches) processed on Mi in σ∗, denoted as B∗1,i, B

∗
2,i, . . . B

∗
bi,i

.
Modify σ∗ as follows. Let B∗bi,i

be completed at time λ, B∗bi−1,i be completed at time λ− p/vi, ..., B∗1,i
be completed at time λ− (bi − 1)p/vi , i = 1, 2, . . . ,m. Denote by σ̃∗ the modified schedule. Since each
batch in σ̃∗ starts no earlier than its corresponding batch in σ∗, σ̃∗ is a feasible schedule. The makespan
of σ̃∗ is exactly λ. Clearly, AssignJobs will generate a feasible schedule which is no worse than σ̃∗.

The algorithm in [42] runs in O(
√
|X| + |Y | · |X| |Y |) time. Since |X| = n and |Y | ≤ 2mn, the running

time of AssignJobs is O(n5/2m3/2).
�

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10731–10740.

10737

We get:

Theorem 4.3. There is an exact algorithm for Q|r j, p j = p,M j, p − batch,Ki|Cmax that runs in
O(n5/2m3/2 log(mn)) time.

5. Conclusions

We studied the problem of scheduling jobs with equal lengths and processing set restrictions on
uniform parallel batch machines with non-identical capacities. For the case of equal release times, we
gave efficient exact algorithms for various objective functions. For the case of unequal release times,
we gave efficient exact algorithms for minimizing makespan. The findings extend previous results for
uniform machines counterparts.

Future research should focus on extending the algorithms to the case of unequal release times for
objective functions other than makespan. It would also be interesting (and difficult) to extend the
techniques to other related models, for general or special cases of processing set restrictions, such as
scenario-dependent processing times and/or due dates [43], two-agent scheduling problems [44], or
multitasking scheduling problems [45].

Acknowledgments

This work is supported by Natural Science Foundation of Shandong Province China (No.
ZR2020MA030).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. R. L. Graham, E. L. Lawler, J. K. Lenstra, A. R. Kan, Optimization and approximation in
deterministic sequencing and scheduling: a survey, Ann. Discrete Math., 5 (1979), 287–326.
https://doi.org/10.1016/S0167-5060(08)70356-X

2. P. Brucker, Scheduling Algorithms, 5th edition, Springer, 2007.

3. M. R. Garey and D. S. Johnson, Computers and intractability: a guide to the theory
of NP-completeness (michael r. garey and david s. johnson), SIAM Rev., 24 (1982), 90.
https://doi.org/10.1137/1024022

4. E. L. Lawler, J. K. Lenstra, A. R. Kan, D. B. Shmoys, Sequencing and scheduling: Algorithms and
complexity, Handb. Oper. Res. Manage. Sci., 4 (1993), 445–522. https://doi.org/10.1016/S0927-
0507(05)80189-6

5. J. Y. T. Leung, Handbook of Scheduling: Algorithms, Models, and Performance Analysis, CRC
Press, 2004.

6. C. H. Papadimitriou, K. Steiglitz, Combinatorial optimization: Algorithms and Complexity,
Courier Dover Publications, 1998.

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10731–10740.

http://dx.doi.org/https://doi.org/10.1016/S0167-5060(08)70356-X
http://dx.doi.org/https://doi.org/10.1137/1024022
http://dx.doi.org/https://doi.org/10.1016/S0927-0507(05)80189-6
http://dx.doi.org/https://doi.org/10.1016/S0927-0507(05)80189-6

10738

7. C. L. Li, Scheduling unit-length jobs with machine eligibility restrictions, Eur. J. Oper. Res., 174
(2006), 1325–1328. https://doi.org/10.1016/j.ejor.2005.03.023

8. C. P. Low, An efficient retrieval selection algorithm for video servers with random
duplicated assignment storage technique, Inf. Process. Lett., 83 (2002), 315–321, 2002.
https://doi.org/10.1016/S0020-0190(02)00210-7

9. S. Suri, C. D. Toth, Y. Zhou, Selfish load balancing and atomic congestion games, Algorithmica,
47 (2007), 79–96.

10. S. Kittipiyakul, T. Javidi, Delay-optimal server allocation in multiqueue multiserver
systems with time-varying connectivities, IEEE Trans. Inf. Theory, 55 (2009), 2319–2333.
https://doi.org/10.1109/TIT.2009.2016051

11. M. Shan, G. Chen, D. Luo, X. Zhu, X. Wu, Building maximum lifetime shortest path data
aggregation trees in wireless sensor networks, ACM Trans. Sensor Networks, 11 (2014), 1–24.
https://doi.org/10.1145/2629662

12. J. P. Champati, B. Liang, Efficient minimization of sum and differential costs on machines
with job placement constraints, in IEEE INFOCOM 2017-IEEE Conference on Computer
Communications, (2017), 1–9. https://doi.org/10.1109/INFOCOM.2017.8057085

13. J. Y. T. Leung, C. L. Li, Scheduling with processing set restrictions: A literature update, Int. J.
Prod. Econ., 175 (2016), 1–11. https://doi.org/10.1016/j.ijpe.2014.09.038

14. C. N. Potts, M. Y. Kovalyov, Scheduling with batching: a review, Eur. J. Oper. Res., 120 (2000),
228–249. https://doi.org/10.1016/S0377-2217(99)00153-8

15. M. Mathirajan, A. Sivakumar, A literature review, classification and simple meta-analysis on
scheduling of batch processors in semiconductor, Int. J. Adv. Manuf. Technol., 29 (2006), 990–
1001. https://doi.org/10.1007/s00170-005-2585-1

16. L. Monch, J. W. Fowler, S. Dauzere-Peres, S. J. Mason, O. Rose, A survey of problems,
solution techniques, and future challenges in scheduling semiconductor manufacturing operations,
J. Scheduling, 14 (2011), 583–599. https://doi.org/10.1007/s10951-010-0222-9

17. P. Damodaran, D. A. Diyadawagamage, O. Ghrayeb, M. C. Vlez-Gallego, A particle swarm
optimization algorithm for minimizing makespan of nonidentical parallel batch processing
machines,Int. J. Adv. Manuf. Technol., 58 (2012), 1131–1140. https://doi.org/10.1007/s00170-011-
3442-z

18. J. Q. Wang, J. Y. T. Leung, Scheduling jobs with equal-processing-time on parallel machines
with non-identical capacities to minimize makespan, Int. J. Prod. Econ., 156 (2014), 325–331.
https://doi.org/10.1016/j.ijpe.2014.06.019

19. Z. h. Jia, K. Li, J. Y.-T. Leung, Effective heuristic for makespan minimization in parallel
batch machines with non-identical capacities, Int. J. Prod. Econ., 169 (2015), 1–10.
https://doi.org/10.1016/j.ijpe.2015.07.021

20. Z. h. Jia, T. T. Wen, J. Y. T. Leung, K. Li, Effective heuristics for makespan minimization in parallel
batch machines with non-identical capacities and job release times, J. Ind. Manage. Optim., 13
(2017), 977–993. http://dx.doi.org/10.3934/jimo.2016057

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10731–10740.

http://dx.doi.org/https://doi.org/10.1016/j.ejor.2005.03.023
http://dx.doi.org/https://doi.org/10.1016/S0020-0190(02)00210-7
http://dx.doi.org/https://doi.org/10.1109/TIT.2009.2016051
http://dx.doi.org/https://doi.org/10.1145/2629662
http://dx.doi.org/https://doi.org/10.1109/INFOCOM.2017.8057085
http://dx.doi.org/https://doi.org/10.1016/j.ijpe.2014.09.038
http://dx.doi.org/https://doi.org/10.1016/S0377-2217(99)00153-8
http://dx.doi.org/https://doi.org/10.1007/s00170-005-2585-1
http://dx.doi.org/https://doi.org/10.1007/s10951-010-0222-9
http://dx.doi.org/https://doi.org/10.1007/s00170-011-3442-z
http://dx.doi.org/https://doi.org/10.1007/s00170-011-3442-z
http://dx.doi.org/https://doi.org/10.1016/j.ijpe.2014.06.019
http://dx.doi.org/https://doi.org/10.1016/j.ijpe.2015.07.021
http://dx.doi.org/http://dx.doi.org/10.3934/jimo.2016057

10739

21. S. Li, Approximation algorithms for scheduling jobs with release times and arbitrary sizes
on batch machines with non-identical capacities, Eur. J. Oper. Res., 263 (2017), 815–826.
https://doi.org/10.1016/j.ejor.2017.06.021

22. S. Li, Parallel batch scheduling with inclusive processing set restrictions and non-
identical capacities to minimize makespan, Eur. J. Oper. Res., 260 (2017), 12–20, 2017.
https://doi.org/10.1016/j.ejor.2016.11.044

23. S. Li, Parallel batch scheduling with nested processing set restrictions, Theor. Comput. Sci., 689
(2017), 117–125. https://doi.org/10.1016/j.tcs.2017.06.003

24. Y. Lin, W. Li, Parallel machine scheduling of machine-dependent jobs with unit-length, Eur. J.
Oper. Res., 156 (2004), 261–266. https://doi.org/10.1016/S0377-2217(02)00914-1

25. N. J. Harvey, R. E. Ladner, L. Lovasz, T. Tamir, Semi-matchings for bipartite graphs and load
balancing, J. Algorithms, 59 (2006), 53–78. https://doi.org/10.1016/j.jalgor.2005.01.003

26. P. Brucker, B. Jurisch, A. Kramer, Complexity of scheduling problems with multi-purpose
machines, Ann. Oper. Res., 70 (1997), 57–73. https://doi.org/10.1023/A:1018950911030

27. K. Lee, Y. T. Leung, M. L. Pinedo, Scheduling jobs with equal processing times subject to machine
eligibility constraints, J. Scheduling, 14 (2011), 27–38. https://doi.org/10.1007/s10951-010-0190-
0

28. D. Shabtay, S. Karhi, D. Oron, Multipurpose machine scheduling with rejection and identical job
processing times, J. Scheduling, 18 (2015), 75–88. https://doi.org/10.1007/s10951-014-0386-9

29. J. Hong, K. Lee, M. L. Pinedo, Scheduling equal length jobs with eligibility restrictions, Ann.
Oper. Res., 285 (2020), 295–314. https://doi.org/10.1007/s10479-019-03172-8

30. X. Jiang, K. Lee, M. L. Pinedo, Ideal schedules in parallel machine settings, Eur. J. Oper. Res.,
290 (2021), 422–434. https://doi.org/10.1016/j.ejor.2020.08.010

31. C. Jing, W. Huang, L. Zhang, H. Zhang, Scheduling high multiplicity jobs on parallel multi-
purpose machines with setup times and machine available times, Asia Pac. J. Oper. Res., 2022
(2022), 2250012. https://doi.org/10.1142/S0217595922500129

32. M. L. Pinedo, Scheduling: Theory, Algorithms and Systems, Spring, 2018.

33. C. A. Glass, H. R. Mills, Scheduling unit length jobs with parallel nested machine processing set
restrictions, Comput. Oper. Res., 33 (2006), 620–638. https://doi.org/10.1016/j.cor.2004.07.010

34. C. L. Li, Q. Li, Scheduling jobs with release dates, equal processing times,
and inclusive processing set restrictions, J. Oper. Res. Soc., 66 (2015), 516–523.
https://doi.org/10.1057/jors.2014.22

35. C. L. Li, K. Lee, A note on scheduling jobs with equal processing times and inclusive processing
set restrictions, J. Oper. Res. Soc., 67 (2016), 83–86. https://doi.org/10.1057/jors.2015.56

36. L. Liu, C. Ng, T. Cheng, Scheduling jobs with release dates on parallel batch processing machines
to minimize the makespan, Optim. Lett., 8 (2014), 307–318. https://doi.org/10.1007/s11590-012-
0575-4

37. O. Ozturk, M. L. Espinouse, M. D. Mascolo, A. Gouin, Makespan minimisation on parallel batch
processing machines with non-identical job sizes and release dates, Int. J. Prod. Res., 50 (2011),
1–14. https://doi.org/10.1080/00207543.2011.641358

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10731–10740.

http://dx.doi.org/https://doi.org/10.1016/j.ejor.2017.06.021
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2016.11.044
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2017.06.003
http://dx.doi.org/https://doi.org/10.1016/S0377-2217(02)00914-1
http://dx.doi.org/https://doi.org/10.1016/j.jalgor.2005.01.003
http://dx.doi.org/https://doi.org/10.1023/A:1018950911030
http://dx.doi.org/https://doi.org/10.1007/s10951-010-0190-0
http://dx.doi.org/https://doi.org/10.1007/s10951-010-0190-0
http://dx.doi.org/https://doi.org/10.1007/s10951-014-0386-9
http://dx.doi.org/https://doi.org/10.1007/s10479-019-03172-8
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2020.08.010
http://dx.doi.org/https://doi.org/10.1142/S0217595922500129
http://dx.doi.org/https://doi.org/10.1016/j.cor.2004.07.010
http://dx.doi.org/https://doi.org/10.1057/jors.2014.22
http://dx.doi.org/https://doi.org/10.1057/jors.2015.56
http://dx.doi.org/https://doi.org/10.1007/s11590-012-0575-4
http://dx.doi.org/https://doi.org/10.1007/s11590-012-0575-4
http://dx.doi.org/https://doi.org/10.1080/00207543.2011.641358

10740

38. X. Li, H. Chen, B. Du, Q. Tan, Heuristics to schedule uniform parallel batch processing
machines with dynamic job arrivals, Int. J. Comput. Integr. Manuf., 26 (2012), 474–486.
https://doi.org/10.1080/0951192X.2012.731612

39. S. Zhou, M. Liu, H. Chen, X. Li, An effective discrete differential evolution algorithm for
scheduling uniform parallel batch processing machines with non-identical capacities and arbitrary
job sizes, Int. J. Prod. Econ., 179 (2016), 1–11. https://doi.org/10.1016/j.ijpe.2016.05.014

40. R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network Flows, Theory, Algorithms, and Applications,
Prentice Hall, Englewood Cliffs, 1993.

41. M. L. Fredman, R. E. Tarjan, Fibonacci heaps and their uses in improved network optimization
algorithms, J. ACM, 34 (1987), 596–615. https://doi.org/10.1145/28869.28874

42. J. E. Hopcroft, R. M. Karp, An n5/2 algorithm for maximum matching in bipartite graphs, SIAM J.
Comput., 2 (1973), 225–231. https://doi.org/10.1137/0202019

43. C. C. Wu, D. Bai, X. Zhang, S. R. Cheng, J. C. Lin, Z. L. Wu, et al., A robust customer order
scheduling problem along with scenario-dependent component processing times and due dates, J.
Manuf. Syst., 58 (2021), 291–305. https://doi.org/10.1016/j.jmsy.2020.12.013

44. C. C. Wu, J. N. Gupta, W. C. Lin, S. R. Cheng, Y. L. Chiu, J. H. Chen, et al., Robust scheduling
of two-agent customer orders with scenario-dependent component processing times and release
dates, Mathematics, 10 (2022), 1545. https://doi.org/10.3390/math10091545

45. C. C. Wu, A. Azzouz, J. Y. Chen, J. Xu, W. L. Shen, L. Lu, et al., A two-agent one-machine
multitasking scheduling problem solving by exact and metaheuristics, Complex Intell. Syst., 8
(2022), 199–212. https://doi.org/10.1007/s40747-021-00355-4

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10731–10740.

http://dx.doi.org/https://doi.org/10.1080/0951192X.2012.731612
http://dx.doi.org/https://doi.org/10.1016/j.ijpe.2016.05.014
http://dx.doi.org/https://doi.org/10.1145/28869.28874
http://dx.doi.org/https://doi.org/10.1137/0202019
http://dx.doi.org/https://doi.org/10.1016/j.jmsy.2020.12.013
http://dx.doi.org/https://doi.org/10.3390/math10091545
http://dx.doi.org/https://doi.org/10.1007/s40747-021-00355-4
http://creativecommons.org/licenses/by/4.0

	Introduction
	Literature review
	Equal release times
	Unequal release times
	Conclusions

