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Abstract: This paper is concerned with the bifurcations of a susceptible-infectious-recovered-
susceptible (SIRS) epidemic model with a general saturated incidence rate kI p/(1 + αI p). For general
p > 1, it is shown that the model can undergo saddle-node bifurcation, Bogdanov-Takens bifurcation
of codimension two, and degenerate Hopf bifurcation of codimension two with the change of param-
eters. Combining with the results in [1] for 0 < p ≤ 1, this type of SIRS model has Hopf cyclicity 2
for any p > 0. These results also improve some previous ones in [2] and [3], which are dealt with the
special case of p = 2.
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1. Introduction

In this paper, we consider the infectious disease transmission models. Denoted by S (t), I(t), and
R(t), the numbers of susceptible, infective, and recovered or removed individuals at time t, respectively.
The classical susceptible-infective-recovered-susceptible (SIRS) model has the form

Ṡ = b − dS − g(I)S + δR,

İ = g(I)S − (d + µ)I,
Ṙ = µI − (d + δ)R,

(1.1)

where b > 0 and d > 0 represent the recruitment rate and the natural death rate of population respec-
tively, µ > 0 expresses the natural recovery rate of the infective individuals, and δ > 0 denotes the rate
at which recovered individuals lose immunity and return to the susceptible class. g(I)S is the incidence
rate, and g(I) measures the infection force of a disease.
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In most epidemic models, the incidence rate adopts the form of mass action with bilinear interac-
tions, namely g(I)S = kIS , where the constant k is the probability of transmission per contact and
g(I) = kI is unbounded when I ≥ 0. The model (1.1) with g(I) = kI usually has at most one endemic
equilibrium and has no period orbit. The disease will die out if the basic reproduction number is less
than one and will persist otherwise (see Hethcote [4]). Recently, different types of nonlinear incidence
rates have been applied in the study of epidemic diseases. For example, Liu et al. [5] proposed a
general nonlinear incidence rate defined by

g(I)S =
kI pS

1 + αIq , (1.2)

where kI p measures the infection force of the disease, 1/(1+αIq) describes the inhibition effect from the
behavioral change of the susceptible individuals when the number of infectious individuals increases
(see Capasso and Serio [6]). α ≥ 0 measures the psychological or inhibitory effect, p, k, q are real
constants with p > 0, k > 0, q ≥ 0. Note that g(I)S = kS I in (1.2) if α = 0 and p = 1.

For general p and q, Hu et al. in [1] studied the SIRS model (1.1) with (1.2). For simplicity, they
considered the reduced system İ =

kI p

1 + αIq

(
b
d
− I − R

)
− (d + µ)I,

Ṙ = µI − (d + δ)R.
(1.3)

By calculation, E(I∗,R∗) is a positive equilibrium of system (1.3) if and only if I∗ > 0 satisfies

1
K

I p − I p−1 +
α

σ
Iq +

1
σ

= 0, (1.4)

where
K =

b(d + δ)
d(d + δ + µ)

, σ =
kb

d(µ + d)
.

It was shown in [1] that the model (1.3) can have very rich and complex dynamical behaviors. More
precisely, system (1.3) can have multiple endemic equilibria and different types of bifurcations, in-
cluding Hopf and Bogdanov-Takens bifurcations. Note that the expressions of the positive equilibria
cannot be explicitly expressed for general p and q. They only gave the calculation formula of the first
Lyapunov constant of the unique positive equilibrium (if it is linearly a center), which can be found
in many books. In addition, the first Lyapunov constant is a very complex function of I∗. In other
words, the exact codimension of Hopf bifurcation remains unknown. Furthermore, the conditions for
determining the codimension of Bogdanov-Takens bifurcation are complex functions of I∗. Thus, they
can not determine the maximum codimension of Bogdanov-Takens bifurcation.

In the paper [3], the nonlinear function g(I) is classified into the three types: unbounded incidence
function with p > q, saturated incidence function with p = q, and nonmonotone incidence function
p < q. The results on the dynamics of system (1.1) can be found in [2, 3, 6–11] and reference therein.

For saturated incidence function with p = q, as early as 1991, Hethcote and van den Driessche [7]
showed that Hopf bifurcation can occur in system (1.1) with saturated incidence rate (1.2) (when
q = p). For similar reasons as in [1], they did not determine the exact codimension of Hopf bifurcation.
For the special case of q = p = 1, Gomes et al. [12] showed the existence of backward bifurcations,
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oscillations, and Bogdanov-Takens points in SIR and SIS models. For the special case of q = p = 2,
system (1.1) with (1.2) was analysed by Ruan and Wang in [2]. It was shown that it can undergo
Bogdanov-Takens bifurcation of codimension two and Hopf bifurcation of codimension one. Later,
Tang et al. in [3] calculated the higher order Lyapunov constants of the weak focus and proved that
the maximal order of the weak focus is two. They also obtained the coexistence of a limit cycle
and a homoclinic loop. Recently, Lu et al. [13] considered a more general model and proved that
the codimension of Bogdanov-Takens bifurcation is at most two. These results indicate that the case
q = p > 1 may be very complicated and deserves further investigation.

Although a lot of work on SIRS models have been obtained, there are still a lot of open problem
for it. In order to understand the dynamical behavior of system (1.1) and also motivated by the works
in [1], [2], [3], [7] and [13], we focused on the model (1.1) with a general saturated incidence rate
kI p/(1 + αI p), i.e., the case q = p in (1.2). Based on the results of [1], the model with p ≤ 1 has the
simple dynamics. Hence, we study the SIRS epidemic model (1.1) with q = p > 1 in this paper, i.e.,
the system defined as 

Ṡ = b − dS −
kS I p

1 + αI p + δR,

İ =
kS I p

1 + αI p − (d + µ)I,

Ṙ = µI − (d + δ)R,

(1.5)

where S (0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0 and k, α, b, d, µ, δ > 0, p > 1.
For general p > 1, to study the model (1.5), one of the difficulties is that the coordinate of positive

equilibria cannot be explicitly expressed for p. The second difficulty is that the model of this type
is often not a polynomial differential system or can not transformed into a polynomial differential
system. Finally, another difficulty is the lack of the methods to determine the order of a weak focus.
In this paper, we will provide some available methods and techniques to overcome these difficulties,
and perform qualitative and bifurcation analysis of system (1.5). We find that system (1.5) have the
complicated dynamical behaviors and bifurcation phenomena like the special case of p = 2. It is
shown that the codimension of Bogdanov-Takens bifurcation is at most two, which coincides with the
corresponding results for p = 2 in [13]. In addition, This also improves the results for p = 2 in [2]
and [3]. Moreover, our results on Hopf bifurcation coincides with the ones for p = 2 in [3] and [13],
and also can be seen as a complement of the results for p = 2 obtained in [1] and [2]. Furthermore,
there exist some critical values α = α0 (i.e., b = b0 or δ = δ0 ) and δ = δ2 such that: (i) if α > α0

(i.e., b < b0, or δ < δ0), the disease will die out; (ii) if α = α0 (i.e., b = b0, or δ = δ0) and δ ≤ δ2, the
disease will die out for almost all positive initial populations; (iii) if α = α0 (i.e., b = b0, or δ = δ0)
and δ > δ2, the disease will persist in the form of a positive coexistent steady state for some positive
initial populations; and (iv) if α < α0, the disease will persist in the form of multiple positive periodic
coexistent oscillations and coexistent steady states for some positive initial populations.

Though the SIRS epidemic models with nonlinear incidence rates have been extensively studied,
to the best of our knowledge, this is the first time that the exact codimension of Hopf bifurcation and
Bogdanov-Takens bifurcation have been determined in epidemic model for general parameter. It is
worth mentioning that the difficulties of study of system (1.5), as mentioned above, are not only a
common problem of other infectious disease models, but also a common problem of chemical molec-
ular reaction models, physical systems, etc. The methods and techniques developed in this paper can
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be applied to study most of the complex dynamical systems.
The rest of this paper is organized as follows. In Section 2, we give some preliminary results. Sec-

tion 3 is devoted to study saddle-node bifurcation, Bogdanov-Takens bifurcation and Hopf bifurcation,
and illustrate these results by simulation.

2. Preliminary results

In this section, we are going to provide some preliminary results, which are the basis for proving
the main results.

2.1. Model reduction

To simplify the system (1.5), we first give the following lemma.

Lemma 2.1. System (1.5) has the invariant manifold defined by S (t) + I(t) + R(t) = b/d, which is
attracting in the first quadrant.

Proof. Let N(t) = S (t) + I(t) + R(t). It follows from (1.5) that

Ṅ = b − dN.

Obviously, N(t) = b/d is a stable equilibrium of the above equation, which implies the conclusion.

It follows from Lemma 2.1 that the plane S (t) + I(t) + R(t) = b/d is a limit set of system (1.5) and
all important dynamical behaviors of (1.5) are on this plane. Thus, in the rest of this paper we consider
the following limit system in the first quadrantİ =

kI p

1 + αI p

(
b
d
− I − R

)
− (d + µ)I,

Ṙ = µI − (d + δ)R.
(2.1)

Denote

D =

{
(I,R) | I ≥ 0,R ≥ 0, I + R ≤

b
d

}
.

ObviouslyD is a positive invariant set of system (2.1).
Take the scalings

I =

(
d + δ

k

) 1
p

x, R =

(
d + δ

k

) 1
p

y, t =
1

d + δ
τ,

to get ẋ =
xp

1 + βxp (A − x − y) − mx,

ẏ = nx − y,
(2.2)

where we rewrite τ into t, and

β = α
d + δ

k
, A =

b
d

(
k

d + δ

) 1
p

, m =
d + µ

d + δ
, n =

µ

d + δ
, (2.3)
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which give
β > 0, A > 0, p > 1, m > n > 0. (2.4)

The positively invariant setD becomes

D = {(x, y) | x ≥ 0, y ≥ 0, x + y ≤ A} .

The dynamics generated by system (2.2) and (2.1) in D are topological equivalent. Hence we only
need to study system (2.2) in the regionD with parameters satisfying the conditions (2.4).

Remark 2.2. In the rest of this paper, we study system (2.2) inD with the assumption that the inequli-
ties in (2.4) hold.

2.2. Analysis of equilibria of system (2.2)

E0(0, 0) is always an equilibrium of system (2.2). The Jacobian matrix of system (2.2) at E0 is

J(E0) =

(
−m 0
n −1

)
,

which has two negative eigenvalues −m and −1. Thus, E0(0, 0) is a stable hyperbolic node.
Denote by E(x̄, ȳ) a positive equilibrium of system (2.2). Then

xp

1 + βxp (A − x − nx) − mx = 0, ȳ = nx̄

in the interval (0, A/(n + 1)), or

h(x̄) = 0, x̄ ≤
A

n + 1
, (2.5)

where
h(x) = (mβ + n + 1)xp − Axp−1 + m. (2.6)

A direct computation shows that

h′(x) = p(mβ + n + 1)(x − x∗)xp−2, (2.7)

where
0 < x∗ =

A(p − 1)
p(mβ + n + 1)

≤
A

n + 1
. (2.8)

It is obvious that h′(x) has a unique positive root at x = x∗. Therefore, h(x) has no positive zero if
h(x∗) > 0, or has a unique positive zero at x = x∗ if h(x∗) = 0, or has two positive zeros at x = x1, x2

with 0 < x1 < x∗ < x2 if h(x∗) < 0. Notice that h(A/(n + 1)) > 0, which means x2 < A/(n + 1). By
calculation, h(x∗) < 0 is equivalent to A > A∗, i.e., β < β∗, or n < n∗, where

A∗ = pm
1
p

(
mβ + n + 1

p − 1

)1− 1
p

,

β∗ =
1
m

[
p − 1

p
A

p
p−1 (mp)−

1
p−1 − n − 1

]
,

n∗ =
p − 1

p
A

p
p−1 (mp)−

1
p−1 − mβ − 1.

(2.9)
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Theorem 2.3. Let x∗, A∗, β∗ and n∗ are given by (2.8) and (2.9). System (2.2) always has a disease-free
equilibrium E0(0, 0). Moreover, for system (2.2),

(I) if A < A∗ (i.e., β > β∗, or n > n∗), then there is no positive equilibrium;
(II) if A = A∗ (i.e., β = β∗ or n = n∗), then there is a unique positive equilibrium at E∗(x∗, y∗);

(III) if A > A∗ (i.e., β < β∗, or n < n∗), then there are two positive equilibria at E1(x1, y1) and E2(x2, y2),
where 0 < x1 < x∗ < x2 < 2x∗.

Notice that E0(0, 0) is a stable node. According to the index theory, since D is positively invariant,
system (2.2) has no limit cycle inD if it has no equilibrium. By Theorem 2.3(I), we have the following
result.

Theorem 2.4. The disease-free equilibrium E0(0, 0) of system (2.2) is globally asymptotical stable in
D if A < A∗ (i.e., β > β∗, or n > n∗).

By Theorem 2.4, we get the following corollary.

Corollary 2.5. The disease-free equilibrium (b/d, 0, 0) of system (1.5) is globally asymptotical stable
in the interior R3

+ and the disease will die out if A < A∗ (i.e., β > β∗, or n > n∗).

Remark 2.6. From (2.3) and Theorem 2.4, we obtain that A < A∗ is equivalent to α > α0 or b < b0 or
δ < δ0 by calculation, where

α0 =
k

d + µ

(p − 1)
(

b
pd

) p
p−1

(
k

d + µ

) 1
p−1

−
µ

d + δ
− 1

 ,
b0 =

dp
k

(p − 1)
1
p−1(d + µ)

1
p

[
α(d + µ) +

µk
d + δ

+ k
]1− 1

p

,

δ0 = µ

(p − 1)
(

b
pd

) p
p−1

(
k

d + µ

) 1
p−1

−
α(d + µ)

k
− 1


−1

.

Therefore, the disease will die out if either α > α0, or b < b0, or δ < δ0.

Remark 2.7. When p = 2, it follows from Remark 2.6 that

α0 =
b2k2(d + δ) − 4d2(d + µ)(d + µ + δ)

4d2(d + µ)2(d + δ)
,

which coincides with the α0 in Remark 2.1 of [13] when β = 0.

Next consider the positive equilibrium E(x̄, ȳ) of system (2.2), whose coordinate satisfies

ȳ = nx̄, x̄p−1(A − x̄ − ȳ) = m (1 + βx̄p) .

The Jacobian matrix of system (2.2) at E(x̄, ȳ) is

J(E) =

(
J11 J12

n −1

)
,
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where

J11 =

[
pm (1 + βx̄p) − x̄p] − mβpx̄p

1 + βx̄p − m =
m(p − 1) − (mβ + 1)x̄p

1 + βx̄p ,

J12 = −
x̄p

1 + βx̄p ,

which gives

Det (J(E)) =
p(mβ + n + 1)(x̄ − x∗)x̄p−1

1 + βx̄p =
x̄h′(x̄)

1 + βx̄p ,

and its sign is determined by h′(x̄), where h′(x) is defined in (2.7).
The trace of J(E) is

Tr (J(E)) =
1

1 + βx̄p S T (x̄),

where
S T (x̄) = (mp − m − 1) − (mβ + β + 1)x̄p. (2.10)

To study the positive equilibria, let

p1 = 1 +
1
m
, n1 =

mpβ + 1
mp − m − 1

, (p , p1).

Note that p > p1 if and only if n1 > 0.

Theorem 2.8. If A = A∗, then system (2.2) has a unique equilibrium at E∗(x∗, y∗) inD.

(I) If (i) 1 < p ≤ p1, or (ii) p > p1, n , n1, then E∗ is a saddle-node.
(II) If p > p1 and n = n1, then E∗ is a cusp of codimension two.

Proof. If A = A∗, it follows from Theorem 2.3 that system (2.2) has a unique positive equilibrium
E∗(x∗, y∗), where x∗ is given by (2.8) satisfying h(x∗) = h′(x∗) = 0, and y∗ = nx∗. This implies
Det (J(E∗)) = 0. It follows from h(x∗) = 0 and (2.8) that

xp
∗ =

m
Ax−1
∗ − (mβ + n + 1)

=
m(p − 1)

mβ + n + 1
. (2.11)

Substituting it into S T (x∗), we get

S T (x∗) =
(mp − m − 1)n − mpβ − 1

mβ + n + 1
.

If mp − m − 1 ≤ 0, i.e., 1 < p ≤ p1, then S T (x∗) < 0. Assume that mp − m − 1 > 0, i.e., p > p1, then
S T (x∗) < 0 if and only if n < n1, S T (x∗) > 0 if and only if n > n1 and S T (x∗) = 0 if and only if n = n1,
respectively.

(I) Suppose either 1 < p ≤ p1, or p > p1 and n , n1. Then Tr (J(E∗)) , 0 and Det (J(E∗)) = 0,
which imply that 0 and J11(E∗) − 1 = Tr(J(E∗)) , 0 are eigenvalues of the matrix J(E∗). Taking the
changes X = x − x∗, Y = y − y∗ and X̄ = −nX + J11(E∗)Y, Ȳ = −nX + Y, τ = Tr (J(E∗)) t, system (2.3)
is written as (for simplicity, still denote X̄, Ȳ , τ by x, y, t, respectively)ẋ =η1x2 + η2xy + η3x3 + η4x2y + o(| (x, y)3 |) = P2(x, y),

ẏ =y + η1x2 + η2xy + η3x3 + η4x2y + o(| (x, y)3 |) = y + Q2(x, y),
(2.12)
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where η2, η3, η4 are real numbers, and it follows from (2.11) that

η1 =
p2xp

∗ (mβ + n + 1)
{
β[βmp(p + 1) + (n + 1)(3p − 1)]xp

∗ + (p − 1)(−βmp + n + 1)
}

2n (Tr (J(E∗)))3 A(p − 1)2(1 + βxp
∗ )2

,

=
p2xp

∗ (mβ + n + 1)(βmp + n + 1)2

2n (Tr (J(E∗)))3 A(p − 1)(1 + βxp
∗ )2
, 0.

Solving the equation y + Q2(x, y) = 0, we get that y(x) = −η1x2 + · · · , which implies that P2(x, y(x)) =

η1x2 + · · · . By Theorem 7.1 of Chapter 2 in [14], the origin is a saddle-node of system (2.12). This
proves the assertion (I).

(II) Suppose that A = A∗ and n = n1. Let X = x − x∗, Y = y − y∗. Then system (2.2) takes the form
( rewrite X, Y into x, y, respectively)

ẋ = x + a1y + a2x2 + a3xy + o(| (x, y)2 |),

ẏ = n1x − y,
(2.13)

where

a1 = −
1
n1
, a2 =

(2 + m − mp)p(n1 − β)
1
p +1

2n1
, a3 =

−p(n1 − β)
1
p +1

n2
1

.

Let X = x, Y = x − y/n1 to get (rewrite X, Y into x, y, respectively)

ẋ = y + (a2 + a3n1)x2 − a3n1xy + o(| (x, y)2 |),

ẏ = (a2 + a3n1)x2 − a3n1xy + o(| (x, y)2 |).
(2.14)

Taking the change z = y + (a2 + a3n1)x2 − a3n1xy + o(| (x, y)2 |), t = (1 + a3n1x)τ, system (2.14) is
reduced to the following system in the small neighborhood of (0, 0)

dx
dτ

= z(1 + a3n1x),

dz
dτ

= (1 + a3n1x)((a2 + a3n1)x2 + (2a2 + a3n1)xz − a3n1z2 + o(| (x, y)2 |).

Let Y = z(1 + a3n1x) and rewrite Y as y. We have

ẋ = y,

ẏ = (a2 + a3n1)x2 + (2a2 + a3n1)xy + o(| (x, y)2 |),
(2.15)

where

a2 + a3n1 =
m(1 − p)p(n1 − β)1+ 1

p

2n1
, 2a2 + a3n1 = −

p(1 + β + mβ)(n1 − β)
1
p

n1
.

Since n1 − β = (1 + β + mβ)/(mp − m − 1) , 0, we have a2 + a3n1 , 0 and 2a2 + a3n1 , 0. By the
results in [15], E∗(x∗, y∗) is a cusp of codimension two.

Theorem 2.9. If A > A∗ (i.e., β < β∗ or n < n∗), system (2.2) has two positive equilibria E1(x1, y1) and
E2(x2, y2), where 0 < x1 < x∗ < x2 < 2x∗. Moreover, E1 is always a saddle point, and E2 is

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10710–10730.



10718

(I) a stable focus (or node) if S T (x2) < 0; or
(II) a weak focus (or a center) if S T (x2) = 0; or

(III) an unstable focus (or node) if S T (x2) > 0, where S T is given in (2.10).

Proof. The first half of the theorem holds by Theorem 2.3. To determine the types of E1 and E2,
consider the signs of h′(x1), h′(x2), S T (x1) and S T (x2), where h′(x), S T (x) are given in (2.7) and (2.10),
respectively. Noting 0 < x1 < x∗ < x2 (cf. Theorem 2.3), we have h′(x1) < 0 < h′(x2). This follows
that the Jacobian determinants at E1 and E2 satisfy Det (J(E1)) < 0 and Det (J(E2)) > 0, respectively.
Hence we obtain the types of E1 and E2.

3. Bifurcation analysis

We are going to investigate various bifurcations in system (2.2) in this section.

3.1. Saddle-node bifurcation

From Theorem 2.8 , we know that the surface

S N = {(A,m, n, β) | A = A∗, either 1 < p ≤ p1, or p > p1, n , n1}

is the saddle-node bifurcation surface under the assumption (2.4). On one side of this surface there is
no equilibrium and on the other side there are two equilibria.

3.2. Bogdanov-Takens bifurcation

In this subsection, we study the Bogdanov-Takens bifurcation of codimension two for system (2.2).

Theorem 3.1. If A = A∗, n = n1, p > p1 and conditions (2.4) hold, then the unique positive equilibrium
E∗(x∗, y∗) is a cusp of codimension two (i.e., Bogdanov-Takens singularity), and system (2.2) under-
goes Bogdanov-Takens bifurcation of codimension two in a small neighborhood of E∗(x∗, y∗) when we
choose A and n as bifurcation parameters. Hence, there are different parameter values such that system
(2.2) has an unstable limit cycle or an unstable homoclinic loop.

Proof. Consider the system

ẋ =
xp

1 + βxp (A∗ + λ1 − x − y) − mx,

ẏ =(n1 + λ2)x − y,
(3.1)

in a small neighborhood of the equilibrium E∗(x∗, y∗), where λ1 and λ2 are small parameters. To
convenience, in below the functions P1(x, y, λ1, λ2) and Qi(x, y, λ1, λ2), i = 1, 2, 3, 4, are C∞ functions
at least of third order with respect to (x, y), whose coefficients depend smoothly on λ1 and λ2,.

Taking the changes X = x− x∗, Y = y− y∗, system (3.1) is rewritten as (we still denote X, Y by x, y,
respectively)

ẋ = b1 + b2x −
1
n

y + b3x2 + b4xy + P1(x, y, λ1, λ2),

ẏ = b5 + b6x − y,
(3.2)
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where

b1 =
λ1

n1
, b2 = 1 − a3λ1, b3 = a2 −

p(n1 − β)1+ 2
p (2pβ + n1 − pn1)

2n3
1

λ1, b4 = a3,

b5 = (n1 − β)−
1
pλ2, b6 = n1 + λ2.

Let
X = x, Y = b1 + b2x −

1
n1

y + b3x2 + b4xy + P1(x, y, λ1, λ2).

System (3.2) takes the form (we rewrite X, Y as x, y, respectively)

ẋ = y,

ẏ = c1 + c2x + c3y + c4x2 + c5xy + c6y2 + Q1(x, y, λ1, λ2),
(3.3)

with

c1 =
1
n1
λ1 −

(n1 − β)−
1
p

n1
λ2 + O(|λ1, λ2|

3), c2 = −a3λ1 + (a3(n1 − β)−
1
p −

1
n1

)λ2 + O(|λ1, λ2|
2),

c3 = O(|λ1, λ2|
2), c4 = a2 + a3n1 + O(|λ1, λ2|),

c5 = 2a2 + a3n1 + O(|λ1, λ2|), c6 = −a3n1 + O(|λ1, λ2|).

Next let dt = (1 − c6x)dτ. System (3.3) takes the form (still denote τ by t)

ẋ = y(1 − c6x),

ẏ = (1 − c6x)(c1 + c2x + c3y + c4x2 + c5xy + c6y2 + Q1(x, y, λ1, λ2).
(3.4)

Let X = x, Y = y(1 − c6x), and rewrite X, Y as x, y respectively. System (3.4) becomes

ẋ = y,

ẏ = d1 + d2x + d3y + d4x2 + d5xy + Q2(x, y, λ1, λ2),
(3.5)

where
d1 = c1, d2 = c2 − 2c1c6, d3 = c3, d4 = c4 − 2c2c6 + c1c6

2, d5 = c5 − c3c6.

If λ1 = λ2 = 0, then by direct computation and the proof of Theorem 2.8, we get

d1 = 0, d2 = 0, d3 = 0, d4 = a2 + a3n1 , 0, d5 = 2a2 + a3n1 , 0.

Further, let X = x + d2/(2d4), Y = y. System (3.5) becomes (we rewrite X, Y as x, y, respectively)

ẋ = y,

ẏ = e1 + e2y + e3x2 + e4xy + Q3(x, y, λ1, λ2),
(3.6)

where

e1 = d1 −
d2

2

4d4
, e2 = d3 −

d2d5

2d4
, e3 = d4, e4 = d5.
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Finally, taking the changes

X =
e2

4

e3
x, Y =

e3
4

e2
3

y, τ =
e3

e4
t,

one obtains (we rewrite X, Y as x, y, respectively)

ẋ = y,

ẏ = µ1 + µ2y + x2 + xy + Q4(x, y, λ1, λ2),
(3.7)

where

µ1 =
e1e4

4

e3
3

, µ2 =
e2e4

e3
.

We can express µ1 and µ2 in terms of λ1 and λ2 as follows:

µ1 = s1λ1 + s2λ2 + o(| (λ1, λ2) |),

µ2 = t1λ1 + t2λ2 + o(| (λ1, λ2) |),
(3.8)

where

s1 = −
8p(n1 − β)1+ 1

p (mp − m − 1)4

m3(p − 1)3n2
1

, s2 =
8p(n1 − β)(mp − m − 1)4

m3(p − 1)3n2
1

,

t1 =
2p(mp − m − 1)2(n1 − β)1+ 1

p

m2(p − 1)2n2
1

, t2 = −
2(mp − m − 1)(p + pβ − 1)

m2(p − 1)2n2
1

.

Since ∣∣∣∣∣∂(µ1, µ2)
∂(λ1, λ2)

∣∣∣∣∣
(λ1,λ2)=(0,0)

= −
16p(mp − m − 1)5(1 + β + mβ)(n1 − β)

1
p

m5(p − 1)5n3
1

, 0,

for p > p1 (i.e., mp − m − 1 > 0), n1 − β , 0, p > 1, m > n1 > 0, β > 0, the change (3.8) is a home-
omorphism in a small neighborhood of (0, 0). According to the results in [16–18], system (3.7) (i.e.,
(3.1) or (2.2) ) undergoes Bogdanov-Takens bifurcation if (λ1, λ2) changes in a small neighborhood of
the origin.

By the results in [19], we obtain the local representation of the bifurcation curves as follows:
(i) The saddle-node bifurcation curve is

S N ={(µ1, µ2)|µ1 = 0, µ2 , 0} = {(λ1, λ2)| −
8p(n1 − β)1+ 1

p (mp − m − 1)4

m3(p − 1)3n2
1

λ1

+
8p(n1 − β)(mp − m − 1)4

m3(p − 1)3n2
1

λ2 + o(| (λ1, λ2) |) = 0, µ2 , 0}.
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(ii) The Hopf bifurcation curve is

H ={(µ1, µ2)|µ2 =
√
−µ1, µ1 < 0} = {(λ1, λ2)| −

8p(mp − m − 1)4(n1 − β)1+ 1
p

m3(p − 1)3n2
1

λ1

+
8(mp − m − 1)3 p(1 + β + mβ)

m3(p − 1)3n2
1

λ2 + o(|λ1, λ2|) = 0, µ1 < 0}.

(iii) The homoclinic bifurcation curve is

HL ={(µ1, µ2)|µ2 =
5
7
√
−µ1, µ1 < 0} = {(λ1, λ2)| −

200p(mp − m − 1)4(n1 − β)1+ 1
p

49m3(p − 1)3n2
1

λ1

+
200(mp − m − 1)3 p(1 + β + mβ)

49m3(p − 1)3n2
1

λ2 + o(|λ1, λ2|) = 0, µ1 < 0}.

The Bogdanov-Takens bifurcation diagram and the phase portraits of system (3.1) are shown in
Figure 1. The small neighborhood of the origin in the parameter (λ1, λ2)-plane are divided into four
regions (see Figure 1(a)) by bifurcation curves H, HL, and S N.

(a) The unique positive equilibrium is a cusp of codimension two if (λ1, λ2) = (0, 0).

(b) There are no equilibria if (λ1, λ2) ∈ I (see Figure 1(b)), implying the diseases die out.

(c) The unique positive equilibrium E∗ is a saddle-node if (λ1, λ2) lies on S N.

(d) If the parameters λ1, λ2 cross S N into the region II, the saddle-node bifurcation occurs, and there
are two positive equilibria E1 and E2 which are saddle and unstable focus respectively (see Figure 1(c)).

(e) If the parameters λ1, λ2 cross H into III, an unstable limit cycle will appear through the subcritical
Hopf bifurcation around E2 (see Figure 1(d)). The focus E2 is stable in region III, whereas it is an
unstable weak focus of order one on H.

(f) If (λ1, λ2) ∈ HL, an unstable homoclinic orbit will occur through the homoclinic bifurcation
around E1 (see Figure 1(e)).

(g) If the parameters λ1, λ2 cross the HL curve into IV, the relative location of one stable and one
unstable manifold of the saddle E1 will be reversed (compare Figure 1(c),(f)).
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Figure 1. The bifurcation diagram and the phase portraits of system (3.1) for m = 2, p = 2,
n = 1.4, β = 0.1 and A = 4.5607017. (a) Bifurcation diagram; (b) No positive equilibria
for (λ1, λ2) = (0.1, 0.13) ∈ I; (c) An unstable focus for (λ1, λ2) = (0.1, 0.1145) ∈ II; (d) An
unstable limit cycle for (λ1, λ2) = (0.1, 0.11345) ∈ III ; (e) An unstable homoclinic loop for
(λ1, λ2) = (0.1, 0.11289) on HL; (f) A stable focus for (λ1, λ2) = (0.1, 0.096) ∈ IV . E′1 and
E′2 are the equilibria of system (3.1), near E1 and E2, respectively.

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10710–10730.



10723

3.3. Hopf bifurcation

We study Hopf bifurcation around the equilibrium E2(x2, y2) in this subsection. Let

a∗ =
mp − mβ − m − 1

β + 1
.

To simplify the computation, we follow our previous techniques in [20, 21] and take the changes

x̄ =
x
x2
, ȳ =

y
y2
, τ = xp

2 t, (3.9)

under which system (2.2) is reduced to (we rewrite τ as t)
dx̄
dt

=
x̄p

1 + βxp
2 x̄p

(
A
x2
− x̄ − nȳ

)
−

m
xp

2

x,

dȳ
dt

=
1
xp

2

(x̄ − ȳ) .
(3.10)

Setting

Ā =
A
x2
, β̄ = βxp

2 , m̄ =
m
xp

2

, a =
1
xp

2

, (3.11)

and dropping the bars, system (3.10) becomes
dx
dt

=
xp

1 + βxp
(A − x − ny) − mx,

dy
dt

= a (x − y) .
(3.12)

Since the equilibrium E2(x2, y2) of system (2.2) becomes the equilibrium (1, 1) of system (3.12), we
have

A = mβ + m + n + 1. (3.13)

Note that the positive equilibrium E(x, y) of system (3.12) satisfies that y = x and h(x) = 0, where h(x)
is given by (2.6). From the discussion of h(x) in Section 2, we have h′(1) > 0 since 1 is the bigger
positive root of h(x). By (2.7) and (3.13), one gets

h′(1) = mβ + m + n + 1 − pm.

Thus, we have the following condition

mβ + m + n + 1 > pm. (3.14)

This yields that the condition (2.4) becomes

β, A,m, n, a > 0, (p − β − 1)m − 1 < n <
m
a
. (3.15)

Next letting dt = (1 + βxp)dτ and substituting (3.13) into (3.12), one obtains (still denote τ by t)
dx
dt

= xp (mβ + m + n + 1 − x − ny) − m(1 + βxp)x,

dy
dt

= a (x − y) (1 + βxp),
(3.16)
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where β, A,m, n, a satisfy (3.15). Since 1 + βxp > 0 holds in R+
2 = {(x, y)|x ≥ 0, y ≥ 0}, the topological

structure of (3.16) is the same as (3.12).
In what follows we study the Hopf bifurcation around Ẽ2(1, 1) in system (3.16), instead of E2(x2, y2)

in system (2.2). We always assume that the conditions in (3.15) hold for (3.16).

Theorem 3.2. System (3.16) has an equilibrium at Ẽ2(1, 1). Moreover, it is

(I) an unstable node or focus if a < a∗;
(II) a stable node or focus if a > a∗;

(III) a weak focus or a center if a = a∗.

Proof. The Jacobian matrix of system (3.16) at Ẽ2(1, 1) is

J(Ẽ2) =

(
mp − mβ − m − 1 −n

a(1 + β) −a(1 + β)

)
.

Then

Det(J(Ẽ2)) = a(1 + β)(mβ + m + n + 1 − pm) = a(1 + β)h′(1).

By(3.14), Det(J(Ẽ2)) > 0. The trace of J(Ẽ2) is

Tr(J(Ẽ2)) = mp − mβ − m − 1 − a(β + 1).

By conditions (3.15), we have that Tr(J(Ẽ2)) = 0 (> 0 or < 0) if a = a∗ (a < a∗ or a > a∗). This
completes the proof.

Next we study Hopf bifurcation around Ẽ2(1, 1) in system (3.16). By Theorem 3.2, if Hopf bifurca-
tion occurs, then

a = a∗, β > 0, m > 0, 1 + β +
1
m
< p < 1 + β +

1 + n
m

, 0 < n <
m
a∗
. (3.17)

Firstly the following inequality shows the transversality condition holds:

d
da

tr(J(Ẽ2))
∣∣∣
a=a∗

= −(β + 1) < 0.

We are going to calculate the first Lyapunov constant for Ẽ2(1, 1). Take the changes X = x − 1,
Y = x − 1, and let a = a∗. System (3.16) becomes (we rewrite X,Y as x, y, respectively)

ẋ =a10x + a01y + a20x2 + a11xy + a30x3 + a21x2y + a40x4 + a31x3y + a50x5 + a41x4y

+ O(|x, y|6),
ẏ =b10x + b01y + b20x2 + b11xy + b30x3 + b21x2y + b40x4 + b31x3y + b50x5 + b41x4y

+ O(|x, y|6),

(3.18)

where

a10 = mp − mβ − m − 1, a01 = −n, a20 =
p(mp − 2mβ − m − 2)

2
, a11 = −pn,
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a30 =
p(p − 1)(mp − 3mβ − 2m − 3)

6
, a21 = −

p(p − 1)n
2

,

a40 =
p(p − 1)(p − 2)(mp − 4mβ − 3m − 4)

24
, a31 = −

p(p − 1)(p − 2)n
6

,

a50 =
p(p − 1)(p − 2)(p − 3)(mp − 5mβ − 4m − 5)

120
, a41 = −

p(p − 1)(p − 2)(p − 3)n
24

,

b10 = a10, b01 = −a10, b20 =
pβa10

1 + β
, b11 = −b20, b30 =

1
2

(p − 1)b20, b21 = −b30,

b40 =
1
6

(p − 1)(p − 2)b20, b31 = −b40, b50 =
1

24
(p − 1)(p − 2)(p − 3)b20, b41 = −b50.

By the formula in [14], one gets the first Lyapunov coefficient with the aid of Maple-17 as follows

V3 =
pn2(mpβ + 1)(c0 + c1m)

8(mβ + m + n + 1 − pm)(1 + β)2 , (3.19)

where

c0 = (n + 1)[(β − 1)p + β + 1], c1 = 2p2 + (β + 1)(β − 3)p + (β + 1)2.

The program for the computation of Lyapunov coefficient is available for noncommercial purpose via
email to: gnsydyf@126.com.

By conditions in (3.17), the sign of V3 is the same as that of

ϕ1 = c0 + c1m. (3.20)

Now we investigate whether there exist some parameters such that ϕ1 = 0 (i.e., V3 = 0) under the
conditions (3.17).

Lemma 3.3. If conditions in (3.17) hold, then we have c1 > 0.

Proof. We will show that c1(p) > 0 for all p > 1. A straightforward calculation shows that

c′1(p) = 4p + (β + 1)(β − 3), c′′1 (p) = 4.

Then c′1(p) > c′1(1) = (β − 1)2 ≥ 0 for all p > 1. This implies that c1(p) is strictly monotonically
increasing on (1,+∞). Note that

c1(1) = 2 + (β + 1)(β − 3) + (β + 1)2 = 2β2 > 0.

Thus, c1(p) > c1(1) > 0 for all p > 1. This completes the proof.

Denote

m̃ = −
c0

c1
, p∗ =

1 + β

1 − β
.

Note that c0 > 0 if and only if either (i) β ≥ 1, or (ii) β < 1 and p ≤ p∗. Furthermore, we have c0 = 0
if and only if β < 1 and p = p∗, c0 < 0 if and only if β < 1 and p > p∗, respectively. By the above
discussions, one obtains the following theorem.
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Theorem 3.4. If conditions in (3.17) hold, then the following statements hold.

(I) If either (i) β ≥ 1, or (ii) β < 1 and p ≤ p∗ (i.e., ϕ1 > 0 or V3 > 0), then Ẽ2(1, 1) is an unstable
weak focus of order one.

(II) If β < 1 and p > p∗ and

(II.1) m > m̃ (i.e., ϕ1 > 0 or V3 > 0), then Ẽ2(1, 1) is an unstable weak focus of order one;
(II.2) m < m̃ (i.e., ϕ1 < 0 or V3 < 0), then Ẽ2(1, 1) is a stable weak focus of order one;
(II.3) m = m̃ (i.e., ϕ1 = 0 or V3 = 0), then Ẽ2(1, 1) is a center or a weak focus of order at least two.
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Figure 2. (a) A stable limit cycle bifurcated by the supercritical Hopf bifurcation of the
system (3.16) with p = 2, β = 0.2, m = 1.4, n = 10 and a = 0.099. (b) An unstable limit
cycle bifurcated by the subcritical Hopf bifurcation of the system (3.16) with p = 2, β = 0.2,
m = 2, n = 3 and a = 0.53.

Define two hypersurfaces

H1 : a = a∗, ϕ1 > 0, and H2 : a = a∗, ϕ1 < 0.

By Theorems 3.2 and 3.4, we know that Ẽ2(1, 1) is an unstable focus (resp. a stable focus) when
ϕ1 > 0 and a ≤ a∗ (resp. ϕ1 < 0 and a ≥ a∗), while Ẽ2(1, 1) is a stable focus (resp. an unstable
focus) as ϕ1 > 0 and a > a∗ (resp. ϕ1 < 0 and a < a∗). Hence, if parameters pass from one side of
the surface H1 (resp. H2) to the other side, system (3.16) can undergo a subcritical (resp.supercritical)
Hopf bifurcation. An unstable limit cycle (resp. a stable limit cycle) can bifurcate from the small
neighborhood of Ẽ2(1, 1). The hypersurface H1 (resp. H2) is called the subcritical (resp. supercritical)
Hopf bifurcation hypersurface of system.

In Figure 2, we give the limit cycles arising from Hopf bifurcation around Ẽ2(1, 1) of system (3.16).
In Figure 2(a), we fix p = 2, β = 0.2, m = 1.4 and n = 10, and get a = 0.1 from tr(J(Ẽ2)) = 0, then
we obtain V3 = −1.62280702. Next perturb a such that a decreases to 0.099. So Ẽ2(1, 1) becomes an

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10710–10730.



10727

unstable hyperbolic focus, yielding to a stable limit cycle to appear around Ẽ2(1, 1). In Figure 2(b), we
fix p = 2, β = 0.2, m = 2 and n = 3. Using the same arguments as above, we obtain an unstable limit
cycle around Ẽ2(1, 1).

3.4. Degenerate Hopf bifurcation of codimension two

By (II.3) of Theorem 3.4, V3 = 0 if m = m∗. Using the formal series method in [14] and Maple-17,
one gets the second Lyapunov constant

V5 = −
pn4(p + 1)(2p − 1)(p − β − 1)ϕ2

288(1 + β)2c1
, (3.21)

where c1 is given by (3.19) and

ϕ2 = pβ(pβ − p + β + 1)n + (1 + β)(p − 1)(pβ − 2p + β + 1).

Lemma 3.5. If (3.17) and the condition (II.3) of Theorem 3.4 hold, then V5 > 0.

Proof. From the condition (II.3) of Theorem 3.4, we have β < 1 and pβ − p + β + 1 > 0. This follows
that pβ − 2p + β + 1 < 0. Thus, ϕ2 < 0, which implies V5 > 0.

Theorem 3.6. The equilibrium E2(x2, y2) of system (2.2) is an unstable weak focus of order at most two.
System (2.2) can undergo degenerate Hopf bifurcation of codimension two in the small neibourhoof of
E2(x2, y2).

Proof. Since the equilibrium Ẽ2(1, 1) in system (3.16) corresponds to E2(x2, y2) in system (2.2), we are
going to focus on Ẽ2(1, 1) of system (3.16) in this proof, instead of E2 in system (2.2).

For convenience, denote V1 = tr(J(Ẽ2)). By Theorem 3.4 and Lemma 3.5, for any given parameters
(p1, β1, n1, a1,m1) satisfying (3.17) and the condition (III.3) of Theorem 3.4, i.e.,

a1 = a∗,m1 = m̃, β1 > 0, 1 + β1 +
1
m̃
< p1 < 1 + β1 +

1 + n1

m̃
, 0 < n1 <

m̃
a∗
,

we have V1(p1, β1, a1,m1) = V3(p1, β1, n1,m1) = 0 and V5(p1, β1, n1) > 0. Therefore, Ẽ2(1, 1) in system
(3.16) is a weak focus of order at most 2.

Now we show that two limit cycles can bifurcate from Ẽ2(1, 1), which means that the Hopf cyclicity
for the equilibrium Ẽ2(1, 1) is 2. We first perturb m near m1 such that V3V5 < 0 and adjust a such that
V1 = 0. Then the first limit cycle appears. The second limit cycle is obtained by perturbing a such
that V1V3 < 0, see Figure 3. Therefore, system (3.16) can undergo degenerate Hopf bifurcation of
codimension two near Ẽ2(1, 1).
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Figure 3. Coexistence of two limit cycles around the focus Ẽ2(1, 1) bifurcated by the degen-
erate Hopf bifurcation of codimension two of system (3.16) with p = 2.4, β = 0.2, n = 5.8,
m = 0.995 and a = 1/6 − 0.002.

In the end of this section we give a numerical simulation in Figure 3 to show the coexistence of two
limit cycles. Choosing p = 2.4, β = 0.2 and m = 1, we deduce that n = 5.8, a = 1/6 by V3 = 0 and
tr(J(Ẽ2)) = 0, respectively, and V5 = 115.8683452, i.e., Ẽ2(1, 1) is an unstable weak focus of order
two. Then we perturb m and a such that m and a decreases to 1 − 0.005 and 1/6 − 0.002, respectively.
An unstable limit cycle and a stable limit cycle occur around Ẽ2(1, 1), see Figure 3.
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