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Abstract: Saudi Arabia was among the countries that attempted to manage the COVID-19 pandemic
by developing strategies to control the epidemic. Lockdown, social distancing and random diagnostic
tests are among these strategies. In this study, we formulated a mathematical model to investigate the
impact of employing random diagnostic tests to detect asymptomatic COVID-19 patients. The model
has been examined qualitatively and numerically. Two equilibrium points were obtained: the COVID-
19 free equilibrium and the COVID-19 endemic equilibrium. The local and global asymptotic stability
of the equilibrium points depends on the control reproduction number Rc. The model was validated
by employing the Saudi Ministry of Health COVID-19 dashboard data. Numerical simulations were
conducted to substantiate the qualitative results. Further, sensitivity analysis was performed on Rc to
scrutinize the significant parameters for combating COVID-19. Finally, different scenarios for imple-
menting random diagnostic tests were explored numerically along with the control strategies applied
in Saudi Arabia.
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1. Introduction

Coronavirus disease 2019, COVID-19, is a new infectious disease that emerged at the end of 2019.
Within three months, became a global epidemic [1]. As of December 26, 2021, the number of con-
firmed cases around the world had reached 278,714,484 [2]. The epidemic affected various aspects of
life, including the economic, health and social aspects.

Several researchers have discussed the disease dynamics and characteristics of COVID-19 patients
in different regions of the world. Individuals infected with COVID-19 may or may not have symptoms
that range from mild to severe. Individuals who experience a fever, dry cough, fatigue and headaches as
mild symptoms or acute respiratory distress syndrome as a severe symptom [3] are called symptomatic
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individuals. Individuals who do not show any signs and their infection is confirmed through real-time
reverse transcriptase-polymerase chain reaction (RT-PCR), i.e., a type of diagnostic test for COVID-
19, are called asymptomatic individuals [4]. These patients can also transmit the disease to other
individuals [5, 6].

The presence of asymptomatic patients has led researchers to focus on studying this class of patients.
Some research has described the clinical characteristics of asymptomatic and symptomatic patients of
COVID-19 [7, 8]. Kim et al. [7] determined the spread of asymptomatic cases in South Korea. Of 213
infected individuals with COVID-19, 41 (19.2%) were asymptomatic. They concluded that as much as
one-fifth of infected individuals with COVID-19 are asymptomatic. Therefore, strict social distancing
must be applied to prevent the transmission of the disease through these individuals. AlJishi et al.
[8] described the spread of COVID-19 at the epicenter of its spread in Saudi Arabia, in the eastern
region of the kingdom. They concluded that most COVID-19 cases were asymptomatic and returned
from travel. In addition, Alsofayan et al. [9] emphasized the need to give attention to asymptomatic
individuals and health care workers because they contribute to the spread of the disease.

Several studies have proposed a mathematical model that considers asymptomatic and symptomatic
infected individuals [10–18]. A mathematical model was proposed in [10] to discover the effect of
asymptomatic infected people and estimate the number of beds needed in hospitals and intensive care
units in Saudi Arabia. They concluded that asymptomatic people are more effective in increasing
the number of infections than symptomatic people. However, the increase in COVID-19 testing and
social distancing reduces the infection by asymptomatic individuals. Sun and Weng [15] established
a mathematical model to discuss the effect of asymptomatic and imported patients in the Jiangsu and
Anhui provinces in China. Their analysis found that asymptomatic patients are more dangerous than
imported patients. Moreover, asymptomatic patients can rapidly cause an outbreak of the disease
without strict preventive measures.

Serhani and Labbardi [16] analyzed two mathematical models to study the spread of COVID-19 in
Morocco without and with containment of the pandemic. They found that the free equilibrium point
is asymptotically stable when the containment coefficient exceeds the basic reproduction number R0.
Furthermore, increasing the containment rate decreases the number of asymptomatic and symptomatic
individuals. Huo et al. [17] studied the spread of COVID-19 and the effect of non-pharmaceutical
interventions in Wuhan. They estimated that 20% of patients remain asymptomatic during infection,
and that their ability to transmit is around 70% of the symptomatic patients’ ability.

Moreover, in [13, 14], the authors analyzed mathematical models for COVID-19 in Saudi Arabia.
The models assumed the transmission of infection is due to the environment and occurs through contact
with exposed, asymptomatic and symptomatic individuals. Alzahrani et al. [13] dealt with a fractional
model. Alqarni et al. [14] used a classical epidemic model and concluded that the cases in Saudi
Arabia would decrease if contact with exposed individuals and the environment decreases.

With the increasing number of infections and the contribution of asymptomatic individuals to the
transmission of the disease, there have been efforts in various countries to constrain the epidemic.
Several precautions have been imposed to keep susceptible individuals away from infected individuals.
Studies have demonstrated the effectiveness of preventive measures, such as lockdowns [19–21], social
distancing [22–24], quarantining [12, 16] and isolation [25, 26]. Nevertheless, we need measures
to detect asymptomatic patients, particularly at the beginning of the disease and before treatment is
available, to limit its spread and reduce the number of deaths, an example of such a measure is diagnosis
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testing [27].
Al-Salti et al. [18] developed a mathematical model to analyze the optimal control strategies, es-

pecially diagnosis and quarantining, for the spread of COVID-19 in the Sultanate of Oman. It was
concluded that diagnosis and quarantining are the most important strategies for controlling the dis-
ease. Similarly, in [11], Ahmed et al. confirmed the effectiveness of the diagnosis in reducing the
infected cases. In addition, Khan et al. [28] studied the effectiveness of Saudi Arabia’s experience
in producing the diagnosis of COVID-19. From April 14 to mid-July of 2020, the Saudi’s diagnos-
tic program for COVID-19 was conducted in three stages [28, 29]. The first stage was performing
random diagnostic tests on people in crowded places such as workers’ housing, which included 807
locations from April 16 to May 5, 2020 [30]. The second stage was conducting diagnostic tests in
specific health centers through an application (Mawid) from May 3 to May 19, 2020. The third stage
was conducting rapid tests at medical centers through drive-in vehicles, which started on May 29, 2020
[31, 32]. Also, the government of Saudi Arabia has continued to expand the diagnostic procedures for
COVID-19 [33–36].

This paper describe the study of the impact of detecting asymptomatic COVID-19 patients through
random diagnostic testing in Saudi Arabia. Random diagnosis means diagnosing COVID-19 for sus-
pected individuals at random, whether they show symptoms or not. In other words, officials in the
Ministry of Health go to homes and diagnose individuals in places where there are factors that con-
tribute to the spread of the disease, such as overpopulation.

We extend our model in [37] to include the asymptomatic COVID-19 patients and analyze the im-
pact of random diagnostic tests. Therefore, this model contains three control measures that have been
implemented in Saudi Arabia: lockdown, social distancing and random diagnostic testing. The anal-
ysis of this model attempts to determine if it is possible to rely on random diagnosis while reducing
or eliminating lockdown and social distancing. This paper is organized as follows. In Section 2, we
formulate the model and prove that it is well posed. In Section 3, we demonstrate the qualitative analy-
sis, including the equilibrium points, basic and control reproduction numbers, and the local and global
stability of the equilibrium points. Section 4 presents the numerical analysis, which includes the fitting
of the model to COVID-19 cases in Saudi Arabia and the estimation of the model parameters. Fur-
thermore, we describe numerical experiments that were conducted to confirm the qualitative analysis
results and investigate the sensitivity analysis for the control reproduction number. Finally, we analyze
different scenarios for control strategies, random diagnostic testing, lockdown and social distancing.

2. Mathematical model

The model was formulated to examine the effect of the random diagnostic tests for asymptomatic
patients on the spread of COVID-19 in Saudi Arabia. The Saudi population, N, comprises five com-
partments: susceptible individuals, S , exposed individuals, E, asymptomatic infected individuals (with
no symptoms), Ia, symptomatic infected individuals (with symptoms), Is, and recovered individuals,
R. Individuals move from the susceptible compartment to the exposed compartment after interacting
with infected individuals, symptomatic or asymptomatic, at the transmission rates β1 and β2, respec-
tively. The control measures, i.e., the lockdown (ρ(t) ∈ (0, 1]) and the social distancing (S D(t) ∈ [0, 1)),
impact the transmission rates β1 and β2. However, the random diagnostic testing for asymptomatic indi-
viduals affects only β2. The function ε(t) ∈ [0, 1] represents the effectiveness of the random diagnostic
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testing for Ia. If ε = 1, then the random diagnostic test was administered to all asymptomatic individ-
uals in the community. Conversely, no random diagnostic test is performed for Ia when ε = 0. After
completing the incubation period, 1/γ, individuals in the exposed compartment move to the asymp-
tomatic compartment with the probability θ, where θ ∈ (0, 1); and the rest of the individuals (1 − θ)
move to the symptomatic compartment. We assume that individuals in the exposed compartment may
or may not show symptoms by the end of the incubation period. Also, individuals in the asymptomatic
compartment can transmit the disease more than individuals in the symptomatic compartment, that is,
β2 > β1. Moreover, individuals die due to COVID-19 only from the symptomatic compartment at a
rate d. Infected individuals, asymptomatic and symptomatic, recover and gain immunity to COVID-19
at a rate δ. The natural death rate for each compartment is µ, and η is the natural birth rate.

Figure 1. Flowchart of the model.

Figure 1 displays the model’s dynamics. We express the model mathematically with the following
nonlinear system of ordinary differential equations:

dS
dt
= η − ρ(1 − S D)[β1S Is + β2(1 − ε)S Ia] − µS ,

dE
dt
= ρ(1 − S D)[β1S Is + β2(1 − ε)S Ia] − (γ + µ)E,

dIa

dt
= γθE − (δ + µ)Ia,

dIs

dt
= γ(1 − θ)E − (δ + d + µ)Is,

dR
dt
= δIa + δIs − µR,

(2.1)

where all parameters belong to the interval (0, 1] and N = S (t) + E(t) + Ia(t) + Is(t) + R(t).
We start the analysis by proving that the state variables of Model (2.1) are epidemiologically mean-

ingful, that is, non-negative and bounded.

Theorem 1
If (S , E, Ia, Is,R) ∈ R5

≥0, then the set

Ω =

{
(S , E, Ia, Is,R) ∈ R5

≥0 : 0 ≤ N ≤
η

µ

}
is positively invariant for Model (2.1).
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Proof.
Let (S (0), E(0), Ia(0), Is(0),R(0)) ∈ Ω. We have

dS
dt

∣∣∣∣
S=0
= η > 0,

dE
dt

∣∣∣∣
E=0
= ρ(1 − S D)[β1S Is + β2(1 − ε)S Ia] ≥ 0, for all S , Ia, Is ≥ 0,

dIa

dt

∣∣∣∣
Ia=0
= γθE ≥ 0, for all E ≥ 0,

dIs

dt

∣∣∣∣
Is=0
= γ(1 − θ)E ≥ 0, for all E ≥ 0,

dR
dt

∣∣∣∣
R=0
= δIa + δIs ≥ 0, for all Ia, Is ≥ 0.

Thus, all non-negative solutions remain non-negative for t ≥ 0. By adding all of the equations of Model
(2.1), we get

dN
dt
= η − dIs − µN ≤ η − µN.

Multiplying the above inequality by the integrating factor (eµr), we have

d
dr

[
eµrN(r)

]
≤ ηeµr.

By integrating both sides over the interval [0, t], we obtain

N(t) ≤
η

µ
+

[
N(0) −

η

µ

]
e−µt.

Hence,
lim
t→∞

S up
[
N(t)

]
≤
η

µ
.

Therefore, for t ≥ 0, the solutions of Model (2.1) are non-negative and bounded. Thus, Ω is positively
invariant. □

3. Qualitative analysis

We qualitatively investigate Model (2.1). First, we determine the equilibrium points and the ex-
pression of the control reproduction number. Second, we examine the local and global stability of the
equilibrium points.

3.1. Equilibrium points and control reproduction number

The equilibrium points of the model are determined by setting the rates for Model (2.1) to zero:

η − ρ(1 − S D)[β1S Is + β2(1 − ε)S Ia] − µS = 0,
ρ(1 − S D)[β1S Is + β2(1 − ε)S Ia] − (γ + µ)E = 0,

γθE − (δ + µ)Ia = 0, (3.1)
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γ(1 − θ)E − (δ + d + µ)Is = 0,
δIa + δIs − µR = 0.

System (3.1) produces two steady-state solutions: the COVID-19 free equilibrium point, P0 =

(η/µ, 0, 0, 0, 0), which always exists, and the COVID-19 endemic equilibrium point, P1 =(
S 1, E1, Ia1 , Is1 ,R1

)
, where

S 1 =
η

µRc
, Ia1 =

ηγθ

(γ + µ)(δ + µ)

(
1 −

1
Rc

)
,

E1 =
η

(γ + µ)

(
1 −

1
Rc

)
, Is1 =

ηγ(1 − θ)
(γ + µ)(δ + d + µ)

(
1 −

1
Rc

)
,

R1 =
ηγ(δθd + δ2 + δµ)

µ(γ + µ)(δ + µ)(δ + d + µ)

(
1 −

1
Rc

)
.

Here,

Rc =
ρ(1 − S D)β1(1 − θ)γη
µ(γ + µ)(δ + d + µ)

+
ρ(1 − S D)β2θ(1 − ε)γη
µ(γ + µ)(δ + µ)

.

The endemic equilibrium P1 exists only if Rc > 1.

Control reproduction number. We use the next-generation matrix method [38] to find the control
reproduction number. Let the infected compartments O = (E, Ia, Is)T ; then, the exposed class, asymp-
tomatic class and symptomatic class equations of Model (2.1) can be rewritten as Ȯ = F (O) − V (O),
where

F =


ρ(1 − S D)[β1S Is + β2(1 − ε)S Ia]

0
0


and

V =


(γ + µ)E

−γθE + (δ + µ)Ia

−γ(1 − θ)E + (δ + d + µ)Is

 .
Evaluating the Jacobian matrix of F and V at the COVID-19 free equilibrium point P0, we get,
respectively,

F =


0
ρ(1 − S D)β2(1 − ε)η

µ

ρ(1 − S D)β1η

µ
0 0 0
0 0 0


and

V =


γ + µ 0 0
−γθ δ + µ 0

−γ(1 − θ) 0 δ + d + µ

 .
The next-generation matrix is

FV−1 =


K1
ρ(1 − S D)β2(1 − ε)η

µ(δ + µ)

ρ(1 − S D)β1η

µ(δ + d + µ)
0 0 0
0 0 0

 ,
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where
K1 =

ρ(1 − S D)β1(1 − θ)γη
µ(γ + µ)(δ + d + µ)

+
ρ(1 − S D)β2θ(1 − ε)γη
µ(γ + µ)(δ + µ)

.

Hence, the control reproduction number is the spectral radius of the matrix FV−1, that is,

Rc =
ρ(1 − S D)β1(1 − θ)γη
µ(γ + µ)(δ + d + µ)

+
ρ(1 − S D)β2θ(1 − ε)γη
µ(γ + µ)(δ + µ)

. (3.2)

Also, we can rewrite Expression (3.2) as follows: Rc = ρ(1− S D) (Rs + (1 − ε)Ra), where Rs gives the
secondary cases of COVID-19 by one symptomatic individuals, and Ra gives the secondary cases of
COVID-19 by one asymptomatic individuals.

The terms in Rc are explained further as follows. First, for Rs, the term that expresses the incidence
of new infections by symptomatic individuals is β1S Is. Thus, the number of secondary cases by one
symptomatic individual (Is = 1) in a population containing only susceptible individuals is β1S 0, where
S 0 = η/µ. Moreover, 1/(δ + d + µ) represents the average time spent by one symptomatic individual
in the symptomatic compartment. Also, γ(1 − θ)/(γ + µ) is the proportion of newly symptomatic
individuals that survived the incubation period. Second, for Ra, the term that represents the incidence
of new infections by asymptomatic individuals is β2S Ia. Therefore, the number of secondary cases by
one asymptomatic individual (Ia = 1) in a population containing only susceptible individuals is β2S 0,
where S 0 = η/µ. Further, 1/(δ+µ) expresses the average time spent by one asymptomatic individual in
the asymptomatic compartment. Again, γθ/(γ+µ) is the proportion of newly asymptomatic individuals
that survived the incubation period.

3.2. Local stability analysis

We employ the linearization method [39] to examine the local stability of the equilibrium points of
Model (2.1).

Theorem 2
The COVID-19 free equilibrium point P0 is locally asymptotically stable if Rc < 1.

Proof.
The Jacobian matrix of Model (2.1) evaluated at P0 yields

J(P0) =


−µ 0 −ρ(1 − S D)β2(1 − ε)S 0 −ρ(1 − S D)β1S 0 0
0 −(γ + µ) ρ(1 − S D)β2(1 − ε)S 0 ρ(1 − S D)β1S 0 0
0 γθ −(δ + µ) 0 0
0 γ(1 − θ) 0 −(δ + d + µ) 0
0 0 δ δ −µ


.

By solving the characteristic equation | J(P0) − λI |= 0, we obtain the eigenvalues λ1,2 = −µ, and λ3,4,5

are roots of the following equation:

λ3 + a1λ
2 + a2λ + a3 = 0,

where

a1 = γ + d + 2δ + 3µ,
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a2 = (δ + µ)(δ + d + µ) + (γ + µ)(δ + µ)[1 − ρ(1 − S D)(1 − ε)Ra]
+ (γ + µ)(δ + d + µ)[1 − ρ(1 − S D)Rs],

a3 = (γ + µ)(δ + µ)(δ + d + µ)(1 − Rc).

We use the Routh-Hurwitz criteria [39] to determine the signs of the remaining eigenvalues λ3,4,5. They
are negative if a1 > 0, a3 > 0 and a1a2 − a3 > 0. Clearly, a1 > 0. Also, a3 > 0 if Rc < 1. Moreover,

a1a2 − a3 = 2(γ + µ)(δ + µ)(δ + d + µ) + (δ + µ)2(δ + d + µ) + (δ + µ)(δ + d + µ)2

+
(
(γ + µ)2(δ + d + µ) + (γ + µ)(δ + d + µ)2

)
[1 − ρ(1 − S D)Rs]

+
(
(γ + µ)2(δ + µ) + (γ + µ)(δ + µ)2

)
[1 − ρ(1 − S D)(1 − ε)Ra].

If Rc = ρ(1 − S D)[Rs + (1 − ε)Ra] < 1, then ρ(1 − S D)Rs < 1 and ρ(1 − S D)(1 − ε)Ra < 1. Thus,
a1a2 − a3 > 0. Hence, P0 is locally asymptotically stable if Rc < 1. □

Theorem 3
The COVID-19 endemic equilibrium point P1 is locally asymptotically stable if Rc > 1.

Proof.
The Jacobian matrix of Model (2.1) evaluated at P1 yields

J(P1) =


J11 0 −ρ(1 − S D)β2(1 − ε)S 1 −ρ(1 − S D)β1S 1 0
J21 −(γ + µ) ρ(1 − S D)β2(1 − ε)S 1 ρ(1 − S D)β1S 1 0
0 γθ −(δ + µ) 0 0
0 γ(1 − θ) 0 −(δ + d + µ) 0
0 0 δ δ −µ


,

where

J11 = −ρ(1 − S D)[β1Is1 + β2(1 − ε)Ia1] − µ,
J21 = ρ(1 − S D)[β1Is1 + β2(1 − ε)Ia1].

The characteristic equation, | J(P1) − λI |= 0, has the eigenvalues λ1 = −µ, and λ2,3,4,5 are the roots of
the following equation:

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0, (3.3)

where

a1 = µRc + γ + d + 2δ + 3µ,
a2 = µ(δ + d + µ)Rc + µ(γ + δ + 2µ)Rc + (δ + µ)(δ + d + µ)

+ (γ + µ)(δ + µ)
[
1 −
ρ(1 − S D)(1 − ε)Ra

Rc

]
+ (γ + µ)(δ + d + µ)

[
1 −
ρ(1 − S D)Rs

Rc

]
,

a3 = µ(γ + µ)(δ + µ)(δ + d + µ)Rc + µ(δ + µ)(δ + d + µ)Rc

+ ηγρ(1 − S D)[β1(1 − θ) + β2θ(1 − ε)]
(
1 −

1
Rc

)
,
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a4 = µ(γ + µ)(δ + µ)(δ + d + µ)Rc.

Clearly, a1 > 0 and a4 > 0. Also, since Rc = ρ(1−S D)(Rs+ (1−ε)Ra) > 1, then a2 > 0 and a3 > 0. By
the Descartes’ rule [40], the characteristic equation given by Eq (3.3) has no positive roots since there
is no change in the signs of the coefficients. When substituting for (λ) by (−λ) in Eq (3.3), the signs of
the coefficients change as follows:

λ4 − a1λ
3 + a2λ

2 − a3λ + a4 = 0.

The number of sign changes is four; therefore, the characteristic Eq (3.3) has four negative eigenvalues.
Hence, P1 is locally asymptotically stable if Rc > 1. □

3.3. Global stability analysis

We utilize the Lyapunov and Krasovkii–LaSalle stability theorems [41–43] to examine the global
stability of the equilibrium points of Model (2.1). Also, we use the function W(u) = u− 1− ln u, which
is a positive function, in the following proofs.

Theorem 4
The COVID-19 free equilibrium point P0 is globally asymptotically stable if Rc < 1.

Proof.
Define the Lyapunov function L0(S , E, Ia, Is,R) as follows:

L0 = S 0W(S/S 0) + E +
(γ + µ)
γ

[
ρ(1 − S D)(1 − ε)

θ
Ra +

(δ + d + µ)
(θd + δ + µ)

(1 − Rc)
]
Ia

+
(γ + µ)
γ

[
ρ(1 − S D)

(1 − θ)
Rs +

(δ + µ)
(θd + δ + µ)

(1 − Rc)
]
Is

+
(γ + µ)(δ + µ)(δ + d + µ)

γδ(θd + δ + µ)
(1 − Rc)R.

If Rc < 1, then L0 is positive-definite since L0(S , E, Ia, Is,R) > 0 for all (S , E, Ia, Is,R) ∈ Ω and
L0(P0) = 0. Computing the time derivative of L0 along the solutions of Model (2.1), we get

dL0

dt
=

(
1 −

S 0

S

)
[η − ρ(1 − S D)[β1S Is + β2(1 − ε)S Ia] − µS ]

+ [ρ(1 − S D)[β1S Is + β2(1 − ε)S Ia] − (γ + µ)E]

+
(γ + µ)
γ

[
ρ(1 − S D)(1 − ε)

θ
Ra +

(δ + d + µ)
(θd + δ + µ)

(1 − Rc)
]
[γθE − (δ + µ)Ia]

+
(γ + µ)
γ

[
ρ(1 − S D)

(1 − θ)
Rs +

(δ + µ)
(θd + δ + µ)

(1 − Rc)
]
[γ(1 − θ)E − (δ + d + µ)Is]

+
(γ + µ)(δ + µ)(δ + d + µ)

γδ(θd + δ + µ)
(1 − Rc)[δIa + δIs − µR].
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Since S 0 = η/µ, then η = µS 0. Collecting terms, we get

dL0

dt
=

(
1 −

S 0

S

)
(µS 0 − µS ) −

µ(γ + µ)(δ + µ)(δ + d + µ)
γδ(θd + δ + µ)

(1 − Rc)R

−

[
(γ + µ) − θ(γ + µ)

(
ρ(1 − S D)(1 − ε)

θ
Ra +

(δ + d + µ)
(θd + δ + µ)

(1 − Rc)
)

− (1 − θ)(γ + µ)
(
ρ(1 − S D)

(1 − θ)
Rs +

(δ + µ)
(θd + δ + µ)

(1 − Rc)
)]

E

−

[
(γ + µ)(δ + µ)

γ

(
ρ(1 − S D)(1 − ε)

θ
Ra +

(δ + d + µ)
(θd + δ + µ)

(1 − Rc)
)

− ρ(1 − S D)β2(1 − ε)S 0 −
(γ + µ)(δ + µ)(δ + d + µ)

γ(θd + δ + µ)
(1 − Rc)

]
Ia

−

[
(γ + µ)(δ + d + µ)

γ

(
ρ(1 − S D)

(1 − θ)
Rs +

(δ + µ)
(θd + δ + µ)

(1 − Rc)
)

− ρ(1 − S D)β1S 0 −
(γ + µ)(δ + µ)(δ + d + µ)

γ(θd + δ + µ)
(1 − Rc)

]
Is.

After simplifications by using expressions of Ra and Rs, we obtain

dL0

dt
= −
µ(S − S 0)2

S
−
µ(γ + µ)(δ + µ)(δ + d + µ)

γδ(θd + δ + µ)
(1 − Rc)R.

If Rc < 1, then dL0/dt ≤ 0 for all S ,R > 0. Also, dL0/dt = 0 when S (t) = S 0, and R(t) = 0. Applying
the Krasovkii-Lasalle theorem, we suppose that

I0 =

{
(S (t), E(t), Ia(t), Is(t),R(t)) :

dL0

dt
= 0

}
,

and M0 is the largest invariant subset of I0, where all elements in it satisfy S (t) = S 0 and R(t) = 0.
Then, from the fifth equation of Model (2.1), we get

dR
dt
= 0 = δ(Ia + Is) =⇒ Ia(t) = 0 and Is(t) = 0.

Substituting this into the third equation of Model (2.1), we have

dIa

dt
= 0 = γθE =⇒ E(t) = 0.

Hence, M0 =
{
P0

}
; thus, the equilibrium P0 is globally asymptotically stable if Rc < 1. □

Theorem 5
The COVID-19 endemic equilibrium point P1 is globally asymptotically stable if Rc > 1.

Proof.
Define the Lyapunov function L1(S , E, Ia, Is,R) as follows:

L1 = S 1W(S/S 1) + E1W(E/E1) +
ηρ(1 − S D)β2(1 − ε)
µ(δ + µ)Rc

Ia1W(I/Ia1)

+
ηρ(1 − S D)β1

µ(δ + d + µ)Rc
Is1W(I/Is1).
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Clearly, L1(S , E, Ia, Is,R) is a positive semi-definite function since L1 ≥ 0 for all (S , E, Ia, Is,R) ∈ Ω
and L1(S 1, E1, Ia1 , Is1 ,R1) = 0. The time derivative of L1 along the solutions of Model (2.1) is given by

dL1

dt
=

(
1 −

S 1

S

) [
η − ρ(1 − S D)[β1S Is + β2(1 − ε)S Ia] − µS

]
+

(
1 −

E1

E

) [
ρ(1 − S D)[β1S Is + β2(1 − ε)S Ia] − (γ + µ)E

]
+

(
1 −

Ia1

Ia

)
ηρ(1 − S D)β2(1 − ε)
µ(δ + µ)Rc

[
γθE − (δ + µ)Ia

]
+

(
1 −

Is1

Is

)
ηρ(1 − S D)β1

µ(δ + d + µ)Rc

[
γ(1 − θ)E − (δ + d + µ)Is

]
.

From the equilibrium described by Eq (3.1) for P1, we have

η = ρ(1 − S D)[β1S 1Is1 + β2(1 − ε)S 1Ia1] + µS 1,

(γ + µ)E1 = ρ(1 − S D)[β1S 1Is1 + β2(1 − ε)S 1Ia1].

Then,

dL1

dt
= −
µ(S − S 1)2

S
+ 3ρ(1 − S D)[β1S 1Is1 + β2(1 − ε)S 1Ia1]

+
[γ(1 − θ)ρ(1 − S D)β1S 1

(δ + d + µ)
+
γθρ(1 − S D)β2(1 − ε)S 1

(δ + µ)
− (γ + µ)

]
E

− ρ(1 − S D)β1S 1Is1

S 1

S
− ρ(1 − S D)β2(1 − ε)S 1Ia1

S 1

S
(3.4)

− ρ(1 − S D)β1S Is
S 1Is1 E1

S 1Is1 E
− ρ(1 − S D)β2(1 − ε)S Ia

S 1Ia1 E1

S 1Ia1 E

−
γθρ(1 − S D)β2(1 − ε)S 1

(δ + µ)
E1Ia1 EIa1

E1Ia1 Ia
−
γ(1 − θ)ρ(1 − S D)β1S 1

(δ + d + µ)
E1Is1 EIs1

E1Is1 Is
.

Now, we substitute for S 1 = η/µRc in the coefficient of E in Eq (3.4) and use the formula of Rc.
Moreover, we substitute the values of E1, 1/Ia1 and 1/Is1 in the following terms:(

γθE1

(δ + µ)Ia1

)
ρ(1 − S D)β2(1 − ε)S 1Ia1

EIa1

E1Ia
= ρ(1 − S D)β2(1 − ε)S 1Ia1

EIa1

E1Ia
,(

γ(1 − θ)E1

(δ + d + µ)Is1

)
ρ(1 − S D)β1S 1Is1

EIs1

E1Is
= ρ(1 − S D)β1S 1Is1

EIs1

E1Is
.

After simplifying Eq (3.4), we obtain

dL1

dt
= −
µ(S − S 1)2

S
+ ρ(1 − S D)β2(1 − ε)S 1Ia1

(
3 −

S 1

S
−

S IaE1

S 1Ia1 E
−

EIa1

E1Ia

)
+ ρ(1 − S D)β1S 1Is1

(
3 −

S 1

S
−

S IsE1

S 1Is1 E
−

EIs1

E1Is

)
.
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Since the arithmetic mean is greater than or equal to the geometric mean, we have

3 −
S 1

S
−

S IaE1

S 1Ia1 E
−

EIa1

E1Ia
≤ 0,

3 −
S 1

S
−

S IsE1

S 1Is1 E
−

EIs1

E1Is
≤ 0.

Hence, dL1/dt ≤ 0 for all S , E, Ia, Is > 0 and dL1/dt = 0 when S (t) = S 1, E(t) = E1, Ia(t) = Ia1 and
Is(t) = Is1 . Applying the Krasovkii-Lasalle theorem, we consider the set

I1 =

{
(S (t), E(t), Ia(t), Is(t),R(t)) :

dL1

dt
= 0

}
,

and M1 is the largest invariant subset of I1, where all elements satisfy S (t) = S 1, E(t) = E1, Ia(t) = Ia1

and Is(t) = Is1; it remains to be proven that R(t) = R1. Assume that (S (t), E(t), Ia(t), Is(t),R(t)) is a
solution to Model (2.1) belonging to the set M1; thus, we have

dR
dt
= δ(Ia1 + Is1) − µR. (3.5)

Solving Eq (3.5) by using the integrating factor method, we obtain

R(t) = R1 + (R(0) − R1)e−µt. (3.6)

Note that, δ(Ia1+ Is1)/µ = R1. From Eq (3.6), as time increases, R(t) approaches R1, that is, lim
t→∞

R(t) −→

R1. The solution (S (t), E(t), Ia(t), Is(t),R(t)) will stay at the set M1; hence, M1 =
{
P1

}
. Therefore, the

equilibrium P1 is globally asymptotically stable if Rc > 1. □

4. Numerical analysis

Here, we fit Model (2.1) to the actual data of COVID-19 cases in Saudi Arabia and estimate the
parameters that make it compatible with reality. Also, we perform numerical experiments to demon-
strate the agreement with the qualitative results. Furthermore, we discuss the sensitivity analysis for the
control reproduction number, Rc. Finally, we examine different scenarios for the control measures in
the model, namely, lockdown, social distancing and the detection of asymptomatic individuals through
random diagnostic testing.

Table 1. Descriptions and values of the parameters of Model (2.1).
Parameter Description Value Unit Source
N Population of Saudi Arabia 34218169 Individual [44]
η Birth rate 1250 Individual × Day−1 [37]
µ Natural death rate 3.6529 × 10−5 Day−1 [37]
β1 Transmission rate by Is 0.0554 × 10−7 (Individual × Day)−1 Estimated
β2 Transmission rate by Ia 1.0596 × 10−7 (Individual × Day)−1 Estimated
γ Incubation rate 1/6 Day−1 [9]
θ Probability of becoming Ia 0.54 − Estimated
ε Effectiveness of random diagnostic testing for Ia 0 − Estimated
δ Recovery rate 3.2772 × 10−1 Day−1 [37]
d Death rate due to COVID-19 2.3724 × 10−1 Day−1 [37]
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Table 2. Estimated values for ρ and S D in Model (2.1), with corresponding values ofRc [37].

Phase Time ρ S D Rc

Phase 1 t1 = [12, 22] 0.85 0.15 4.4267
Phase 2 t2 = [22, 25] 0.75 0.30 3.2166

t3 = [25, 28] 0.65 0.45 2.1904
t4 = [28, 36] 0.60 0.55 1.6543

Phase 3 t5 = [36, 56] 0.55 0.55 1.5164
Phase 4 t6 = [56, 67] 0.55 0.60 1.3479

t7 = [67, 83] 0.55 0.69 1.0446
Phase 5 t8 = [83, 88] 0.40 0.80 0.4902
Phase 6 t9 = [88, 92] 0.65 0.70 1.1947

t10 = [92, 112] 0.75 0.70 1.3785
Phase 7 t11 = [112, 120] 0.80 0.76 1.1764

t12 = [120, 130] 0.80 0.80 0.9803
t13 = [130, 144] 0.80 0.82 0.8823
t14 = [144, 169] 0.85 0.83 0.8853
t15 = [169, 179] 0.85 0.82 0.9374
t16 = [179, 193] 0.90 0.82 0.9926
t17 = [193, 204] 0.95 0.85 0.8731
t18 = [204, 207] 0.95 0.88 0.6985
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Figure 2. Fitting Model (2.1) for COVID-19 infected cases in Saudi Arabia from March 12,
2020 to September 23, 2020.
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4.1. Model fitting and estimation of parameters

We estimate the parameters of Model (2.1) to validate it with the actual data of infected cases in
Saudi Arabia. The data of the infected cases were taken from the COVID-19 dashboard of the Saudi
Ministry of Health for the period of March 12, 2020 to September 23, 2020 [45].

The health care workers in the Saudi Ministry of Health have applied random diagnostic testing for
asymptomatic and symptomatic individuals in dense regions. The random diagnostic tests were done
between April 16, 2020 and May 3, 2020, for 42, 765 individuals. The number of confirmed cases
(positive test result) was 7,776 (18.18%) individuals [28]. We estimate that the effectiveness of the
random diagnostic tests for the asymptomatic individuals, ε, to be approximately zero because of the
insufficient information about the number of asymptomatic individuals at the time of implementing
these tests. Also, the period for these tests is small compared to the time interval of the data considered
from the COVID-19 dashboard.

The parameters η, µ, δ, d, ρ, S D and γ have the same values as in [37]. As for the values of the
remaining parameters of Model (2.1), we estimate the value of β2 to be greater than β1 based on the
model’s assumption, which is similar to [10, 13].

The parameter values are presented in Table 1. In Table 2, we display the values of lockdown, ρ,
social distancing, S D and the corresponding values of Rc. These values were taken from [37], where
Saudi Arabia implemented different levels of lockdown and social distancing, which led to dividing
the study period into seven phases.

Model (2.1) was solved numerically by using the MATLAB package ode45 with the following
initial values: S (0) = 34813577, E(0) = 150, Ia(0) = 95, IS (0) = 44 and R(0) = 1. We assumed
that each initial value for the exposed class was set to be greater than those for the infected classes,
as in [13, 23, 46]. Also, each initial value of the asymptomatic class was set to be greater than those
for the symptomatic class based on the results in [8], which demonstrated that most of the COVID-19
cases at the beginning of the spread in Saudi Arabia were asymptomatic and returning from imported.
Moreover, Li et al. [6] estimated the undocumented infections (infections with mild, limited or loss
of symptoms) to be 86% of the infections in China before imposing travel restrictions on January 23,
2020.

The results of fitting Model (2.1) to the COVID-19 infected cases (symptomatic and asymptomatic)
in Saudi Arabia from March 12, 2020 to September 23, 2020 are illustrated in Figure 2, which shows
good agreement.

4.2. Numerical experiments

This section demonstrates the agreement between the numerical solution of Model (2.1) and the
qualitative analysis offered in Section 3. We conducted numerical simulations of the model for different
initial values in the feasible set to show the tendency of the solution curves to equilibrium P0 if Rc < 1,
or equilibrium P1 if Rc > 1. We start by rescaling the state variables in the model. Let

S = S̄ N, E = ĒN, Ia = ĪaN, Is = ĪsN, R = R̄N. (4.1)
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Thus, the rescaled Model (2.1) becomes (omitting the bar onward)

dS
dt
= µ − ρ(1 − S D)

η

µ

[
β1S Is + β2(1 − ε)S Ia

]
− µS ,

dE
dt
= ρ(1 − S D)

η

µ

[
β1S Is + β2(1 − ε)S Ia

]
− (γ + µ)E,

dIa

dt
= γθE − (δ + µ)Ia,

dIs

dt
= γ(1 − θ)E − (δ + d + µ)Is,

dR
dt
= δ(Ia + Is) − µR.

(4.2)

Note that we have used the limiting value of N in the model, i.e., N = η/µ. We numerically solve
Model (4.2) with parameters chosen to satisfy the stability conditions from the qualitative analysis,
and with the following different initial conditions belonging to the set Ω:
IC1: S (0) = 0.8, E(0) = 0.1, Ia(0) = 0.05, Is(0) = 0.02, R(0) = 0.01,
IC2: S (0) = 0.6, E(0) = 0.2, Ia(0) = 0.08, Is(0) = 0.07, R(0) = 0.05,
IC3: S (0) = 0.4, E(0) = 0.3, Ia(0) = 0.12, Is(0) = 0.10, R(0) = 0.07.

Experiment 1: Assume the parameters of Model (4.2) have the following values: µ = 0.04, η =
1250, γ = 0.167, β1 = 0.0554 × 10−4, β2 = 1.0596 × 10−4, ε = 0.50, θ = 0.54, δ = 3.2772 ×
10−1, d = 2.3724 × 10−1, ρ = 0.5 and S D = 0.75. Thus, Rc = 0.2585 < 1. Therefore,
we expect that the solution curves of the model tend to the COVID-19 free equilibrium point
P0 = (1, 0, 0, 0, 0). This is evident in Figure 3; the numerical solutions eventually reach P0 for
different initial conditions. Accordingly, COVID-19 diminishes.

Experiment 2: In this experiment, we increased the value of the parameter ρ and decreased the values
of the parameters ε and S D. That is to say, the control measures of lockdown, social distancing
and random diagnostic testing were reduced. We assume the parameters of Model (4.2) have
the following values: µ = 0.04, η = 1250, γ = 0.167, β1 = 0.0554 × 10−4, β2 = 1.0596 ×
10−4, ε = 0.10, θ = 0.54, δ = 3.2772 × 10−1, d = 2.3724 × 10−1, ρ = 0.85 and S D = 0.30.
Therefore, Rc = 2.1639 > 1. Hence, we expect the solution curves of the model to approach the
COVID-19 endemic equilibrium point P1. This is displayed in Figure 4; the numerical solutions
eventually tend to P1 = (0.4621, 0.1039, 0.0255, 0.0132, 0.3170) for different initial conditions.
Consequently, COVID-19 remains at a specific percentage.

We conclude from the experiments that the numerical results are in good agreement with the qualitative
results.

4.3. Sensitivity analysis for Rc

To determine which parameters influence the spread of COVID-19, we investigated the sensitivity
of the control reproduction number for Model (2.1). The sensitivity of Rc was examined analytically
by evaluating ∂Rc/∂P, where P = (η, β1, β2, ρ, S D, γ, δ, ε, θ, d, µ). The changes in Rc corresponding to
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Figure 3. Numerical solution of Model (2.1) with different initial conditions for Rc < 1.
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Figure 4. Numerical solution of Model (2.1) with different initial conditions for Rc > 1.
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one parameter at a time are as follows:

∂Rc

∂ε
=
−ηγρ(1 − S D)β2θ

µ(γ + µ)(δ + µ)
< 0,

∂Rc

∂β1
=
ηγρ(1 − S D)(1 − θ)
µ(γ + µ)(δ + d + µ)

> 0,

∂Rc

∂β2
=
ηγρ(1 − S D)θ(1 − ε)
µ(γ + µ)(δ + µ)

> 0,

∂Rc

∂d
=
−ηγρ(1 − S D)β1(1 − θ)
µ(γ + µ)(δ + d + µ)2 < 0,

∂Rc

∂S D
=
−ηγρ

µ(γ + µ)

[
β1(1 − θ)

(δ + d + µ)
+
β2θ(1 − ε)

(δ + µ)

]
< 0,

∂Rc

∂η
=
γρ(1 − S D)
µ(γ + µ)

[
β1(1 − θ)

(δ + d + µ)
+
β2θ(1 − ε)

(δ + µ)

]
> 0,

∂Rc

∂γ
=
ηρ(1 − S D)

(γ + µ)2

[
β1(1 − θ)

(δ + d + µ)
+
β2θ(1 − ε)

(δ + µ)

]
> 0,

∂Rc

∂ρ
=
ηγ(1 − S D)
µ(γ + µ)

[
β1(1 − θ)

(δ + d + µ)
+
β2θ(1 − ε)

(δ + µ)

]
> 0,

∂Rc

∂δ
=
−ηγρ(1 − S D)
µ(γ + µ)

[
β1(1 − θ)

(δ + d + µ)2 +
β2θ(1 − ε)
(δ + µ)2

]
< 0,

∂Rc

∂θ
=
ηγρ(1 − S D)
µ(γ + µ)

[
β2(1 − ε)
(δ + µ)

−
β1

(δ + d + µ)

]
=
ηγρ(1 − S D)β2

µ(γ + µ)(δ + µ)
(1 − ω) > 0 when ω < 1 (< 0 when ω > 1),

∂Rc

∂µ
=
−ηγρ(1 − S D)(γ + 2µ)

µ2(γ + µ)2

[
β1(1 − θ)

(δ + d + µ)
+
β2θ(1 − ε)

(δ + µ)

]
−
ηγρ(1 − S D)
µ(γ + µ)

[
β1(1 − θ)

(δ + d + µ)2 +
β2θ(1 − ε)
(δ + µ)2

]
< 0,

(4.3)

where ω = ε + (β1(δ + µ)/β2(δ + d + µ)). From Eq (4.3), we see that an increase in ε, S D, δ, d or
µ leads to a decrease in Rc. Conversely, an increase in β1, β2, ρ, γ or η leads to an increase in Rc.
Finally, the sensitivity of Rc with respect to θ depends on the value of ω. If ω > 1, then Rc decreases,
and if ω < 1, Rc increases. Figure 5 illustrates these results.

The normalized sensitivity index (elasticity) of Rc with respect to the model parameters P is defined
as follows [47]:

ΓP
Rc
=
∂Rc

∂P

P

Rc
. (4.4)
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Figure 5. Sensitivity of Rc with respect to the parameters of Model (2.1).
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By applying the formula in Eq (4.4), we get

Γ
η

Rc
= 1,

Γ
ρ

Rc
= 1,

Γ
γ

Rc
=
µ

γ + µ
,

ΓS D
Rc
=
−S D

1 − S D
,

ΓθRc
=

β2θ(1 − ε)(δ + d + µ) − β1θ(δ + µ)
β2θ(1 − ε)(δ + d + µ) + β1(1 − θ)(δ + µ)

,

Γ
β1
Rc
=

β1(1 − θ)(δ + µ)
β1(1 − θ)(δ + µ) + β2θ(1 − ε)(δ + d + µ)

,

Γ
β2
Rc
=

β2θ(1 − ε)(δ + d + µ)
β1(1 − θ)(δ + µ) + β2θ(1 − ε)(δ + d + µ)

,

ΓεRc
=

−β2εθ(δ + d + µ)
β1(1 − θ)(δ + µ) + β2θ(1 − ε)(δ + d + µ)

,

Γd
Rc
=

−dβ1(1 − θ)(δ + µ)
β1(1 − θ)(δ + µ)(δ + d + µ) + β2θ(1 − ε)(δ + d + µ)2 ,

Γδ
Rc
=

−δ

(δ + µ)(δ + d + µ)

[
β1(1 − θ)(δ + µ)2 + β2θ(1 − ε)(δ + d + µ)2

β1(1 − θ)(δ + µ) + β2θ(1 − ε)(δ + d + µ)

]
,

Γ
µ

Rc
=
−(γ + 2µ)

(γ + µ)
−

µ

(δ + µ)(δ + d + µ)

[
β1(1 − θ)(δ + µ)2 + β2θ(1 − ε)(δ + d + µ)2

β1(1 − θ)(δ + µ) + β2θ(1 − ε)(δ + d + µ)

]
.

Table 3. Sensitivity index for Rc with respect to the parameters P of Model (2.1).

Parameter P Value Sensitivity index ΓP
Rc

η 1250 1
β1 0.0554 × 10−7 0.0413
β2 1.0596 × 10−7 0.9587
γ 0.167 0.0002
θ 0.54 0.9103
δ 3.2772 × 10−1 −0.9826
d 2.3724 × 10−1 −0.0173
µ 3.653 × 10−5 −1.0003
ρ 0.80 1
ε 0.40 −0.6391
S D 0.10 −0.1111

0.30 −0.4286
0.50 −1
0.70 −2.3333
0.90 −9
0.99 −99
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Table 3 exhibits the elasticity of Rc with respect to the model parameters. The parameter values
were taken from Table 1, in addition to ρ = 0.80, S D = 0.60 and ε = 0.40. Any positive value for
the elasticity in Table 3 means that the contribution of the parameter to Rc is to increase its value.
For instance, Γβ2

Rc
= 0.9587 means that an increase in β2 by 1% will increase Rc by 0.9587%. On the

contrary, any negative value for the elasticity means that the contribution of the parameter to Rc is to
decrease its value. For example, ΓεRc

= −0.6391 means that an increase in ε by 1% will decrease Rc by
0.6391%. We notice that the most sensitive parameters are β2, ρ, S D and ε. Therefore, the increase
in imposing social distancing and lockdown measures and detecting asymptomatic individuals through
random diagnostic testing reduces the spread of the disease.

4.4. Different scenarios for control strategies

Model (2.1) examines some of the policies that have been applied in Saudi Arabia to control
COVID-19, namely, the effectiveness of random diagnostic testing on the asymptomatic class (ε),
lockdown (ρ) and social distancing (S D). We executed several scenarios to investigate the impact of
these policies by simulating Model (2.1) for infected cases. Figure 2 shows the actual data in Saudi
Arabia and the fitting curve for Model (2.1) for infected cases from March 12, 2020 to September 23,
2020. We solve Model (2.1) numerically with the following initial values: S (0) = 34813577, E(0) =
150, Ia(0) = 95, Is(0) = 44, R(0) = 1 and the parameter values given in Table 1. The parameters ε, ρ
and S D took different values for each scenario. We describe different scenarios in Table 4. For the
fitting values of ρ and S D, refer to Table 2.

Table 4. Different scenarios for Model (2.1).

Scenario ε ρ S D
1st Different values Fitting values Fitting values
2nd Different values No lockdown (ρ = 1) No social distancing (S D = 0)
3rd Different values Different values Fitting values
4th Different values Fitting values Different values
5th Different values 0.85 Different values
6th Different values 0.75 Different values
7th Different values Fitting values Fitting values

for three time periods

Table 5. Results of 1st scenario.

ρ S D ε Peak (day) Cases Percentage Change
Fitting values Fitting values 0.01 122 52,010 −13.07%

0.02 122 45,140 −24.55%
0.03 122 39,120 −34.61%
0.04 122 33,830 −43.45%
0.10 121 13,770 −76.98%
0.20 68 4,159 −93.04%
0.30 58 1,556 −97.39%
0.40 37 705 −98.82%
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The results of applying the scenarios (1st − 7th) are summarized in Tables 5–11 and illustrated in
Figures 6–12. We compared the scenarios with the peak value of the infected cases in the fitting of
Model (2.1), that is, 59, 830, which occured on Day 123.

The 1st scenario examines the impact of detecting asymptomatic individuals by applying random
diagnostic testing in Saudi Arabia. At the same time, the lockdown and social distancing are kept as
the fitting values. Figure 6 illustrates that the peak of infected cases decreases with increasing ε. For
instance, when detecting only 2% of the asymptomatic individuals (ε = 0.02) by random diagnostic
testing, the cases will reach 45,140 on Day 122. Compared with actual data, the number of cases
decreased by 24.55% (see Table 5). This indicates the importance of applying the random diagnostic
testing to find asymptomatic individuals and reduce the cases.
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Figure 6. Numerical solution of Model (2.1) for infected compartments vs. time for the 1st

scenario: different values for ε, and ρ and S D are the same as the fitting values.

Table 6. Results of 2nd scenario.

ρ S D ε Peak (day) Cases Percentage Change
1 0 0.10 53 4,728,000 +7802.39%

0.20 57 4,420,000 +7287.60%
0.30 62 4,057,000 +6680.88%
0.40 69 3,607,000 +5928.75%
0.50 79 3,042,000 +4984.41%
0.60 97 2,332,000 +3797.71%
0.70 133 1,431,000 +2291.78%
0.80 266 391,700 +554.68%

The 2nd scenario was applied to determine whether it is possible to rely only on detecting asymp-
tomatic individuals through random diagnostic testing without imposing social distancing and a lock-
down. Figure 7 shows that the infected cases will far surpass the actual data. For example, if the
detection of asymptomatic cases reaches 60% (ε = 0.60), the peak of cases will be 2, 332, 000 on Day
97 (see Table 6). That is an increase of 3797.71% relative to the peak value of the actual data. We
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concluded that detecting asymptomatic individuals is insufficient without imposing social distancing
and lockdown.
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Figure 7. Numerical solution of Model (2.1) for infected compartments vs. time for 2nd

scenario: different values for ε, ρ = 1 and S D = 0.

Table 7. Results of 3rd scenario.

ρ S D ε Peak (day) Cases Percentage Change
1 Fitting values 0.10 84 1,163,000 +1843.84%

0.20 112 630,200 +953.31%
0.30 115 195,700 +227.09%
0.40 113 27,360 −54.27%

0.85 Fitting values 0.10 113 454,000 +658.81%
0.20 115 127,900 +113.77%
0.30 113 22,410 −62.54%
0.40 77-83 4,208 −92.96%

0.75 Fitting values 0.10 115 110,600 +84.85%
0.20 113 23,550 −60.63%
0.30 83 5,273 −91.18%
0.40 68 1,514 −97.46%

0.55 Fitting values 0.10 70 2,882 −95.18%
0.20 68 1,175 −98.03%
0.30 58 474 −99.20%
0.40 30 244 −99.59%

The 3rd scenario analyzes four different values for the level of lockdown (ρ = 1, 0.85, 0.75, 0.55)
the values for social distancing were kept as the fitting values. When ρ = 1, there is no lockdown
implementation. The remaining values of ρ correspond to the lockdown level undertaken by Saudi
Arabia in Phase 1, Phase 2 and Phase 4, respectively [37].

Figure 8 shows that increasing the lockdown level leads to a decrease in the infected cases. Note
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that increasing the lockdown level means decreasing the value of ρ. Moreover, increasing the lockdown
level requires a smaller value for detecting asymptomatic individuals through random diagnostic testing
to reach case numbers lower than the actual data. To explain further, when the lockdown level is equal
to 1, 0.85, 0.75 or 0.55, we need to apply a 40, 30, 20 or 10% level of random diagnostic testing,
respectively, to detect the asymptomatic individuals (see Table 7).
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(b) ρ = 0.85
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(c) ρ = 0.75
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Figure 8. Numerical solution of Model (2.1) for infected compartments vs. time for 3rd

scenario: different values for ε and ρ; S D is the same as the fitting values.

The 4th scenario investigates the impact of social distancing while keeping the value of ρ equal to
the fitting values. Figure 9 illustrates that increasing the application of social distancing delays peak
days; however, only when S D = 0.70 and ε = 0.40 does the cases reach a value that is lower than the
actual data by 51.81%, i.e., 28, 830 (see Table 8).

The 5th and 6th scenarios examine the impact of imposing a lockdown at low levels and relying on
social distancing and random diagnostic testing. We let ρ = 0.85 and 0.75 for the 5th and 6th scenarios,
respectively. Figures 10 and 11 show that it is possible to reach a lower number of infected cases
than in the actual data if S D = 0.70, where ε = 0.40 for the case where ρ = 0.85 (see Table 9), and
ε = 0.30 for the case where ρ = 0.75 (see Table 10). This indicates that enforcing low lockdown levels
is effective with a high level of social distancing implementation and 30% or more of the detection of
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asymptomatic individuals through random diagnostic testing.

Table 8. Results of 4th scenario.
ρ S D ε Peak (day) Cases Percentage Change

Fitting values 0.40 0.10 124 2,314,000 +3767.62%
0.20 138, 139 2,035,000 +3301.30%
0.30 160 1,764,000 +2848.35%
0.40 194 1,441,000 +2308.49%

Fitting values 0.50 0.10 150 1,874,000 +3032.21%
0.20 171 1,629,000 +2622.71%
0.30 203 1,434,000 +2296.79%
0.40 247 1,121,000 +1773.64%

Fitting values 0.60 0.10 198 1,439,000 +2305.15%
0.20 229 1,271,000 +2024.35%
0.30 279 902,300 +1408.11%
0.40 377 506,400 +746.39%

Fitting values 0.70 0.10 302 776,200 +1197.34%
0.20 387 480,900 +703.77%
0.30 572 213,800 +257.34%
0.40 1402, 1408 28,830 −51.81%
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Figure 9. Numerical solution of Model (2.1) for infected compartments vs. time for 4th

scenario: different values for ε and S D; ρ is the same as the fitting values.
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Table 9. Results of 5th scenario.
ρ S D ε Peak (day) Cases Percentage Change
0.85 0.40 0.10 88 2,674,000 +4369.33%

0.20 98 2,284,000 +3717.48%
0.30 114 1,847,000 +2987.08%
0.40 138 1,357,000 +2168.09%

0.85 0.50 0.10 106 2,052,000 +3329.72%
0.20 121, 122 1,666,000 +2684.56%
0.30 145 1,247,000 +1984.24%
0.40 185, 186 801,700 +1239.96%

0.85 0.60 0.10 141 1,310,000 +2089.54%
0.20 168, 169 957,200 +1499.87%
0.30 216 599,300 +901.67%
0.40 320 265,700 +344.09%

0.85 0.70 0.10 240 488,600 +716.64%
0.20 331, 332 246,000 +311.16%
0.30 600 60,790 +1.60%
0.40 12 139 −99.76%
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Figure 10. Numerical solution of Model (2.1) for infected compartments vs. time for 5th

scenario: different values for ε and S D, while ρ = 0.85.
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Table 10. Results of 6th scenario.
ρ S D ε Peak (day) Cases Percentage Change

0.75 0.40 0.10 100 2,246,000 +3653.97%
0.20 113 1,859,000 +3007.14%
0.30 133, 134 1,430,000 +2290.11%
0.40 167 967,500 +1517.08%

0.75 0.50 0.10 123 1,630,000 +2624.39%
0.20 144 1,259,000 +2004.30%
0.30 178 867,000 +1349.11%
0.40 242 475,400 +694.58%

0.75 0.60 0.10 172 924,900 +1445.88%
0.20 214, 215 608,800 +917.55%
0.30 297 310,600 +419.13%
0.40 550 75,830 +26.74%

0.75 0.70 0.10 344 226,300 +278.23%
0.20 585-588 64,690 +8.12%
0.30 12 139 −99.76%
0.40 12 139 −99.76%
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Figure 11. Numerical solution of Model (2.1) for infected compartments vs. time for 6th

scenario: different values for ε and S D, while ρ = 0.75.
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Table 11. Results of 7th scenario.
Event ε1 ε2 ε3 Peak (day) Cases Percentage Change
I 0.10 0 0 123 38,480 −35.68%
II 0.10 0.10 0 124 20,890 −65.08%
III 0 0.10 0.10 121 21,920 −63.36%
IV 0.20 0 0 124 23,650 −60.47%
V 0.20 0.20 0 125 6,539 −89.07%
VI 0 0.20 0.20 68 11,470 −80.82%
VII 0.10 0.20 0 125 10,870 −81.83%
VIII 0.10 0.20 0.10 121 7,132 −88.07%
IX 0.20 0.10 0 124, 125 12,680 −78.80%
X 0.20 0.10 0.10 121 8,326 −86.08%
XI 0 0.20 0.10 121 11,480 −80.81%
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Figure 12. Numerical solution of Model (2.1) for infected compartments vs. time for 7th

scenario: different values for ε, where ε is divided into ε1, ε2 and ε3. The value of S D and ρ
are the same as the fitting values.

The 7th scenario was designed to determine the effect of different values of ε through the phases.
We assume that the value of ε is ε1 in Phase 1 to Phase 2, ε2 in Phase 3 to Phase 5 and ε3 in Phase 6
to Phase 7 (see Table 11). Figure 12(a) and (b) show that performing random diagnostic tests in the
middle phases (Phase 3–5) and the beginning phases (Phase 1 and 2), rather than the last phases (Phase
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6 and 7), gives better results. Furthermore, applying the tests in all phases reduces the number of cases,
as seen in Figure 12(c).

We conclude from the analysis of the 1st to the 6th scenarios that applying random diagnostic test-
ing alone is inadequate without imposing social distancing and lockdown. The importance of using
random diagnostic testing to find asymptomatic individuals is apparent when lockdown and social
distancing measures are enforced; only then does the number of cases decline. An increase in the
level of lockdown decreases the required percentage of random diagnostic tests to lower the number of
cases. However, an increase in social distancing does not have the same effect as a lockdown; a high
percentage of random diagnostic tests is needed to reduce the number of cases. On the other hand,
implementation of lower levels of lockdown is possible only when a high level of social distancing and
a high percentage of random diagnostic tests are imposed.

As for the 7th scenario, we deduce that performing the random diagnostic tests in all phases is
effective in lowering the number of cases. However, applying the random diagnostic tests in the early
and middle phases is sufficient to reduce the cost of conducting these tests.

5. Conclusions

This study was purposed to develop a mathematical model to examine the impact of random di-
agnostic testing on COVID-19 patients in the presence of a lockdown and social distancing in Saudi
Arabia. Qualitative and numerical analyses were applied to the model. The model was well posed
and had two equilibrium points. The COVID-19 free equilibrium existed and was locally and glob-
ally asymptotically stable if Rc < 1. Conversely, the COVID-19 endemic equilibrium existed and was
locally and globally asymptotically stable if Rc > 1.

The model was validated by using the data from the COVID-19 dashboard of the Saudi Ministry
of Health spanning March 12, 2020 to September 23, 2020. In addition, the numerical experiments
performed using the model showed the consistency of the numerical solutions with the qualitative
analysis.

Furthermore, the sensitivity analysis for Rc revealed that the most influential parameter in terms of
increasing Rc was the transmission rate due to contact with asymptomatic individuals (β2). However,
the control parameters, i.e., the lockdown (ρ), social distancing (S D) and the effectiveness of random
diagnostic testing for asymptomatic individuals (ε), played a significant role in decreasing Rc. Finally,
we analyzed different scenarios numerically for the control strategies applied in Saudi Arabia.

We concluded that applying random diagnostic testing to detect asymptomatic individuals in the
presence of a lockdown and social distancing significantly reduced the cases. On the other hand, it was
impossible to rely on random diagnostic testing without imposing a lockdown and social distancing.
Moreover, implementing a lockdown at low levels required increased social distancing levels and a
high percentage of random diagnostic testing.
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