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Abstract: Classical quantification of gastric emptying (GE) and orocaecal transit (OCT) based on
half-life time T50, mean gastric emptying time (MGET), orocaecal transit time (OCTT) or mean
caecum arrival time (MCAT) can lead to misconceptions when analyzing irregularly or noisy data. We
show that this is the case for gastrointestinal transit of control and of diabetic rats. Addressing this
limitation, we present an artificial neural network (ANN) as an alternative tool capable of
discriminating between control and diabetic rats through GE and OCT analysis. Our data were
obtained via biological experiments using the alternate current biosusceptometry (ACB) method. The
GE results are quantified by T50 and MGET, while the OCT is quantified by OCTT and MCAT. Other
than these classical metrics, we employ a supervised training to classify between control and diabetes
groups, accessing sensitivity, specificity, f1 score, and AUROC from the ANN. For GE, the ANN
sensitivity is 88%, its specificity is 83%, and its f1 score is 88%. For OCT, the ANN sensitivity is
100%, its specificity is 75%, and its f1 score is 85%. The area under the receiver operator curve
(AUROC) from both GE and OCT data is about 0.9 in both training and validation, while the AUCs
for classical metrics are 0.8 or less. These results show that the supervised training and the binary
classification of the ANN was successful. Classical metrics based on statistical moments and ROC
curve analyses led to contradictions, but our ANN performs as a reliable tool to evaluate the complete
profile of the curves, leading to a classification of similar curves that are barely distinguished using
statistical moments or ROC curves. The reported ANN provides an alert that the use of classical
metrics can lead to physiological misunderstandings in gastrointestinal transit processes. This ANN
capability of discriminating diseases in GE and OCT processes can be further explored and tested in
other applications.
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1. Introduction

The gastrointestinal (GI) transit depends upon a coordinated association of mechanisms [1]. The two
main processes to characterize the GI transit are gastric emptying (GE) and orocaecal transit (OCT).
Several conditions may influence the GI transit, such as medications [2], meal composition [3], and
pathologies such as diabetes mellitus [4]. Hyperglycemia, neuropathy and GI morphological alterations
resultant from diabetes mellitus have been associated with abnormal GI motility, like disordered gastric
motor function [5], and delayed GE [6] and OCT [7].

Usually, the likelihood of GI transit alterations in diabetic patients who show GI symptoms is
performed qualitatively [8]. However, previous studies indicate that the analysis of the GI symptoms
is not suitable for predicting GI transit alterations since these changes may be asymptomatic [9, 10].
Therefore, it is essential to identify abnormal GI transit in diabetic patients, once it may impair the
glycemic control and the delivery of nutrients [11].

The GE is commonly measured by the T50 value, defined as the time when the initial signal is
decreased by 50% [12]. Furthermore, OCT may be quantified in terms of the orocaecal transit time
(OCTT), defined as the first relevant signal detected in caecum [13, 14]. Both T50 and OCTT are
considered the gold standard parameters in clinical practice, but their results can be misleading in
situations like irregularly shaped data profiles, because they are single values aimed to characterize
the whole time series. Alternatively to T50 and OCTT, Podczeck et al. [15] introduced statistical
moments to quantify both GE and OCT in terms of mean gastric emptying time (MGET) and mean
caecum arrival time (MCAT). These measures represent, respectively, the time when a mean amount
of tracer is emptied from the stomach or arrived at the caecum and are given by

MGET =

tmax1∫
0

t f1(t) dt

AUC
, (1.1)

MCAT =

tmax2∫
0

t f2(t) dt, (1.2)

where f1 and f2 are respectively the GE and OCT signals, tmax is the maximum time of a given signal,
and AUC is the area under the curve of GE, being here both signals considered as a time-continuous
curve. As a result, they are based on the whole measurement process, which may improve the data
interpretation. However, since statistical moments are based on the curve profile, the noisiness of the
signal plays an important role in the measurement and can lead to unreal quantifications.

Given the presented scenario and further contradictions of the classical metrics T50, OCTT, MGET
and MCAT, we address that the application of artificial neural networks (ANNs) on GE and OCT data
can be suitable to detect GI transit alterations. It is well known that ANNs have been used
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successfully in several areas of medicine [16], which include many recent applications for both
diagnosing and prediction of diabetes [17–22]. Moreover, ANNs also have been widely applied in the
field of gastroenterology in terms of diagnosis and prognosis [23–26]. However, most of these
applications remain almost unexplored in GI transit disorders and diseases [27], lacking the
opportunity to further explore and detect physiological changes caused by diabetes and other
pathologies. Accordingly, by using gathered data from an experimental model of induction of diabetes
mellitus that causes a disturbance in the GI transit, here we develop an ANN classifier capable of
discriminating in the GI transit between control and diabetic rats based on GE and OCT
measurements of non-digestible solids. The resulted ANN classification is then contrasted to the
classical quantification of GE and OCT by the metrics T50, OCTT, MGET and MCAT. As reported
here, two out of four of these classical metrics were found to be significantly different in diabetic and
control groups, but two of them do not. This inappropriate contradiction is circumvented in our ANN
approach, which was able to detect changes in the gastrointestinal transit and to reveal still hidden
characteristics of diabetes.

The paper is organized as follows. In Section 2, we present the methods of the study. In Section 3,
we present our results, which are then discussed in Section 4. Finally, Section 5 closes the paper with
some concluding remarks.

2. Materials and methods

2.1. Animals

Male Wistar rats aged 30 days were obtained from São Paulo State University (UNESP) animals
house, Botucatu, São Paulo State, Brazil. The rats were kept in a room with a controlled light/dark
cycle of 12 h, temperature (24 ± 2 oC) and humidity (60 ± 5 %), and they were fed ad libitum with
a standard rat chow (Presence Nutrição Animal, Paulı́nia, Brazil). To the purpose of this study, they
were randomly assigned into two groups: control (n = 22) or diabetes (n = 19). All experiments were
conducted according to the UNESP Committee For the Use and Care of Animals (Protocol #752).

2.2. Induction of diabetes

On the 90th day of age a single intraperitoneal injection of streptozotocin (STZ, 50 mg kg−1,
dissolved in citrate buffer solution, pH 4.5) was performed in diabetes group rats. Control group rats
received an equal injected volume of vehicle. Three days after the induction, diabetes was verified by
a blood glucose level of ≥ 200 mg dL−1, measured using an Accu-Check glucometer (Performa,
Roche, Germany) on blood taken from the tail vein [28]. Control rats presented a blood glucose of
87.64 ± 10.45 mg dL−1 and diabetic rats presented a blood glucose of 401.40 ± 49.13 mg dL−1 (p <
0.0001), confirming a successful induction of diabetes. Thus, the animals that were randomly
assigned to the diabetic group developed this condition after induction. The reported fasting blood
glucose tests also confirmed that rats of the control group were not diabetic.

2.3. Gastric emptying and orocaecal transit measurements

Thirty days after induction, control and diabetic rats were submitted to GE and OCT assessment
by the alternate current biosusceptometry (ACB), a noninvasive biomagnetic technique that has been
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extensively applied to assess GI transit in rats [29–31]. Briefly, the ACB sensor consists of one pair
of excitation coils and one pair of detection coils mounted in a coaxial arrangement. Each pair of
excitation and detection coils is divided into two sub-systems: the reference and the measurement
system. The reference system is placed far from the sample to subtract the environmental noise, while
the measurement system is used to detect the signal from the magnetic material. The signal acquired
by the ACB sensor depends on the amount and position of the magnetic material, which enables its
application to assess GI transit in both rats and humans [29–32]. Detailed technical information was
reported elsewhere [33].

Regarding the experiment, after a 12 h fast, rats were fed with a 2 g test meal composed of 0.5
g manganese ferrite (MnFe2O4) microparticles (size between 53 and 75 μm) incorporated into 1.5 g
of standard rat chow. Manganese ferrite remains completely inert in all pH solutions and therefore
cannot be absorbed by the GI tract [31]. Ten minutes after the test meal ingestion, rats were gently
handled by the neck, and the ACB sensor was positioned on their gastric and caecum projections [29].
Measurements were repeated on the awake rats at the same points at intervals of 15 minutes for 6 hours.
Therefore, the recorded data was composed of a time series of the electrical signal intensity for each
animal in the control and case groups. The GE was classically quantified by T50 and MGET, while the
OCT was quantified using the OCTT and MCAT. Concerning the assessing of GE and OCT, the animal
experimentation protocol presented here was already published before [29, 31, 34].

2.4. Statistical analysis for classical metrics of gastric emptying and orocaecal transit

All GI parameters obtained by ACB measurements were expressed as mean ± standard deviation.
Values of MGET, T50, MCAT, and OCTT obtained from control and diabetic rats were compared using
unpaired Student’s t-test and ROC analyses. A statistically significant difference was considered at
p < 0.05.

2.5. Neural network architecture

Our inputs are time series data of ACB (GE and OCT) and our outputs are binary classification
for either case (i.e., diabetes, 1) or control (0). With the ACB data, we then employ a dense feed-
forward deep neural network, composed of input, hidden, and output layers to perform the classification
between case (diabetic rats) and control (non-diabetic rats). It is implemented and trained using the
TensorFlow engine with the Keras backend [35]. The classification task consists of passing the pre-
classified ACB time-series to the network and ask it to retrieve the group that the animal owing such
data belongs to.

For the classification task, we attempt to find the best neural network architecture by tuning its
hyperparameters, namely, the number of hidden layers, the number of neurons per layer, the learning
rate, the layer weight regularizer threshold, the activation functions, and the optimizer. The tuning
process is done by enumeration, finding the set of parameters that leads to the higher accuracy. The
network architecture is schematized in Figure 1. As a matter of representation, the colors and linewidths
in the figure typify the layers’ connections, the weights, and the groups. Some hyperparameters chosen
for the training are presented in Table 1.

The choice of parameters and the training procedure are performed separately for the gastric
emptying and the orocaecal arrival signals. However, both the GE and OCT inputs are chosen to be a
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20 × 1 column tensor, obtained from the ACB measurement. For the gastric emptying signal, the
input layer is followed by two hidden layers with 52 neurons each. All hidden layers are activated
with the rectified linear unit (ReLU) function, and it is added the L1 activity regularizer with a
threshold of 10−5. The output layer is formed by a single neuron activated with the softmax function.
Outputs are binarized as 1 to case (diabetes) and 0 to control.

For the orocaecal arrival signal, though, a shallower network is needed, composed of two hidden
layers with 24 neurons each, also activated by the ReLU function and with the L1 regularizer with
a threshold of 10−5. The output layer remains the same as that of gastric emptying data. Both ANNs
employ the Stochastic Gradient Descent for training, compiled using the Adam optimizer [36] with
a learning rate lr = 0.0005. We apply the mean squared error as the loss and accuracy as the metric.
After the training, the confusion matrix is evaluated, and neural networks’ sensitivity, specificity, and
f1 score are retrieved.

Figure 1. Representation of a dense neural network. Linewidths of connectors represent the
weights: the wider the line, the heavier the weight. Blue color: control; red color: diabetes.

Table 1. Artificial Neural Network architecture, showing the number of neurons per layer as
well as the activation function (ReLU and softmax). Output layer has only one binary neuron
that returned 0 for control and 1 for case.

Sample Hidden 1 Hidden 2 Output
Neurons Activation Neurons Activation Neurons Activation

GE 52 ReLU 52 ReLU 1 softmax
OCT 24 ReLU 24 ReLU 1 softmax

As we mentioned, for the training and validation processes we have access to GE and OCT data from
41 samples distributed between case (19) and control (22). During the choice of hyperparameters, we
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determine the use of about 3/4 of the samples for the training, and the remaining 1/4 for validation. As
expected, for such a small dataset, the supervised training is challenging. Both the gastric emptying
and orocaecal arrival classification require to deal with overfitting. It is a common bottleneck from
neural networks related to ANNs memorizing the data set. To overcome such a problem, during the
training procedure, the L1 regularization was applied as a standard way of decorrelating representations
reducing overfitting [37–39]. In addition to that, we also use the early stop technique as an effective
way of preventing overfitting [40], finishing the training procedure as soon as a chosen metric, namely
the accuracy, ended changing.

2.6. Data standardization and normalization

Working with neural networks usually requires a pre-processing step to the ANN to be able to better
generalize. The ANN weights are normally initialized by small random numbers and a significant
numeric difference between them and the inputs leads to inadequate training [41].

Since the raw data of gastric emptying is originally acquired as a time series from the ACB
technique, to take advantage of the power of the ANN, the raw electric signal is standardized as to
have a mean equals zero and a standard deviation of 1, according to

xstd =
x − 〈x〉
σ

, (2.1)

where x is the raw signal and σ is its standard deviation. Figure 2 shows the standardized signal for
both (a) the gastric emptying and (b) the orocaecal arrival. As one can observe, a visual classification
between case and control is not clear, even though the OCT signal has a more pronounced variance in
contrast to the GE signal, especially for later times.

Figure 2. Experimental time series obtained by the alternate current biosusceptometry
technique for (a) the gastric emptying and (b) the orocaecal arrival. Each curve refers to a
specific rat with blue related to cases and red related to controls. The data were standardized
according to the Eq (2.1).
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3. Results

Table 2 shows the quantification obtained from ACB signals. The GE process is quantified by the
gold standard parameter T50 and the statistical moment MGET. While the MGET of diabetic rats is
delayed in comparison to control (p < 0.05), T50 quantification shows no differences between groups
(p = 0.28). However, we found the opposite situation for the OCT quantification. The gold standard
parameter OCTT is delayed in diabetic rats (p < 0.0001), but no differences are found for MCAT
between control and diabetes group (p = 0.31).

Table 2. MGET, T50, MCAT, and OCTT results for control and diabetic rats. Values are
expressed as mean ± standard deviation. * p < 0.05 and ** p < 0.0001 vs. Control.

Parameter Control (n = 22) Diabetic (n = 19)
MGET (min) 97.27 ± 23.3 108.50 ± 5.2 *
T50 (min) 138.60 ± 24.5 145.80 ± 16.3
MCAT (min) 265.70 ± 9.7 271.90 ± 26.6
OCTT (min) 116.40 ± 17.9 145.50 ± 24.4 **

Figure 3. ROC curves for MCAT, MGET, T50 and OCTT, with sensitivity in the y-axis and
false positive rate (FPR) in the x-axis.

Figure 4(a) shows the training results for GE and Figure 4(b) shows the same for OCT. For GE,
training accuracy starts at 40% and validation accuracy starts at 60%, both rising to 80–90% for epochs
greater than 140. After 150 epochs, the network starts to overfit. Training accuracy reaches more than
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90%, but the validation accuracy decreases. The ANN memorizes the piece of data used for the training;
hence, the remaining of the data used only to evaluate the training is new to the network, and its
classification becomes worse. Training loss and accuracy also show clues of overfitting after epoch 150.
The early stop technique is then applied to prevent overfitting, finishing the training before it occurs.
Thereby, for GE, the sensitivity is 88%, the specificity is 83%, and the f1 score is 88%, showing that
the supervised training and classification is successful.

Besides the statistics presented in Table 2, we proceed with the comparison of our results by
reporting the value of AUROC (area under the receiver operator curve∗) for both ANN and MGET,
MCAT, T50 and OCTT. By treating these latter also as binary classifiers, we get a receiver operating
curve (ROC) for each of those metrics by using different thresholds. The referred curves are shown in
Figure 3, where the straight line represents a binary random classifier. Classifiers with reasonable
performances are those whose ROCs lie above this baseline†. This is the case only for the ROC curve
of OCTT. At the other end of the performance, the poorest classification is the one given by T50. This
is consistent with the analysis based on the Student’s t-test presented in Table 2. However, both of
these analyses based on classical statistics turn out to be rather inconclusive.

Figure 4. ANN training results for (a) GE and (b) OCT. Area under the receiver operating
characteristic (AUROC) for (c) GE and (d) OCT.

In order to compare the performance of the referred binary classifiers, we report the AUROC value
for each ROC shown in Figure 3: OCTT — 0.83; MCAT — 0.81; MGET — 0.79; T50 — 0.65.

∗AUROC is a typical performance metric employed to evaluate the classification process [42, 43].
†For example, a perfect ROC curve is the one in which sensitivity reaches the level of 100% for a false positive rate (FPR) of 0.
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Again, within this criterion, the best (OCTT) and the poorest (T50) binary classifiers are in agreement
with the preceding results. As a reference for the reader, the performance of binary classifiers can be
seen in [44]. However, as we commented earlier, the shape of their ROC curves should also be taken
into account. Keeping this limitation in mind, we now describe the accomplishments of our ANN
methodology and its AUROC values for GE and OCT.

Figure 4 shows that the general trend of the training of GE (Figure 4(a)) and OCT (Figure 4(b)) are
quite similar. However, due to the more considerable variance of the ACB signal for OCT in
comparison to GE (see Figure 2), it is easy for the ANN to generalize the latter. Using a shallower
neural network, though, we achieve an overall accuracy of about 90%, with losses of around 10%.
The ANN also starts to overfit after epoch 300, and the training is early stopped to prevent it. The
specificity is 75%, the sensitivity is unitary (100%), with a f1 score of 85%. The training procedure
for the OCT requires more epochs, but the results are better in comparison to GE, with no significant
increase in the computational cost.

Figure 4(c) presents the AUROC metric evaluation for the training and validation process for GE.
Figure 4(d) presents the AUROC metric for OCT. As one can observe, training and validation achieve
AUROC values of about 0.9, demonstrating that the ANN accomplishes a better performance in
comparison with classical metrics whose AUROCs are about 0.8 or less.

4. Discussion

There is a wide range of methodologies to assess GE and OCT [45]. In humans, scintigraphy is
considered the gold standard method to measure GE [46], while the hydrogen breath test is used to
evaluate OCT [47]. Due to practical challenges, techniques such as phenol red and activated charcoal
are commonly employed to assess GE and OCT in animal studies, even though these techniques require
an increased number of animals [48, 49]. In this context, the ACB method enables a non-invasive
assessment of GE and OCT in both humans and animals [29, 32]. Due to distinct physical principles,
the GI transit quantification may vary substantially depending on the chosen method. While the gold
standard parameters T50 and OCTT consider only a single value for representing complex processes
such as GE and OCT, the statistical moments presented here confers the advantage of considering the
whole measurements for quantification. However, our GI parameters quantification shown in Table 2
reveals an example of contradictions. Namely, OCTT is delayed in the diabetic group, but for T50 no
significant differences are found. Regarding the statistical moments, MGET is delayed in diabetic rats,
but no significant differences between control and diabetes are found for MCAT.

As it is shown in Figure 2, GE and OCT curves from control and diabetic rats are very similar,
and the parameter chosen to quantify the data lead to distinct interpretations. For instance, GE curves
from control and diabetic rats present a matching profile, but their AUC is different. As a result, a
statistically significant difference is found for MGET, but not for T50. On the other hand, for OCT
curves, a statistically significant difference is found for OCTT, but not for MCAT. Although these
classical parameters are widely used in clinical and bench research [7, 31, 50], the reported AUROC
values and the ROC curve analyses also confirm that classical metrics can perform poorly in the task
of differentiating control and diabetic rats based on GI transit alterations. In the opposite direction,
our ANN approach was able to detect differences even in a small dataset, revealing that further studies
should be carried out focusing in terms of the GI physiology.
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Regarding our number of samples, it can be thought of as small when compared to traditional
artificial intelligence tasks, such as digit and image classifications, where the datasets easily overcome
thousands of entries. From the medical point of view, an a priori data classification is challenging and
not always feasible [51]. Therefore, efforts have been done to build up models able to reliable do the
classification task. Accordingly, our results show that ANNs can generalize a small dataset [52–55].
In fact, as shown in Figure 4, the validation accuracy of the our ANN for both GE and OCT is about
80–90%, being comparable with other similar methodologies that use more consolidated features [56].

Despite the fact of being able to generalize small and noisy datasets, deep neural networks can
perform non-linear transformations in a pure multidimensional space, which makes them as good as
Random Forest classifiers with ensembles of low bias decorrelated trees. We also point out the
increasing interest in training transferability, where a pre-trained model can be used as a start point for
a new classification process. Having access to the pre-trained models—even the ones performed on
small datasets—can be a powerful tool to compose a database aimed to generalize other small
datasets with shared properties. Additionally, the training is based on binary classification, so the
number of features to be learned is small in comparison to the number of inputs [57].

5. Final remarks

The ANN presented here is able to evaluate the complete profile of the ACB curves, leading to a
classification of the data thoroughly. Classical metrics based on statistical moments and on T50 and
OCTT quantification proved to be inconclusive and/or contradictory between diabetic and control
groups. However, our ANN performed as a reliable tool in the task of classification of similar curves
profiles that were barely distinguished with statistical moments. Our ANN methodology provides an
alert that the use of classical metrics (T50, OCTT, MGET, and MCAT) can lead to physiological
misunderstandings in gastrointestinal transit processes. Moreover, our ANN approach was able to
detect changes in the gastrointestinal transit that may reveal still hidden characteristics of diabetes.

The reported ANN capability of discriminating diseases in GE and OCT processes can be further
explored and tested in other applications, including the ones in GI transit. For example, it is worth
mentioning that our results are based on non-digestible solids, and then our proposed ANN does not
address cases of distinct phases of food or test meal compositions, which can be done in further studies.
In this sense, our new approach has the potential for contributing to new applications in the GI area.
As for future works, one could also consider combining the standard metrics (MCAT, MGET, T50,
OCTT) in a logistic regression model, to devise an improved statistical model for classification. As a
final remark, we emphasize the increasing interest in training transferability between small data sets.
Having access to the pre-trained ANNs can be a powerful starting point tool to help generalizing other
small datasets with common characteristics.
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Role of sex hormones in gastrointestinal motility in pregnant and non-pregnant rats, World J.
Gastroenterol., 22 (2016), 5761.

35. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, et al., TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Available from: https://www.tensorflow.org.

36. D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, preprint, arXiv:1412.6980.

37. M. Cogswell, F. Ahmed, R. Girshick, L. Zitnick, D. Batra, Reducing overfitting in deep networks
by decorrelating representations, preprint, arXiv:1511.06068.

38. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: A simple way
to prevent neural networks from overfitting, J. Mach. Learn. Res., 15 (2014), 1929–1958.

39. W. Zaremba, I. Sutkever, O. Vinyals, Recurrent neural network regularization, preprint,
arXiv:1409.2329.

40. B. Jason, Better Deep Learning: Train Faster, Reduce Overfitting, and Make Better Predictions,
Machine Learning Mastery, 2018.

41. C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995.

42. A. Tahmassebi, A. H. Gandomi, I. McCann, M. H. Schulte, A. E. Goudriaan, A. Meyer-Baese,
Deep learning in medical imaging: fMRI big data analysis via convolutional neural networks, in
Proceedings of the Practice and Experience on Advanced Research Computing, ACM, (2018),
1–4.

43. J. A. Swets, Roc analysis applied to the evaluation of medical imaging techniques., Invest. Radiol.,
14 (1979), 109–121.

44. D. W. Hosmer Jr, S. Lemeshow, R. X. Sturdivant, Applied Logistic Regression, John Wiley &
Sons, 2013.

45. L. A. Szarka, M. Camilleri, Methods for measurement of gastric motility, Am. J. Physiol.-
Gastrointest. Liver Physiol., 296 (2009), G461–G475.

46. F. N. Christensen, S. S. Davis, J. G. Hardy, M. J. Taylor, D. R. Whalley, C. G. Wilson, The use
of gamma scintigraphy to follow the gastrointestinal transit of pharmaceutical formulations, J.
Pharm. Pharmacol., 37 (1985), 91–95.

Mathematical Biosciences and Engineering Volume 18, Issue 6, 9511–9524.



9524

47. S. V. Rana, A. Malik, Hydrogen breath tests in gastrointestinal diseases, Indian J. Clin. Biochem.,
29 (2014), 398–405.

48. M. Camilleri, D. R. Linden, Measurement of gastrointestinal and colonic motor functions
in humans and animals, Cell. Mol. Gastroenterol. Hepatol., 2 (2016), 412–428.

49. F. A. A. Gondim, J. R. V. da Graça, G. R. de Oliveira, M. C. V. Rêgo, R. B. M. Gondim, F. H. Rola,
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