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Abstract: The procedure of selecting the values of hyper-parameters for prior distributions in
Bayesian estimate has produced many problems and has drawn the attention of many authors, therefore
the expected Bayesian (E-Bayesian) estimation method to overcome these problems. These approaches
are used based on the step-stress acceleration model under the Exponential Type-I hybrid censored data
in this study. The values of the distribution parameters are derived. To compare the E-Bayesian esti-
mates to the other estimates, a comparative study was conducted using the simulation research. Four
different loss functions are used to generate the Bayesian and E-Bayesian estimators. In addition, three
alternative hyper-parameter distributions were used in E-Bayesian estimation. Finally, a real-world
data example is examined for demonstration and comparative purposes.

Keywords: E-Bayesian estimation; Bayesian estimation; simple step stress; Type-I hybrid censoring;
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1. Introduction

In statistical inference, the prior distribution and loss function must be chosen carefully. How-
ever, the hyper parameters may influence the prior distribution parameters. We frequently employ
the hierarchical Bayesian technique in this case. The concept of hierarchical prior distribution was
initially proposed by Lindley and Smith [1]. The hierarchical Bayesian technique requires two steps
to complete the prior distribution setting, making it more resilient than the Bayesian method. The
method for constructing hierarchical prior distribution was developed by Han [2]. Data analysis has
recently employed hierarchical Bayesian techniques; for further information, see Ando and Zellner [3],
Han [4], Kzlaslan [5], and Han [6]. For testing data from products with exponential distributions and
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the quadratic loss function, from Han [7], the reliability parameter was estimated using E-Bayes and hi-
erarchical Bayes methods. With the help of simulation studies, he proved that the E-Bayesian estimator
is both efficient and simple to use. For estimating the dependability parameter of the geometric distri-
bution based on scaled squared loss function in complete samples, Yin and Liu [8] built the E-Bayesian
estimation and hierarchical Bayesian estimation algorithms. In terms of calculation complexity, the E-
Bayes technique is more stable and convenient than the hierarchical Bayes method, they concluded.
For additional information on related studies of the E-Bayesian estimation approach, see Jaheen and
Okasha [9], Cai et al. [10], Okasha [11], and Azimi et al. [12]. Because of the rapid development of
advanced technology, products and devices are becoming more and more reliable, and product life is
increasing. Under normal conditions, obtaining failure information for such highly reliable products
is difficult, if not impossible. As a result, accelerated life testing (ALT) is the most common method
for obtaining sufficient failure time data in a short period of time. In such test conditions, products
are subjected to higher-than-usual levels of stress in order to induce early failures. Failure time data
from such accelerated tests are analysed and extrapolated to estimate life characteristics under normal
operating conditions. One of the most important types of ALT is the step-stress life testing (SSALT) in
which the experimenter can choose one or more stress factors in the experiment, such as temperature,
vibration, or humidity that may affect the product’s life. A set of identical experimental units, say
n, are examined in an appropriate testing experiment under a starting stress level of s1, and then the
stress levels are increased to s2, s3,...,s j at predetermined times, say τ1, τ2, ..., τ j respectively. In SSLT
if the experiment is performed depending on two stress levels say s0, s1, then this type is reduced to the
simple step-stress life testing (SSSLT).

The loss function, is crucial in Bayesian approaches. The squared error loss function is the most
often used loss function in Bayesian inference (SELF). This loss function is symmetrical, meaning
that overestimation and underestimation are given equal weight. The following is the definition of the
square error loss function (SELF):

LBS

(̂
θ, θ

)
=

(̂
θ − θ

)2
, (1.1)

where θ̂ is an estimator of θ. The Bayes estimator of θ SELF denoted by θ̂BS can be obtained as

θ̂BS = Eθ [θ] . (1.2)

where Eθ [θ] is the expected value is determined with respect to the posterior distribution. Bayesian
estimation is derived by using the Degroot loss function (DLF) which is defined by Degroot [13] as
follows:

LBD

(̂
θ, θ

)
=

θ − θ̂
θ̂

2

, (1.3)

the Bayesian estimator based on DLF is denoted by θ̂BD and can be expressed as

θ̂BD =
Eθ

[
θ2

]
Eθ [θ]

. (1.4)

The quadratic loss function (QLF) was defined as follows:

LBQ

(̂
θ, θ

)
=

(
θ − θ̂

)2
, (1.5)
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we can get bayesian estimation under quadratic loss denoted by θ̂BQ can be obtained as

θ̂BQ =
Eθ

[
θ−1

]
Eθ

[
θ−2] . (1.6)

Under the assumption that the minimal loss occurs at θ̂ = θ, the LINEX loss function (LLF) can be
expressed as

LBL

(̂
θ, θ

)
= exp

[
υ
(̂
θ − θ

)]
− υ

(̂
θ − θ

)
− 1 (1.7)

where υ , 0. The Bayesian estimator of θ, denoted by θ̂L under LLF, the value θ̂BL which minimizes
Eθ

[
LBL

(̂
θ, θ

)]
is given by,

θ̂BL =
−1
υ

ln
{
Eθ

[
exp (−υθ)

]}
, (1.8)

where Eθ

[
exp (−υθ)

]
is finite. The maximum likelihood and Bayesian estimation methods are re-

garded as the inferential features in these investigations. Studying the E-Bayesian estimators and the
accompanying properties in the presence of the SSLT model based on Type-I hybrid censoring, how-
ever, has not received much attention. Additionally, we present a set of guidelines that we believe
applied statisticians and reliability engineers will find extremely useful when selecting the appropriate
estimation method to estimate the unknown parameters of the exponential distribution under the SSLT
model. Furthermore, a simulation study and analysis of both simulated and real data sets demon-
strate that E-Bayesian estimators outperform alternative estimators based on maximum likelihood and
Bayesian approaches, encouraging their application in practical contexts. The resulting estimators are
obtained based on four different loss functions. by using SEF, DLF, QLF and LLF. This article is or-
ganized as follows: Section 2 provides an overview of the step-stress acceleration model depending on
the Type-I hybrid censored data. In Section 3, determines the maximum likelihood estimates (ML) of
unknown parameters, In Section 4, Bayesian estimation of unknown parameters under different prior
distributions and different loss functions are computed. In Section 5, the formulas of E- Bayesian are
discussed. Comparison between Bayes and E-Bayes estimates have been made using simulation study
in Section 6. A real data set is analyzed in Section 7. Finally, the paper is concluded in Section 8.

2. Description of the model

In this section, we assume that the data are drawn from a cumulative exposure model, by apply-
ing a simple step-stress technique with Type-I HCS using two stress levels s0 and s1. The lifespan
distributions at s0 and s1 are following the exponential distribution with failure rates of 1 and 2, cor-
respondingly. The probability density function (PDF) and cumulative distribution function (CDF) are
presented by

fi

(
y; λ j

)
= λ j exp(−λ jy), y ≥ 0, λ j > 0, j = 1, 2 (2.1)

and
F j

(
y; λ j

)
= 1 − exp(−λ jy), y ≥ 0, λ j > 0, j = 1, 2 (2.2)

respectively. As a result, the cumulative exposure distribution (CED) G(y) is given as
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G(y) =

 G1(y) = F1 (y; λ1) if 0 < y < τ,
G2(y) = F2

(
y −

(
1 − λ1

λ2

)
τ; λ2

)
if τ ≤ y < ∞,

(2.3)

where F j(.) is as given in (2.2). The corresponding PDF is:

g(y) =

{
g1(y) = f1 (y; λ1) if 0 < y < τ,
g2(y) = λ2 exp

[
−λ2 (y − τ) − λ1τ

]
if τ ≤ y < ∞,

(2.4)

Based on the Type-I HCS, we have n units under s0 stress level. At time τ, the stress level is raised
to s1, and the life-testing test is finished at T ∗. Here, T ∗ = min {Yr:n,T }, we will observe the instances
below:

• r ≤ n and 0 < τ < T < ∞ are Predetermined in ahead of time;
• Y1:n < ... < Yn:n display the n units’ failure times in order;
• T represents a certain period when the stress level shifts from s0 to s1;
• Yr:n indicates the time at which the rth fails;
• T stands for the experiment’s maximum time limit;
• d indicates the number of units that fail prior to time T ;
• T ∗ is the random moment at which the life-testing experiment comes to an end;
• D∗ stands for the number of components that break before T.

Let m1 represent the number of units that fail before time τ, m2 be the number of units that fail after
the time τ and before time T ∗ at stress level s1, where T ∗ is termination time of the experiment, it is
given by,

T ∗ =

{
T, if T < Yr:n,
Yr:n, if Yr:n ≤ T ,

(2.5)

Using this notation, we will notice one of the following three cases:

1) Case 1: Suppose Yr:n ≤ τ < T, we will observe {y1:n < ... < yr:n ≤ τ < T }.

2) Case 2: Suppose τ < Yr:n ≤ T, we will observe {y1:n < ... < ym1:n ≤ τ < ym1+1:n < ... < yr:n ≤ T }.

3) Case 3: Suppose T < Yr:n, we will observe {y1:n < ... < ym1:n ≤ τ < ym1+1:n < ... < ym1+m2:n ≤ T ∗ =

T }.

We can write the likelihood function of λ1 and λ2 based on the Type-I hybrid censored sample using
(2.3) and (2.4), as follows:

L
(
λ1, λ2|x

)
=


n!

(n−r)!

{
r∏

j=1
g1

(
y j:n

)}
{1 −G1 (yr:n)}n−r , Case1

n!
(n−D∗)!

{
m1∏
j=1

g1

(
y j:n

)} {
D∗∏

j=m1+1
g2

(
y j:n

)}
{1 −G2 (T ∗)}n−D∗ , Cases 1 and 2

(2.6)

where is the total number of failures and is given by,

D∗ = m1 + m2 =

{
d, if T < Yr:n,
r, if Yr:n ≤ T ,

(2.7)
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3. Maximum likelihood estimation

We must maximize the likelihood with regard to λ1 and λ2 when computing the ML estimates.
Using (2.3), (2.4) and (2.6), then the appropriate likelihood function, which is as follows:

L
(
λ1, λ2|x

)
=


n!

(n−r)!λ
r
1 exp

{
−λ1

[
r∑

j=1
y j:n + (n − r) y j:n

]}
, case1,

n!
(n−D∗)!λ

m1
1 λm2

2 exp
{
−λ1W1

(
x
)
− λ2W2

(
x
)}

case2, 3,
(3.1)

where

W1
(
x
)

=

m1∑
j=1

y j:n + (n − m1) τ, (3.2)

W2
(
x
)

=

D∗∑
j=m1+1

(
y j:n − τ

)
+ (n − D∗) (T ∗ − τ) .

=


d∑

j=m1+1

(
y j:n − τ

)
+ (n − d) (T − τ) , if T < Yr:n,

r∑
j=m1+1

(
y j:n − τ

)
+ (n − r) (yr:n − τ) if τ < Yr:n ≤ T

(3.3)

From Eq (3.1), we can deduce the following.

1) In Case 3, when m1 = 0 and m2 = 0, the MLEs of λ1 and λ2 do not exist.

2) In Cases 1 and 3, when m1 , 0, m2 = 0, the MLE of λ2 does not exist, and W1
(
x
)

is a complete
sufficient statistic for λ1.

3) If m1 = 0, m2 , 0 in Cases 2 and 3, the MLE of λ1 does not exist, and W2
(
x
)

is a complete sufficient
statistic for λ2.

4) If at least one failure happens before τ and between τ and T in Cases 2 and 3, the MLEs of λ1 and
λ2 do exist, and

(
W1

(
x
)
,W2

(
x
))

is a joint complete sufficient statistic for (λ1, λ2). In this situation,
the log-likelihood function of λ1 and λ2 is given by,

log
(
L
(
λ1, λ2|x

))
= log

n!
(n − D∗)!

+ m1 log (λ1) + m2 log (λ2) − λ1W1
(
x
)
− λ2W2

(
x
)

(3.4)

From (3.4), the MLEs of λ1 and λ2 are easily determined as

λ̂1ML =
m1

W1
(
x
) , (3.5)

λ̂2ML =
m2

W2
(
x
) . (3.6)
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4. Bayesian estimation

In this Section, the Bayes estimators for the parameters λ1 and λ2 using SEF, DLF, QLF and LLF
are derived. For creating the Bayesian estimation, we suppose that the parameters λ1 and λ2 are in-
dependently distributed and following gamma distribution. Let λ1, λ2, have gamma priors with scale
parameters bi and shape parameters ai, i = 1, 2. The joint prior density of λ1 and λ2 can be expressed
as follows

π (λ1, λ2) ∝
2∏

i=1

λai−1
i exp (−biλi) , bi, ai > 0, for i = 1, 2. (4.1)

The posterior PDF of λ1 and λ2 is given from (2.6), (4.1), as follows:

π∗
(
λ1, λ2|x

)
= I−1

2∏
i=1

λmi+ai−1
i exp

{
−λi

[
Wi

(
x
)

+ bi
]}
, for i = 1, 2, (4.2)

where I is the normalizing constant given as

I =

∫ ∞

0
π∗

(
λ1, λ2|x

)
dλ1dλ2

=

2∏
i=1

Γ (mi + ai)[
Wi

(
x
)

+ bi
](mi+ai)

(4.3)

From (4.2), it is worth noting that the posterior density functions of λi for i = 1, 2 are similar to
gamma

(
ni + ai,Wi

(
x
)

+ bi
)
. Based on the SELF, the Bayes estimators of λi with i = 1, 2 are given by,

λ̂iBS = E [λi]

= I−1
∫ ∞

0

∫ ∞

0
λi

2∏
i=1

λmi+ai−1
i exp

[
−λi

(
Wi

(
x
)

+ bi
)]

dλ1dλ2

=
mi + ai

Wi
(
x
)

+ bi
, for i = 1, 2. (4.4)

The Bayesian estimate of λi for i = 1, 2 under DLF loss function is given by,

λ̂iBD =
E

[
λ2

i

]
E [λi]

=

I−1
∫ ∞

0

∫ ∞
0
λ2

i

2∏
i=1
λmi+ai−1

i exp
[
−λi

(
Wi

(
x
)

+ bi
)]

dλ1dλ2

I−1
∫ ∞

0

∫ ∞
0
λi

2∏
i=1
λmi+ai−1

i exp
[
−λi

(
Wi

(
x
)

+ bi
)]

dλ1dλ2

=
mi + ai + 1
Wi

(
x
)

+ bi
, for i = 1, 2. (4.5)
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The Bayesian estimate of λi for i = 1, 2 under QLF is given by,

λ̂iBQ =
E

[
λ−1

i

]
E

[
λ−2

i

]
=

I−1
∫ ∞

0

∫ ∞
0
λ−1

i

2∏
i=1
λmi+ai−1

i exp
[
−λi

(
Wi

(
x
)

+ bi
)]

dλ1dλ2

I−1
∫ ∞

0

∫ ∞
0
λ−2

i

2∏
i=1
λmi+ai−1

i exp
[
−λi

(
Wi

(
x
)

+ bi
)]

dλ1dλ2

=
mi + ai − 2
Wi

(
x
)

+ bi
, for i = 1, 2. (4.6)

The Bayesian estimate of λi for i = 1, 2 under LLF is given by,

λ̂iBL =
−1
υ

ln
{
E

[
exp (−υλi)

]}
=
−1
υ

ln

I−1
∫ ∞

0

∫ ∞

0
exp (−υλi)

2∏
i=1

λmi+ai−1
i exp

[
−λi

(
Wi

(
x
)

+ bi
)]

dλ1dλ2

 (4.7)

=
−1
υ

ln


[

Wi
(
x
)

+ b
Wi

(
x
)

+ b + υ

](ai+mi)
 , for i = 1, 2. (4.8)

5. E-Bayesian estimation method

Here, three different prior distributions of hyper-parameters are investigated in this section to see
how they affect the E-Bayesian estimates of λi for i = 1, 2. We select the hyper-parameters ai and bi

for i = 1, 2 to prove that π (λ) is a decreasing function of λi. The first derivative of π (λi) regarding λi

for i = 1, 2 is as follows:

∂π(λi)
∂λi

∝ λai−1
i e−biλi [(λi − 1) − biλi] . (5.1)

Thus, for 0 < ai < 1 and bi > 0, the prior PDF π(λi) is a decreasing function of λi for i = 1, 2. Suppose
that ai and bi, i = 1, 2 are independent with bivariate PDF given by,

p(ai, bi) = pi(ai)pi(bi), for i = 1, 2 (5.2)

the E-Bayesian (EB) estimates of the parameter λi are expectation of the Bayesian estimate of λi for
i = 1, 2 and can be obtained as follows:

λ̂iEB = E
[̂
λB|x

]
=

∫
A

λ̂B (ai, bi) p (ai, bi) daidbi, (5.3)

According to three various prior PDF of the hyper-parameters ai and bi, the E-Bayesian estimates of the
parameter λi for i = 1, 2, can be derived. As a result, prior distributions chosen to show how different
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prior distributions affect the estimation of the E-Bayesian of λi for i = 1, 2. We suggest the following
prior PDFs

p1 (ai, bi) = 1
ci
, 0 < ai < 1, 0 < bi < ci,

p2 (ai, bi) = 2bi
c2

i
, 0 < ai < 1, 0 < bi < ci,

p3 (ai, bi) =
2(c−bi)

c2
i
, 0 < ai < 1, 0 < bi < ci,

(5.4)

For more details, one can refer to Rabie and Li [14–16], and Rabie [17].

5.1. E-Bayesian estimation using SELF

The E-Bayesian estimate of λi for i = 1, 2, under the SEL based on p1 (ai, bi) , p2 (ai, bi) , and
p3 (ai, bi) are computed from (4.4), (5.3) and (5.4), respectively, as follows:

λ̂1
i EBS =

∫ 1

0

∫ ci

0

1
ci

[
mi + ai

Wi
(
x
)

+ bi

]
dbidai

=
2mi + 1

2ci
ln

(
1 +

ci

Wi
(
x
)) , for i = 1, 2, (5.5)

λ̂2
i EBS =

∫ 1

0

∫ ci

0

2bi

c2
i

[
mi + ai

Wi
(
x
)

+ bi

]
dbidai

=
2mi + 1

ci

[
1 −

Wi
(
x
)

ci
ln

(
1 +

ci

Wi
(
x
))] , for i = 1, 2, (5.6)

λ̂3
i EBS =

∫ 1

0

∫ ci

0

2 (c − bi)
c2

i

[
mi + ai

Wi
(
x
)

+ bi

]
dbidai

=
2mi + 1

ci

[(
1 +

Wi
(
x
)

ci

)
ln

(
1 +

ci

Wi
(
x
)) − 1

]
, for i = 1, 2. (5.7)

5.2. E-Bayesian estimation using DLF

Based on p1 (ai, bi) , p2 (ai, bi) , and p3 (ai, bi) , under the DLF, the E-Bayesian estimate of λ, can
be derived from (4.5), (5.3) and (5.4), respectively as follows:

λ̂1
i EBD =

∫ 1

0

∫ ci

0

1
ci

[
mi + ai + 1
Wi

(
x
)

+ bi

]
dbidai

=
2mi + 3

2ci
ln

(
1 +

ci

Wi
(
x
)) , for i = 1, 2, (5.8)

λ̂2
i EBD =

∫ 1

0

∫ ci

0

2bi

c2
i

[
mi + ai + 1
Wi

(
x
)

+ bi

]
dbidai
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=
2mi + 3

ci

[
1 −

Wi
(
x
)

ci
ln

(
1 +

ci

Wi
(
x
))] , for i = 1, 2, (5.9)

λ̂3
i EBD =

∫ 1

0

∫ ci

0

2 (c − bi)
c2

i

[
mi + ai + 1
Wi

(
x
)

+ bi

]
dbidai

=
2mi + 3

ci

[(
1 +

Wi
(
x
)

ci

)
ln

(
1 +

ci

Wi
(
x
)) − 1

]
, for i = 1, 2. (5.10)

5.3. E-Bayesian estimation using QLF

The E-Bayesian estimate of λi for i = 1, 2, under the QLF based on p1 (ai, bi) , p2 (ai, bi) , and
p3 (ai, bi) are computed from (4.6), (5.3) and (5.4) ,respectively, as follows:

λ̂1
i EBQ =

∫ 1

0

∫ ci

0

1
ci

[
mi + ai − 2
Wi

(
x
)

+ bi

]
dbidai

=
2mi − 3

2ci
ln

(
1 +

ci

Wi
(
x
)) , for i = 1, 2, (5.11)

λ̂2
i EBQ =

∫ 1

0

∫ ci

0

2bi

c2
i

[
mi + ai − 2
Wi

(
x
)

+ bi

]
dbidai

=
2mi − 3

ci

[
1 −

Wi
(
x
)

ci
ln

(
1 +

ci

Wi
(
x
))] , for i = 1, 2, (5.12)

λ̂3
i EBQ =

∫ 1

0

∫ ci

0

2 (c − bi)
c2

i

[
mi + ai − 2
Wi

(
x
)

+ bi

]
dbidai

=
2mi − 3

ci

[(
1 +

Wi
(
x
)

ci

)
ln

(
1 +

ci

Wi
(
x
)) − 1

]
, for i = 1, 2. (5.13)

5.4. E-Bayesian estimation using LLF

Also, based on p1 (ai, bi) , p2 (ai, bi) , and p3 (ai, bi) , under the LINEX loss function, the E-Bayesian
estimate of λ, can be derived from (4.8), (5.3) and (5.4), respectively as follows:

λ̂1
i EBL =

(mi + ai)
υ

∫ 1

0

∫ ci

0

1
ci

ln
[
Wi

(
x
)

+ bi + υ

Wi
(
x
)

+ bi

]
dbidai

=
2mi + 1

2υci

{(
ci + Wi

(
x
))

ln
(
1 +

υ

Wi
(
x
)

+ ci

)
+ υ

× ln
(
1 +

ci

Wi
(
x
)

+ υ

)
−Wi

(
x
)

ln
(
1 +

υ

Wi
(
x
))} , (5.14)
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λ̂2
i EBL =

(mi + ai)
υ

∫ 1

0

∫ ci

0

2bi

c2
i

ln
[
Wi
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For recent work of Bayesian estimation and loss functions, see for example, Nagy et al. in [18],
Nagy and Alrasheedi in [19, 20], and [21], and Raheem et al. in [22].

6. Simulation studies

In this section, we provide some simulation results for various choices of (n,m, τ,T ), where, n =

50, 80, 100 and m = 30, 64, 80 with two values of both τ = 0.5, 0.8 and T = 1.6, 2.5. The values of ai

and bi, i = 1, 2 are generated from Eq (5.4). Its chosen to be (a1, b1) = (0.6, 0.7) for λ1 with c1 = 0.75,
where (a2, b2) = (0.4, 0.8) for λ2 with c2 = 0.85. For a given values of ai and bi, i = 1, 2, values
of λ1, λ2 are generated from Gamma(ai, bi). By trying and error, the values of parameters have been
chosen randomly to be (λ1, λ2) = (0.85, 0.5). In the same way, these values provide short lifetimes and
the least mean square error. These values of λ1, λ2 are used to generate Type-I hybrid censored sample
from Exponential distribution as follows:

X =
−1
λk

(ln(1 − U)), k = 1, 2, (6.1)

where, U is generated from U(0, 1). All estimators are obtained in an explicit form. The maximum
likelihood estimates of (λ1, λ2) are given from Eqs (3.5) and (3.6), respectively. The Bayesian estimates
under SELF, DLF, QLF and LLF are obtained from Eqs (4.4), (4.6), (4.5) and (1.8), respectively. The
E-Bayesian estimates based on SELF, DLF, QLF and LLF are obtained from Eqs (5.5–5.7), (5.8–5.10),
(5.11–5.13) and (5.14–5.16), respectively. All results are listed in Table 1, for λ1 and in Table 2, for λ2.
The real data example is performed based on the same procedures and by using the four loss functions
and listed the results in Tables 3 and 4.

Figures 1 and 2 were created to demonstrate the differences between the Bayesian and E-Bayesian
estimates based on the three prior distributions of the hyperparameters a and b for each loss function in
order to examine the pertinent aspects of E-Bayesian estimation. In Figure 1(a)–(d), we compared the
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Table 1. The average estimated values (AE) and the mean square error (MSE) for λ1 when λ1 = 0.8571, λ2 = 0.5,
a1 = 0.6, b1 = 0.7, c1 = 0.75, a2 = 0.4, b2 = 0.8, c2 = 0.85.

Method
τ = 0.5,T = 1.6 τ = 0.8,T = 2.5

(n,m) (n,m) (n,m) (n,m) (n,m) (n,m)
(50,30) (80,64) (100,80) (50,30) (80,64) (100,80)

MLE
AE 0.6624 0.6563 0.6543 0.6374 0.6437 0.6390
MSE 0.0679 0.0581 0.0548 0.0659 0.0566 0.0567

BSEL
AE 0.6684 0.6603 0.6575 0.6421 0.6466 0.6414
MSE 0.0638 0.0558 0.0531 0.0631 0.0551 0.0555

BDLF
AE 0.7140 0.6891 0.6806 0.6735 0.6664 0.6573
MSE 0.0494 0.0455 0.0445 0.0510 0.0473 0.04904

BQLF
AE 0.5772 0.6026 0.6113 0.5793 0.6069 0.6096
MSE 0.1053 0.0814 0.0734 0.0933 0.0730 0.0700

BLLF
AE 0.6608 0.6555 0.6537 0.6370 0.6434 0.6389
MSE 0.0660 0.0574 0.0544 0.0650 0.0563 0.0565

EBSEL1
AE 0.6740 0.6637 0.6602 0.6456 0.6488 0.6432
MSE 0.0627 0.0549 0.0522 0.0620 0.0543 0.0548

EBSEL2
AE 0.6701 0.6612 0.6583 0.6430 0.6472 0.6419
MSE 0.0638 0.0556 0.0529 0.0629 0.0549 0.0554

EBSEL3
AE 0.6779 0.6661 0.6621 0.6482 0.6505 0.6445
MSE 0.0617 0.0541 0.0516 0.0611 0.0537 0.0543

EBDLF1
AE 0.7203 0.6928 0.6835 0.6774 0.6688 0.6592
MSE 0.0486 0.0447 0.0438 0.0500 0.0465 0.0484

EBDLF2
AE 0.7161 0.6902 0.6815 0.6746 0.6671 0.6578
MSE 0.0494 0.0454 0.0444 0.0508 0.0471 0.0489

EBDLF3
AE 0.7245 0.6953 0.6855 0.6801 0.6705 0.6605
MSE 0.0478 0.0440 0.0432 0.0493 0.0460 0.0479

EBQLF1
AE 0.5814 0.6055 0.6136 0.5822 0.6089 0.6112
MSE 0.1038 0.0803 0.0724 0.0921 0.0722 0.0693

EBQLF2
AE 0.5781 0.6033 0.6118 0.5798 0.6074 0.6100
MSE 0.1053 0.0812 0.0732 0.0932 0.0729 0.0699

EBQLF3
AE 0.5848 0.6077 0.6154 0.5845 0.6104 0.6125
MSE 0.1023 0.0793 0.0717 0.0909 0.0715 0.0688

EBLLF1
AE 0.6663 0.6589 0.6564 0.6405 0.6456 0.6406
MSE 0.0648 0.0564 0.0536 0.0639 0.0555 0.0559

EBLLF2
AE 0.6624 0.6565 0.6545 0.6379 0.6440 0.6393
MSE 0.0659 0.0573 0.0543 0.0648 0.0561 0.0564

EBLLF3
AE 0.6701 0.6612 0.6583 0.6431 0.6472 0.6419
MSE 0.0637 0.0556 0.0529 0.0629 0.0549 0.0553
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Table 2. The average estimated values (AE) and the mean square error (MSE) for λ2 when λ1 = 0.8571, λ2 = 0.5,
a1 = 0.6, b1 = 0.7, c1 = 0.75, a2 = 0.4, b2 = 0.8, c2 = 0.85.

Method
τ = 0.5,T = 1.6 τ = 0.8,T = 2.5

(n,m) (n,m) (n,m) (n,m) (n,m) (n,m)
(50,30) (80,64) (100,80) (50,30) (80,64) (100,80)

MLE
AE 0.3316 0.3370 0.3376 0.2928 0.2908 0.2852
MSE 0.0372 0.0320 0.0309 0.0484 0.0472 0.0488

BSEL
AE 0.3355 0.3394 0.3396 0.2968 0.2934 0.2873
MSE 0.0355 0.0311 0.0302 0.0466 0.0460 0.0479

BDLF
AE 0.3653 0.3581 0.3546 0.3215 0.3090 0.2997
MSE 0.0268 0.0255 0.0256 0.0373 0.0399 0.0428

BQLF
AE 0.2760 0.3020 0.3095 0.2475 0.2623 0.2626
MSE 0.0583 0.0443 0.0406 0.0688 0.0598 0.0590

BLLF
AE 0.3330 0.3378 0.3383 0.2949 0.2923 0.2864
MSE 0.0362 0.0316 0.0305 0.0473 0.0465 0.0482

EBSEL1
AE 0.3424 0.3437 0.3430 0.3021 0.2967 0.2899
MSE 0.0335 0.0298 0.0291 0.0446 0.0447 0.0468

EBSEL2
AE 0.3409 0.3428 0.3423 0.3010 0.2960 0.2894
MSE 0.0339 0.0301 0.0293 0.0449 0.0450 0.0470

EBSEL3
AE 0.3438 0.3446 0.3437 0.3032 0.2974 0.2904
MSE 0.0331 0.0296 0.0289 0.0442 0.0445 0.0466

EBDLF1
AE 0.3725 0.3625 0.3581 0.3270 0.3124 0.3023
MSE 0.0251 0.0244 0.0247 0.0355 0.0386 0.0418

EBDLF2
AE 0.3708 0.3615 0.3573 0.3258 0.3117 0.3018
MSE 0.0254 0.0246 0.0249 0.0358 0.0389 0.0420

EBDLF3
AE 0.3741 0.3635 0.3589 0.3282 0.3131 0.3029
MSE 0.0248 0.0242 0.0245 0.0351 0.0384 0.0416

EBQLF1
AE 0.2822 0.3060 0.3128 0.2523 0.2654 0.2650
MSE 0.0562 0.0429 0.0394 0.0665 0.0583 0.0578

EBQLF2
AE 0.2809 0.3052 0.3121 0.2514 0.2648 0.2646
MSE 0.0562 0.0431 0.0396 0.0669 0.0586 0.0580

EBQLF3
AE 0.2834 0.3068 0.3135 0.2532 0.2660 0.2655
MSE 0.0553 0.0426 0.0392 0.0661 0.0581 0.0576

EBLLF1
AE 0.3398 0.3421 0.3417 0.3002 0.2955 0.2890
MSE 0.0342 0.0303 0.0295 0.0452 0.0453 0.0472

EBLLF2
AE 0.3383 0.3411 0.3410 0.2992 0.2949 0.2885
MSE 0.0345 0.0305 0.0297 0.0456 0.0454 0.0474

EBLLF3
AE 0.3412 0.3430 0.3424 0.3013 0.2962 0.2895
MSE 0.0338 0.0300 0.0293 0.0448 0.0449 0.0470
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Bayesian and E-Bayesian estimates for λ1 in case of τ = 0.5 and T = 1.6 under the loss functions SEL,
DLF, QLF and LLF respectively. Where Figure 2(a)–(d), we compared the Bayesian and E-Bayesian
estimates for λ2 in case of τ = 0.8 and T = 2.5 under the loss functions SEL, DLF, QLF and LLF
respectively. In each figure, we have compared the E-Bayesian estimates under the three proposed
priors of the hyperparameters a and b. From all these graphs we found that: far all proposed loss
function and for j=1,2,

1) λ̂ j
B
< λ̂ j

EB2
< λ̂ j

EB1
< λ̂ j

EB3

2) limn→∞ λ̂ j
EB2

= limn→∞ λ̂ j
EB1

= limn→∞ λ̂ j
EB3

These properties have been discussed in different situations by many authors, see for example Nassar
et al. [23]

(a) . (b) .

(c) . (d) .

Figure 1. The Bayesian and E-Bayesian behavour for the AE of λ1 in case of τ = 0.5 and
T = 1.6.

7. Example of real-life data

In this section, to demonstrate the performance of the offered approaches in the application, we
present an example of real-world data. These data were used by Bhaumik et al. [24], representing vinyl
chloride data obtained from clean upgradient monitoring wells in mg/l. The exponential distribution
has been fitted on these data by Shanker et al. [25], who found that it yields a decent match to the
exponential distribution. As shown in the table below, there are 34 observations in this set of data.
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(a) . (b) .

(c) . (d) .

Figure 2. The Bayesian and E-Bayesian behavour for the AE of λ2 in case of τ = 0.8 and
T = 2.5.

5.1 1.2 1.3 0.6 0.5 2.4 0.5 1.1 8 0.8 0.4 0.6 0.1 1.8 0.9 2 4
0.9 0.4 2 0.5 5.3 3.2 2.7 2.9 2.5 2.3 1 0.2 6.8 1.2 0.4 0.2 0.1

We suppose that values of data set represent lifetime of failure observations which follow the expo-
nential distribution. Using a step-stress approach based on Type-I HCS on these data with the same loss
functions as before, we obtain estimates of λ1 and λ2 based on the same used techniques and showed
in Tables 3 and 4.

8. Conclusions

We looked at the E-Bayesian estimation of the simple step-stress model under the cumulative ex-
posure model for the exponential distribution with Type-I hybrid censored data in this article. The
E-Bayesian estimators are derived by considering the loss functions SEL, DLF, QLF, and LINEX. To
the hyperparameters, three different distributions are considered. The average estimates (AE) and mean
squared error (MSE) for each of the four loss functions are also calculated. Some E-Bayesian estimator
properties are illustrated graphically. A simulation study is carried out to demonstrate the effectiveness
of the various estimators. According to the simulation results, E-Bayesian estimates outperform Max-
imum likelihood and Bayesian estimates. To estimate the parameters of the exponential distribution
under the simple step-stress model based on Type-I hybrid censored data, we recommend using the
E-Bayesian method. In terms of minimum MSE, E-Bayesian estimators using the prior distribution 3
outperform other estimates. The results of the simulation are confirmed by the analysis of the real data
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Table 3. Real Data the estimated values for λ1, a1 = 0.6, b1 = 0.7, c1 = 0.75, a2 = 0.4, b2 = 0.8, c2 = 0.85.

Method
τ = 0.5,T = 1.6 τ = 0.8,T = 3

(n,m) (n,m)
(34,25) (34,25)

MLE 0.7302 0.6500

BSEL 0.7357 0.6562
BDLF 0.7974 0.6993
BQLF 0.6122 0.5701
BLLF 0.7246 0.6493

EBSEL1 0.7446 0.6612
EBSEL2 0.7387 0.6576
EBSEL3 0.7504 0.6648

EBDLF1 0.8076 0.7049
EBDLF2 0.8012 0.7010
EBDLF3 0.8140 0.7087

EBQLF1 0.6186 0.5739
EBQLF2 0.6137 0.5708
EBQLF3 0.6234 0.5770

EBLLF1 0.7331 0.6541
EBLLF2 0.7274 0.6506
EBLLF3 0.7388 0.6576
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Table 4. Real Data: the estimated values for λ2, a1 = 0.6, b1 = 0.7, c1 = 0.75, a2 = 0.4, b2 = 0.8, c2 = 0.85.

Method
τ = 0.5,T = 1.6 τ = 0.8,T = 3

(n,m) (n,m)
(34,25) (34,25)

MLE 0.4370 0.4590

BSEL 0.4395 0.4604
BDLF 0.4880 0.5034
BQLF 0.3424 0.3745
BLLF 0.4343 0.4556

EBSEL1 0.4526 0.4724
EBSEL2 0.4495 0.4695
EBSEL3 0.4558 0.4753

EBDLF1 0.5021 0.5161
EBDLF2 0.4986 0.5129
EBDLF3 0.5056 0.5193

EBQLF1 0.3537 0.3850
EBQLF2 0.3513 0.3826
EBQLF3 0.3562 0.3874

EBLLF1 0.4471 0.4673
EBLLF2 0.4441 0.4644
EBLLF3 0.4502 0.4702
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set. At the end, we can suggest “the proposed methods in a constant-stress partially accelerated life
test model based on a generalized hybrid censoring scheme” as a future work.
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