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Abstract: Existing epileptic seizure automatic detection systems are often troubled by high-
dimensional electroencephalogram (EEG) features. High-dimensional features will not only bring
redundant information and noise, but also reduce the response speed of the system. In order to
solve this problem, supervised locality preserving canonical correlation analysis (SLPCCA), which
can effectively use both sample category information and nonlinear relationships between features, is
introduced. And an epileptic signal classification method based on SLPCCA is proposed. Firstly,
the power spectral density and the fluctuation index of the frequency slice wavelet transform are
extracted as features from the EEG fragments. Next, SLPCCA obtains the optimal projection direction
by maximizing the weight correlation between the paired samples in the class and their neighbors.
And the projection combination of original features in the optimal direction is the fusion feature. The
fusion features are then input into LS-SVM for training and testing. This method is verified on the
Bonn dataset and the CHB-MIT dataset and gets good results. On various classification tasks of
Bonn data set, the proposed method achieves an average classification accuracy of 99.16%. On the
binary classification task of the inter-seizure and seizure epileptic EEG of the CHB-MIT dataset, the
proposed method achieves an average accuracy of 97.18%. The experimental results show that the
algorithm achieves excellent results compared with several state-of-the-art methods. In addition, the
parameter sensitivity of SLPCCA and the relationship between the dimension of the fusion features
and the classification results are discussed. Therefore, the stability and effectiveness of the method are
further verified.

Keywords: epileptic seizure; electroencephalogram (EEG); feature extraction; feature fusion;
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1. Introduction

Epilepsy is a brain disease with strong suddenness, recurrence and involuntary nature [1].
According to statistics from the World Health Organization, nearly 50 million people worldwide
suffer from epilepsy [2]. At present, the clinical diagnosis of epilepsy mainly relies on medical history
data and brain examinations, such as visual examination of long-term electroencephalogram(EEG) by
experienced doctors. However, this method is time-consuming and the results are subjective. To solve
this dilemma, a large number of methods have been proposed to identify epileptic EEG signals
through signal processing and machine learning. These methods can reduce the burden of doctors and
improve the diagnostic accuracy.

Due to the obvious nonlinearity and nonstationarity of epileptic EEG signals, researchers use multi-
channel and high sampling rate EEG acquisition equipment to obtain EEG signals of subjects. In this
way, they can ensure the highest spatial and temporal resolution. However, this method directly causes
the feature dimension of the multi-channel EEG signal to be too high. On the one hand, information
redundancy and noise are increased, which brings interference to accurate identification. On the other
hand, the signal processing time is prolonged and the diagnosis efficiency is reduced.

In view of the possible dimension disasters in the feature extraction of multi-channel EEG signals,
many feature dimension reduction algorithms are proposed. M. Yildiz et al. [3] used principal
component analysis (PCA) to reduce dimensionality, obtaining the best 8-dimensional features and
improving the classification accuracy by 9%. A. Matin et al. [4] combined PCA with two independent
component analysis (ICA) algorithms and achieved good classification results in a variety of tasks. It
have been found that manifold learning can improve the classification effect while reducing the
dimension of EEG features. Yang et al. [5] proposed a feature dimension reduction algorithm based
on local preserving projection and achieved a classification accuracy of more than 97% in a variety of
classification tasks. J.Birjandtalab et al. [6] adopted a non-linear data embedding technique based on
random nearest neighbor distance metric and achieved an F-measure of more than 87%. Hou et al. [7]
used local linear embedding and random forest algorithms to achieve an average classification
accuracy of 95%.

Although there have been many dimension reduction algorithms for a single feature, the
relationships among features are not well considered. It may cause redundant information between
different features, thereby increasing unnecessary feature dimensions. In order to reduce the feature
dimension and the information redundancy between features, SLPCCA is applied to the classification
of epilepsy EEG since it can effectively use both sample category information and nonlinear
relationships between features. SLPCCA is used to convert the original high-dimensional
multi-channel EEG features into low-dimensional fusion features, then the fusion features are input
into the classifier. Through experiments on Bonn data set and CHB-MIT data set, it can be proved that
SLPCCA can effectively reduce the multi-channel EEG feature dimension. At the same time, the
redundant information and irrelevant components in the original features are removed, which
improves the classification accuracy and helps to reduce the diagnosis time.

The layout of the paper is as follows. In Section 2, two original features in the experiment are
introduced. In Section 3, theories and characteristics of SLPCCA is introduced. The data sets,
classifiers and classification evaluation indicators used in the experiment, as well as the classification
results under various classification tasks of different data sets are presented in Section 4. Parameter
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sensitivity and fusion feature dimension of SLPCCA is analyzed in Section 5. Finally, conclusion are
presented in Section 6.

2. Feature extraction

The automatic detection of epileptic seizures is mainly the mining of effective information in EEG
through machine learning. Its essence can be attributed to a pattern recognition problem, in which it is
important to design features that can effectively distinguish epileptic EEG. Since EEG are
significantly different in different frequency bands, power spectral density (PSD) is selected to reflect
the changes of EEG energy with frequency. Besides, due to the non-stationary nature of EEG,
frequency domain features that require signals to be stationary, such as PSD, have limitations. To
overcome the limitations, feature extraction methods based on time-frequency analysis are proposed
and fluctuation index of frequency slice wavelet transform (FSWT-FI) is selected here.

2.1. Power spectral density

PSD [8] can describe the energy change of the frequency domain signal. Since the energy of the
EEG signal during an epileptic seizure is significantly greater than that of the non-seizure, the PSD can
effectively distinguish the seizure and non-seizure EEG. The way to obtain the PSD of signal f (t) is
as follows:

P (ω) =

+∞∑
τ=−∞

E
[
f (t) f ∗ (t + τ) e−iωτ

]
, (2.1)

where P (ω) means the power spectral density at frequency ω, E means expectation, ’∗’ means
conjugate and τ is the time delay.

EEG can be roughly divided into five rhythms, namely δ (1 ∼ 3Hz), θ (4 ∼ 7Hz), α (8 ∼ 13Hz),
β (14 ∼ 30Hz) and γ (30 ∼ 80Hz). Each rhythm has different energy characteristics during a seizure.
Therefore, the PSD on these rhythms are selected as features of the automatic detection of epileptic
seizures.

2.2. Fluctuation index of frequency slice wavelet transform

Frequency slice wavelet transform (FSWT) is a time-frequency analysis method proposed by Yan
et al. [9]. The FSWT of signal f (t) is as follows:

W f (t, ω, k) =
1

2π

∫ +∞

−∞

f̂ (u) p̂∗
(
k

u − ω
ω

)
eiutdu, (2.2)

where W f (t, ω, k) is the frequency slice wavelet transform form of f (t), ’∗’ means conjugate and f̂
is the Fourier transform of f . p̂ is the Fourier transform of the mother wavelet function, that is, the
frequency slice function. The commonly used frequency slicing function is p̂ (ω) = e−0.5ω2

. k is the
time-frequency analysis coefficient, which can be obtained as k =

4ωp

ηs
, where 4ωp is the width of the

frequency window of p̂ (ω) and ηs is the frequency resolution of f (t). The inverse Fourier transform
of W f (t, ω, k) in the time domain (t1, t2) and frequency domain (ω1, ω2) is as follows, then the signal
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component of the f (t) in the time frequency domain (t1, t2, ω1, ω2) can be obtained,

ft1,t2,ω1,ω2 =
1

2π

∫ ω2

ω1

∫ t2

t1
W (τ, ω, k) eiω(t−τ)dτdω. (2.3)

In real applications, EEG is processed in discrete form. Correspondingly, the discrete FSWT is
given by [10]

W (·, k) = F−1
{
F { f } ∗ P̂k

}
, k = 0, 1, · · · , n − 1 (2.4)

where n is the length of the signal f , F and F−1 are the discrete Fourier transform and inverse discrete
Fourier transform, respectively. Besides, the frequency slice function P̂k is a sparse sequence of limited
length. Equation (2.4) can be realized by reducing resample in the time domain and using fast Fourier
transform for each k. So, the inverse discrete FSWT is as follows:

f =
1
n

F−1

Nθ−1∑
l=0

W (l, k) e−i(2π/n)lk

 , k = 0, 1, · · · , n − 1 (2.5)

where Nθ is the number of resample points.
After obtaining the time-frequency distribution of EEG signals through FSWT, the corresponding

frequency ranges of rhythms δ, θ, α, β and γ are reconstructed to obtain the time-domain waveforms
of each rhythm. Then the fluctuation index (FI) of each rhythm signal is calculated as follows for the
subsequent classification task,

FI =

n−1∑
t=1

( ft+1 − ft)2 (2.6)

where n is the total length of the signal f . ft+1 and ft are signals at two adjacent moments.

3. Feature fusion algorithm

Although the above-mentioned PSD and FSWT-FI can well reflect the characteristics of epilepsy
EEG, they have the risk of causing a dimension explosion. Because they are extracted on each rhythm
of the EEG, when the object is a multi-channel EEG, the feature dimension will increase rapidly. In
order to avoid the risk of dimension explosion, feature fusion algorithm is used after feature extraction
to fuse information of two features while reducing the dimension.

Canonical correlation analysis (CCA) [11] is a multivariate statistical algorithm dealing with the
correlation between two sets of variates. CCA transforms the correlation between two sets of random
variables into the correlation between a few pairs of typical variables. It can not only retain the
effective information of multiple EEG features participating in the fusion, but also reduce redundant
information, thereby reducing the feature dimension.

Although CCA can effectively analyze the correlation between features and has played a role in
image recognition tasks [12], it has two shortcomings. On the one hand, CCA is an unsupervised
feature fusion algorithm, so it does not contain sample category information. In order to incorporate
sample category information into the feature fusion process, discriminant canonical correlation analysis
(DCCA) [13] is proposed. The fusion features obtained through the supervised feature fusion algorithm
will be better applied to the task of epilepsy EEG classification. On the other hand, as an essentially
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linear dimension reduction technique, CCA cannot reveal the nonlinear relationship between features.
So, kernel canonical correlation analysis (KCCA) [14] is proposed to converts the nonlinear problem
in the original space into a linear problem in the high-dimensional space and uses the kernel trick to
solve it. However, it is difficult for KCCA to solve the nonlinear problem embedded in the local space.
Therefore, the idea of local preservation is introduced and locality preserving canonical correlation
analysis (LPCCA) [15] is proposed to better contain the nonlinear properties of EEG. Inheriting the
advantages of DCCA and LPCCA while making up for their shortcomings and adding sample weights,
supervised locality preserving canonical correlation analysis (SLPCCA) [16] is proposed.

3.1. Canonical correlation analysis

Suppose there are two random variables ξ and η. CCA is to find the projection direction α and
β so that the correlation coefficient of the projection αTξ and βTη is the largest. α and β are called
typical projection directions. αTξ and βTη are called canonical correlation variables. By analyzing
several pairs of unrelated canonical correlation variables, the analysis of the correlation between ξ and
η can be completed. Typical projection directions α and β can be obtained by the following criterion
function.

arg max
α,β

ρ =
αT S ξηβ√

αT S ξξα
√
βT S ηηβ

, (3.1)

where S ξη represents the cross-covariance matrix of ξ and η. S ξξ and S ηη represent the covariance
matrix of ξ and η, respectively.

When CCA is used for feature fusion, suppose there are two standardized feature sets
X = [x1, x2, · · · , xn] ∈ Rp∗n and Y =

[
y1, y2, · · · , yn

]
∈ Rq∗n, which means X and Y respectively contain

p-dimensional features and q-dimensional features of n samples. Based on the idea of CCA, the
canonical correlation variables between X and Y are extracted first. These canonical correlation
variables can be called canonical correlation features, denoted as αT

1 X and βT
1 Y , αT

2 X and βT
2 Y , · · · ,

αT
d X and βT

d Y , a total of d pairs. Then, feature set after projection, namely X∗ = (α1, α2, . . . , αd)T X

and Y∗ = (β1, β2, . . . , βd)T Y , can form the fusion feature Z =

(
X∗

Y∗

)
for classification.

3.2. Discriminant canonical correlation analysis

Because the sample category information needs to be considered, DCCA reorders the features in
the original feature set X and Y according to categories. Then, the matrix Cw describing the similarity
within the feature vector class can be defined as Cw = XAYT , where A is a symmetric positive semi-
definite block matrix with rank c and block size ni. c is the number of sample categories and ni is the
number of samples in ith category. Similarly, the matrix Cb describing the similarity between feature
vector classes can be defined as Cb =

∑c
i=1

∑c
j=1,i

∑ni
k=1

∑n j

l=1 x(i)
k y( j)T

l = −XAYT .
So, the criterion function of the typical projection direction α and β of DCCA can be defined as

arg max
α,β

ρ =
αT XAYTβ√

αT S XXα
√
βT S YYβ

. (3.2)

Same as CCA, Z =

(
X∗

Y∗

)
can be used as the fusion feature after projection for classification.
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3.3. Locality preserving canonical correlation analysis

To analyze the local structure of the data, if NX (xi) is the set of local neighbors of the sample xi,
the local correlation of the sample can be expressed as αT ·

∑
j∈NX(xi)

(
xi − x j

) (
yi − y j

)T
· β. Then, the k

neighboring matrices of feature sets X are defined as follows

FX (i, j) =

 exp
(
−
||xi−x j||

2

t2x

)
, xi ∈ NX

(
x j

)
or x j ∈ NX (xi)

0, else
(3.3)

where tx are the mean value of the distance between all samples in the feature set X. FY can be
obtained in the same way. So, the local canonical correlation can be expressed as
αT ·

∑n
i=1

∑n
j=1 FX (i, j)

(
xi − x j

)
FY (i, j)

(
yi − y j

)T
· β and the criterion function of α and β of the typical

projection direction of LPCCA can be defined as

arg max
α,β

ρ =
αT XFXFT

Y YT
β√

αT X
(
DFX − FX

)
XTα

√
βT Y

(
DFY − FY

)
YTβ

, (3.4)

where DFX and DFY are two diagonal matrices with diagonal element values DFX (i, i) =
∑n

j=1 FX ( j, i)

and DFY (i, i) =
∑n

j=1 FY ( j, i). Like CCA and DCCA, Z =

(
X∗

Y∗

)
can be used as the fusion feature after

projection for classification.

3.4. Supervised locality preserving canonical correlation analysis

Drawing on the idea of LPCCA, SLPCCA constructs the intra-class neighbor set of the sample and
defines the intra-class k neighbor matrix of feature sets X as follows,

S FX (i, j) =

 exp
(
−
||xi−x j||

2

t2x

)
, xi ∈ S NX

(
x j

)
or x j ∈ S NX (xi)

0, else
(3.5)

where S NX is the set of intra-class nearest neighbors of the sample. S FY can be obtained in the same
way. Similar to LPCCA, the criterion functions of the typical projection directions α and β of SLPCCA
are as follows,

arg max
α,β

ρ =
αT XS FXS FT

Y YT
β√

αT X
(
S DS FX − S FX

)
XTα

√
βT Y

(
S DS FY − S FY

)
YTβ

, (3.6)

where S DS FX and S DS FY are diagonal matrices composed of column elements of S FX and S FY ,
respectively.

If Ŝ XY = XS FXS FT
Y YT , Ŝ XX = X

(
S DS FX − S FX

)
XT and Ŝ YY = Y

(
S DS FY − S FY

)
YT , the solution

of the criterion function is equivalent to the solution of the following optimization problem

max
α,β

ρ = αT Ŝ XYβ

s.t.
{
αT Ŝ XXα = 1
βT Ŝ YYβ = 1

(3.7)
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In order to solve the above optimization problem, the Lagrange multiplier method is used to obtain
the following generalized eigenvalue equation:(

0 Ŝ XY

Ŝ YX 0

) (
α

β

)
= σ2

(
Ŝ XX 0

0 Ŝ YY

) (
α

β

)
, (3.8)

where σ is the Lagrange multiplier. Next, the generalized eigenvector {αi, βi} , i = 1, · · · , d,
corresponding to the first d maximum generalized eigenvalues can be found. Thus, α and β can be

constructed and then Z =

(
X∗

Y∗

)
can be obtained.

3.5. Epilepsy EEG feature fusion method based on SLPCCA

After extracting PSD and FSWT-FI from EEG data, in order to reduce the feature dimension and
information redundancy, SLPCCA is adopted to merge PSD and FSWT-FI into a fusion feature. Firstly,
the k neighbor matrix within the class according to the relationship between samples in the feature set
PSD and FSWT-FI is established. Then, samples and neighbor samples in PSD are correlated with
the corresponding samples and neighbor samples in FSWT-FI. The local structure of the data is thus
preserved. After that, by solving the optimization problem, the projection direction is obtained. Finally,
the original features are projected and combined into a fusion vector. The specific process of feature
fusion by SLPCCA is as follows

• Construct the intra-class k neighbor matrix S FX and S FY of feature sets X and Y , namely PSD
and FSWT-FI;
• Establish criterion function ρ as Eq (3.6);
• Calculate typical projection directions α and β by solving optimization problem as Eq (3.7);
• Get the projection X∗ and Y∗ of feature set X and Y by α and β;

• Combine X∗ and Y∗ into a fusion feature Z =

(
X∗

Y∗

)
;

• Z is the fusion feature set obtained by the fusion of PSD and FSWT-FI, which will be used to
train and test the classifier.

If H = Ŝ XX
− 1

2 Ŝ XY Ŝ YY
− 1

2
=

∑r
i=1 λiuivT

i , where λ is the eigenvalue, then it can be known that the

optimal solutions for projection directions α and β are Ŝ XX
− 1

2 ui and Ŝ YY
− 1

2 vi [11], respectively. Under
the constraints of the optimization problem shown in Eq (3.7), the typical projection directions,
namely αi and βi, are at most r pairs

(
r = rank

(
Ŝ XY

))
. Because the projection directions αi and βi

corresponding to the larger eigenvalue λi contain more information, the projection direction
corresponding to the d largest eigenvalues can be used to construct the final d-dimensional projection
direction.

Besides, for any α and β that meet the constraints of the optimization problem, there are
αT

i Ŝ XXα j = βT
i Ŝ YYβ j = δi j

αT
i Ŝ XYβ j = λiδi j

(3.9)
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where δi j =

{
1, i = j
0, i , j

. So, if x∗i = αT
i xi and y∗i = βT

i yi, then for any i , j there are

cov
(
x∗i , x

∗
j

)
= αT

i Ŝ XXα j = 0,

cov
(
y∗i , y

∗
j

)
= βT

i Ŝ YYβ j = 0,

cov
(
x∗i , y

∗
i

)
= αT

i Ŝ XYβ j = 0.

(3.10)

Therefore, cov
(
z∗i , z

∗
j

)
= 0, which means the components of fusion features are irrelevant [12]. It proves

that there is no information redundancy between the fusion features.
In addition, SLPCCA is further analyzed and compared with the above feature fusion algorithm,

namely CCA, DCCA and LPCCA.

4. Experiment

4.1. Dataset

The EEG data comes from the German Bonn University dataset [17] and CHB-MIT dataset [18],
which have been widely used in epilepsy detection related tasks.

The Bonn dataset contains 5 subsets of A-E. Each subset contains 100 segments of single-channel
EEG signals composed of 4097 sampling points and the sampling frequency is 173.61Hz. Subsets A
and B are respectively taken from the scalp surface of five healthy volunteers with their eyes open and
closed. Subsets C and D are respectively taken from five epilepsy patients outside the lesion area and
within the lesion area of the inter-epilepsy. Subset E is taken from the epileptic seizure area of the
above five epilepsy patients. Each EEG signal is divided into 4 evenly, that is, each subset is divided
into a data set containing 400 single-channel EEG signals composed of 1024 sampling points.

The CHB-MIT dataset consists of multi-channel EEG signals from 24 epilepsy patients aged 3 to
22 years. Most EEG signals adopt 23 EEG channels and their electrode positions and naming adopt
the international 10–20 system [19]. A sliding window with a window length of 4 seconds and a
step length of 2 seconds is used to extract the inter-seizure segment and the seizure segment from the
continuous EEG signal.

In the experiment, 70% of each type of sample is used as the training set and 30% is used as the
test set. For the Bonn data set, PSD of each sample and the FSWT-FI of each sample’s δ, θ, α, β,
and γ rhythms are extracted as features. Then feature fusion algorithms are used to get the fusion
feature. For the CHB-MIT data set, 23 channels’ PSD of each EEG signal and the FSWT-FI of the five
EEG rhythms are extracted as features. After forming the concatenated feature vector, feature fusion
algorithms are used to get the fusion feature.

4.2. Pretreatment, classifier and evaluation index

The original EEG will be interfered by noise, such as eye electrical artifact and EMG interference
from human body. Therefore, in order to better extract EEG features, wavelet threshold filtering is
used for denoising. Besides, the band stop filter is used to remove power-line interference.
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Least squares support vector machine (LS-SVM), which has been widely used in various fields such
as machine learning, is chosen as the classifier. In order to evaluate the effect of the classifier, accuracy,
sensitivity and specificity are introduced as evaluation indicators. They are obtained as follows:

Accuracy = T P+T N
T P+T N+FP+FN × 100%,

S ensitivity = T P
T P+FN × 100%,

S peci f icity = T N
T N+FP × 100%,

(4.1)

where TP (True Positive) is the number of positive samples that are correctly classified, TN (True
Negtive) is the number of negative samples that are correctly classified, FP (False Positive) is the
number of positive samples that are incorrectly classified and FN (False Negative) is the number of
negative samples that are incorrectly classified.

4.3. Experiment result

4.3.1. Experiments on Bonn dataset

In order to consider a wider range of practical clinical situations, such as the classification of
multiple types of EEG signals and the classification under the uneven number of samples, 5 subsets of
Bonn dataset are used to form 11 classification groups. They include A vs E, B vs E, C vs E, D vs E,
AB vs E, AC vs E, AD vs E, ABC vs E, ABCD vs E, A vs C vs E and AB vs CD vs E. These 11
classification groups can be divided into 4 classification tasks: normal EEG vs seizure epileptic EEG,
inter-seizure epileptic EEG vs seizure epileptic EEG, non-seizure EEG vs seizure epileptic EEG and
normal EEG vs inter-seizure epileptic EEG vs seizure epileptic EEG. The classification results on
these four tasks are shown in Table 1, Table 2, Table 3 and Table 4 respectively. The results shown in
the tables are the average of all experiments in the corresponding task and the optimal result in each
task is bolded.

• normal EEG vs seizure epileptic EEG

Table 1. Result of normal EEG vs seizure epileptic EEG.

Data Sets Feature Fusion Algorithm Feature Dimension Accuracy Sensitivity Specificity

A vs E

B vs E

PSD \ 5 99.16% 98.33% 100%

FI \ 5 99.16% 98.33% 100%

PSD,FI

series 10 100% 100% 100%

PCA 8 99.58% 100% 99.16%

CCA 8 99.58% 99.16% 100%

DCCA 2 96.67% 95.00% 98.33%

LPCCA 8 98.75% 97.50% 100%

SLPCCA 8 100% 100% 100%
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• inter-seizure epileptic EEG vs seizure epileptic EEG

Table 2. Result of inter-seizure epileptic EEG vs seizure epileptic EEG.

Data Sets Feature Fusion Algorithm Feature Dimension Accuracy Sensitivity Specificity

C vs E

D vs E

PSD \ 5 98.75% 98.33% 99.16%

FI \ 5 97.91% 97.50% 98.33%

PSD,FI

series 10 99.16% 99.16% 99.16%

PCA 8 97.91% 96.67% 99.17%

CCA 8 98.75% 99.16% 98.33%

DCCA 2 97.08% 98.33% 95.83%

LPCCA 8 98.75% 98.33% 99.16%

SLPCCA 8 99.16% 98.75% 99.58%

• non-seizure EEG vs seizure epileptic EEG

Table 3. Result of non-seizure EEG vs seizure epileptic EEG.

Data Sets Feature Fusion Algorithm Feature Dimension Accuracy Sensitivity Specificity

AC vs E

AD vs E

ABC vs E

ABCD vs E

PSD \ 5 98.21% 96.45% 98.67%

FI \ 5 98.37% 97.29% 98.49%

PSD,FI

series 10 98.72% 97.49% 99.18%

PCA 8 97.08% 97.50% 97.66%

CCA 8 98.19% 97.08% 98.63%

DCCA 2 98.11% 96.87% 98.54%

LPCCA 8 98.41% 97.08% 99.16%

SLPCCA 8 99.06% 98.74% 99.16%

• normal EEG vs inter-seizure epileptic EEG vs seizure epileptic EEG
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Table 4. Result of normal EEG vs inter-seizure epileptic EEG vs seizure epileptic EEG.

Data Sets Feature Fusion Algorithm Feature Dimension Accuracy

A vs C vs E

AB vs CD vs E

PSD \ 5 96.96%

FI \ 5 96.83%

PSD,FI

series 10 97.58%

PCA 8 96.94%

CCA 8 97.16%

DCCA 2 96.58%

LPCCA 8 97.16%

SLPCCA 8 98.44%

It can be seen from the above results that fusion features that formed by the fusion of PSD and FI
using SLPCCA algorithm can achieve the best classification effect in all kinds of classification tasks,
with an average of 99.08%. Series features are also superior to single features in all classification
tasks, second only to SLPCCA. For other feature fusion algorithms, because the algorithm itself is not
suitable for epilepsy EEG classification tasks, the results are even inferior to a single feature on some
classification tasks. But because of the excellent performance of SLPCCA, it can be believed that the
application of feature fusion algorithm in the classification of epilepsy EEG is feasible and effective.

4.3.2. Experiment on CHB-MIT dataset

Table 5. Result of inter-seizure epileptic EEG vs seizure epileptic EEG.

Feature Fusion Algorithm Feature Dimension Accuracy Sensitivity Specificity

PSD \ 115 95.58% 95.35% 95.82%

FI \ 115 94.66% 94.42% 94.89%

PSD,FI

series 230 96.44% 96.21% 96.67%

PCA 190-210 92.22% 91.11% 93.33%

CCA 160-180 94.19% 93.96% 94.42%

DCCA 2 81.47% 80.77% 82.17%

LPCCA 150-170 95.31% 95.78% 95.02%

SLPCCA 50-60 97.18% 97.10% 97.77%

Although the effectiveness of the feature fusion algorithm has been proven, the difference in the
classification effect of each algorithm on the Bonn dataset is small. In addition, because the Bonn
dataset is a single-channel EEG dataset with low feature dimensions, the experimental results on the
Bonn dataset cannot reflect the advantages of feature fusion algorithm in dimension reduction.
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Therefore, the binary classification of inter-seizure epileptic EEG and seizure epileptic EEG on the
CHB-MIT dataset are carried out. The results are shown in the Table 5. The optimal result is also
bolded.

It can be seen from Table 5 that, in the multi-channel EEG data set, the dimension reduction
advantage of the feature fusion algorithm is more obvious. Compared with the series feature, the
dimension of each fusion feature has different degrees of reduction. The fusion feature obtained by
SLPCCA achieve the highest classification accuracy of 97.18% when the feature dimension is almost
one-half of the single feature dimension and one-fourth of the serial feature dimension. It is
foreseeable that when the feature dimension or the number of EEG channels is further increased,
when the dimensional explosion disaster occurs in the series feature, the fusion feature obtained by
SLPCCA can still be in a low dimension. Besides, because the algorithm itself is not suitable for
epilepsy EEG classification tasks, the results obtained by other fusion algorithms except SLPCCA are
not as good as single feature, just like the experiment on Bonn dataset. However, because CCA and
LPCCA consider the correlation between features, their accuracies are still higher than that of single
feature dimension reduction methods, such as PCA.

4.3.3. Comparison with other methods

The proposed method is compared with other methods under the same dataset. The comparison
results of Bonn dataset and CHB-MIT dataset are shown in the Table 6 and Table 7 respectively. It
can be seen from the result that SLPCCA has a higher accuracy in more comprehensive classification
tasks.

5. Discussion

It can be seen from the results that although CCA, DCCA and LPCCA can achieve dimension
reduction, the accuracy of the fusion features obtained by them is negatively affected. CCA and
LPCCA are unsupervised algorithms, so they may introduce wrong category information in the
feature fusion process, thereby reducing the classification accuracy. The dimension of the fusion
features obtained by the DCCA is limited by the number of categories, so DCCA is not suitable for
small-category classification tasks. However, SLPCCA can not only achieve feature dimension
reduction, but also improve classification accuracy, so it will be further analyzed next.

5.1. Discussion of algorithm parameter sensitivity

In order to add the local structure information of the data, SLPCCA draws on LPCCA to construct
the intra-class k neighbor matrix of the feature set. Because the parameter k will affect the effect of
the algorithm, sensitivity analysis is performed on k. k ranges from 15% to 90% of the total number of
samples in the same category. Accuracy of task AB vs CD vs E on the Bonn dataset is the evaluation
index. The result is shown in the Figure 1.
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Table 6. Comparison results of Bonn dataset.

Year Method Datasets Accuracy

2013 intrinsic time scale decomposition[20] A,C,E 95.67%

2014 wavelet feature + statistical feature[21] A,C,E 84.20%

2015 frequency domain nonlinear features[22] A,C,E 98.00%

2016 weighted permutation entropy + SVM[23] A,D,E 97.50%

2016 optimal allocation + logic tree[24] A,D,E 97.50%

2018
Hankel matrix + Hilbert transform +

time-frequency representation[25]

D,E 96.00%

A,D,E 98.00%

2019
Fourier-Bessel series expansion +

weighted multi-scale Renyi permutation entropy[26]

D,E 97.50%

A,C,E 97.30%

2020
energy feature + approximate entropy +

local preserving projection + LS-SV[5]

D,E 93.00%

C,E 96.50%

A,D,E 96.69%

2020 statistical features + adaptive LS-SVM[27] 11 groups 99.00%

2021 proposed method

C,E 99.16%
D,E 99.16%
A,C,E 98.17%
A,D,E 98.00%
11 groups 99.16%

Figure 1. Sensitivity analysis result of parameter k.
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It can be seen from the figure that when k is bigger than 40%, the accuracy is high and the fluctuation
range does not exceed 1%. Therefore, SLPCCA can be considered not sensitive to parameter changes
and relatively stable.

Table 7. Comparison results of CHB-MIT dataset.

Year Method Patients Accuracy

2011 discrete wavelet transform[28] 24 80.00%

2012 energy feature + wavelet transform[29] 5 91.80%

2015 Poincare section and phase space[30] 24 93.00%

2016 Convolutional Neural Network[31] 23 85.00%

2017 Mallat’s Scattering[32] 24 91.00%

2017 wavelet level selection + SVM[33] 24 92.30%

2018 power spectral density + SVM[34] 24 92.30%

2018 short time Fourier transform (STFT)[35] 24 92.00%

2018 convolutional neural network[36] 21 95.60%

2019 hybrid filter[37] 22 85.80%

2020
complementary ensemble empirical mode decomposition +

limit gradient enhancement[38]
24 95.49%

2020 discrete wavelet transform for multiresolution analysis[39] 10 95.30%

2020 non-dominated sorting genetic algorithm[40] 24 97.00%

2020
DFA based on the EMD + teager and instantaneous energy +

Higuchi and Petrosian fractal dimension[41]
24 93.00%

2021 proposed method 24 97.18%

5.2. Discussion of feature dimension and classification effect

Among the mentioned various feature fusion algorithms, only the fusion feature dimension of
DCCA is limited by the number of classification categories. Except DCCA, in CCA, LPCCA and
SLPCCA, the dimension of the projection direction depends on the number of non-zero eigenvalues
of the generalized characteristic equation. The dimension of the projection direction will then
determine the dimension of the fusion feature and ultimately affect the classification effect. Therefore,
the classification accuracies of the fusion features of these three algorithms under different feature
dimensions are analyzed. Accuracy on the CHB-MIT dataset is the evaluation index. The result is
shown in the Figure 2.
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Figure 2. The relationship between feature dimension and classification accuracy.

It can be seen from the figure that as the fusion feature dimension decreases, the accuracy rate of
CCA decreases the fastest, followed by LPCCA. And SLPCCA maintains a relatively high accuracy
rate when the feature dimension decreases. It is because LPCCA constructs a k-adjacent matrix on the
basis of CCA, compared to the fusion features generated by CCA, the fusion features generated by
LPCCA have information about the local structure of the data. Besides, SLPCCA borrows from
DCCA and changes from an unsupervised feature fusion algorithm to a supervised feature fusion
algorithm. The added sample category information enables SLPCCA to contain more information
with less dimensions and ultimately achieve a better classification effect. In real applications, EEG
features usually have high dimension and contain redundant information. Moreover, because EEG has
strong frequency characteristics, features of combined frequency bands are often selected. But some
of these frequency bands may be irrelevant to the research, which will lead to the inclusion of
irrelevant components. Therefore, it is necessary to use feature fusion methods such as SLPCCA to
reduce dimension while connecting multiple features. Thus, redundant information and irrelevant
components in features are reduced, and the application effect of EEG, such as classification accuracy,
is improved.

6. Conclusions

In order to avoid the dimensional explosion and information redundancy caused by the series
connection of multi-channel EEG features, SLPCCA, which can reflect the sample category
information and the local structure of the data, is used for feature fusion. Then the epilepsy
classification method based on SLPCCA including the following three steps is proposed. First, PSD
and FSWT-FI are extracted from EEG as features. Secondly, SLPCCA is used to find a projection
direction and merge the two features of one sample into one feature after projection. Compared with
other feature fusion algorithms such as CCA, SLPCCA contains not only the local structure of the
sample, but also the category information of the sample. Finally, fusion features are used to train and
test LS-SVM. The proposed method is verified on the Bonn dataset and the CHB-MIT dataset. The
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experiment results show that the proposed method can achieve an average classification accuracy of
99.16%, a sensitivity of 99.06% and a specificity of 99.58% on the 11 classification tasks on the Bonn
dataset and the feature dimension is only 80% of the series feature dimension. It can achieve an
accuracy of 97.18%, a sensitivity of 97.10% and a specificity of 97.77% on inter-seizure epileptic
EEG vs seizure epileptic EEG task on the CHB-MIT dataset and the feature dimension is only 25% of
the series feature dimension. It can be seen that the proposed method not only has better classification
accuracy than other methods, but also can effectively reduce the feature dimension. What’s more,
because the proposed method has no special processing, such as selecting specific channels for some
patients or selecting different features for different tasks manually, it can be well adapted to other
epilepsy EEG dataset.
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