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Abstract: We consider a vaccination control into a age-structured susceptible-infective-recovered-
susceptible (SIRS) model and study the global stability of the endemic equilibrium by the iterative
method. The basic reproduction number R0 is obtained. It is shown that if R0 < 1, then the disease-free
equilibrium is globally asymptotically stable, if R0 > 1, then the disease-free and endemic equilib-
rium coexist simultaneously, and the global asymptotic stability of endemic equilibrium is also shown.
Additionally, the Hamilton-Jacobi-Bellman (HJB) equation is given by employing the Bellman’s prin-
ciple of optimality. Through proving the existence of viscosity solution for HJB equation, we obtain
the optimal vaccination control strategy. Finally, numerical simulations are performed to illustrate the
corresponding analytical results.

Keywords: SIRS epidemic model; age-structure; threshold dynamics; optional control;
Hamilton-Jacobi-Bellman (HJB) equation

1. Introduction

The susceptible-infective-removed-susceptible (SIRS) model is one of the most popular epidemic
models, in which total host population is divide into three classes called susceptible (S ), in f ective (I)
and removed (R). Since the Kermack and McKendrick pioneering work [1], a large number of studies
have been carried out on the model of continuous infectious diseases attempting to gain a better under-
standing of diseases transmission, especially for the control policies and dynamics [2–5]. Recent years,
many researchers have studied the epidemic with SIRS models such as COVID-19(2019), hand-foot-
and-mouth diseases(HFMD) and other infectious diseases recently. Although scholars have flocked
to study many properties of the SIRS models, there are still many aspects that deserve further study,
such as the threshold dynamics of SIRS model with vaccination and optimal control using dynamic
programming method.

In studying the dynamics of the disease, one of the most important concepts is the basic reproduc-
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tion number R0. It is epidemiologically defined as the expected number of secondary cases produced by
a typical infectious individual during its entire infectious period in a completely susceptible host popu-
lation. To investigate the global behavior of the prevalence of infectious diseases, the stability analysis
of equilibrium for epidemic models have been carried out (see [6, 7] and the references therein). For
ordinary differential SIRS models, Mena-Lorca and Hethcote considered several kinds of SIRS epi-
demic models and a threshold parameters were also found in [6] to determine whether the disease dies
out or approaches to an endemic equilibrium, we also note that the global stability of SIRS epidemic
model have already been investigated and the threshold theorems are well obtained. In the subsequent
studies, it was generally believed that the introduction of age-structure into epidemic models is nec-
essary and reasonable . Since the fact that the age structure of a population affects the dynamics of
disease transmission was recognized, various age-structured epidemic models have been investigated
by many authors. Some theoretics on the transmission dynamics of age-structured epidemic models
have been developed in [8–11]. He et al. [12] studied the optimal birth control of age-dependent com-
petitive species. Yang et al. [13] proposed epidemic model with age-since-infection and diffusion, the
next generation operator R is also given as the basic regeneration numbers. In paper [14], Yang et al.
also studied the threshold dynamics by the method of Lyapunov functionals for an age-of-infection
epidemiological model with nonlinear incidence rate. Chekroun et al. [15] showed the stability of
the equilibrium by using Lyapunov functions. Lan et al. [16] just studied the impact of hospital re-
sources and environmental perturbation to the dynamics of SIRS model. But the effect of vaccination
on threshold dynamics was not considered in these articles.

In fact, we notice that vaccination has a significant impact on the thresholds dynamics of many
infectious diseases, such as COVID-19, HPV, etc. Obviously, vaccination of susceptible individuals
can greatly reduce the probability that susceptible individuals become infected. Thus, decision makers
hope to achieve the optimal proportion of vaccines with the lowest cost. Optimal control is a promis-
ing strategy to control disease outbreaks. The main purpose of using the control in some diseases is to
search for the most effective one that reduces the infection to a minimum level while minimizing the
cost of applying control measures. In papers [7, 9, 17], the strategies such as health promotion cam-
paigns or lockdown policies can contribute to reducing the disease transmission. In paper [18], Mu and
Zhang investigated the near-optimal control of SIRS multi-strain epidemic model with age-structure
using Pontryagin maximum principle. Bolzoni et al. [19] investigated optimal control of epidemic
size and duration with limited resources. Zhou et al. [20] researched optimal isolation strategies of
emerging infectious diseases with limited resources. In papers [21–23], some measures correspond
to screening and quarantining of infected were implemented to achieve the purpose of controlling the
disease.

However, we note that the most of these articles by using maximum principle to show optimal
controls and only present necessary conditions. Defectively, the method of maximum principle only
addresses the optimal control problem with initial value case of t0 = 0. In fact, vaccination can be
administered at any time t = t0 in the control of the disease. Surpassingly, the dynamic programming
method can give the necessary and sufficient conditions for the existence of optimal control via the HJB
equation at any initial times t = t0 and initial states. In other words, the dynamic programming method
is an extension of the maximum principle, namely, the dynamic programming method is equivalent to
maximum principle method when t0 = 0.

Overall, the threshold dynamics results about age-structured SIRS epidemic models with the pro-
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portion of the vaccine injections are comparatively scarce, as well as few articles show that dynamic
programming approach to solve the optimal control problem. Thus, in this paper, taking into account
for the effect of the proportion of the vaccine injections, we incorporate the vaccine injection rate in
solving the threshold of age-structured SIRS epidemic models. And vaccination optimal control is also
obtained through dynamic programming approach.

The layout of this paper is as follows: in section 2, an age-structure SIRS epidemic model is re-
produced and new age-structure SIRS epidemic model with vaccination is given; in section 3, we give
the basic regeneration number and discuss the threshold dynamics; in section 4, we formulate and
solve the corresponding optimal control problem. The existence of optimal control is proved by HJB
equation and the expression of optimal control is present. in section 5, some numerical simulations are
performed to demonstrate the theoretical results. Brief conclusions are given in section 6.

2. Model and preliminaries

We reproduce the age-structured SIRS epidemic model based on paper [24] as follows
dS (a, t) = [−∂S (a,t)

∂a + λ(a) − µ(a)S (a, t) − β(a)S (a, t)I(a, t) + ρ(a)η(a)I(a, t)]dt,
dI(a, t) = [−∂I(a,t)

∂a + β(a)S (a, t)I(a, t) − δ(a)I(a, t))]dt,
dR(a, t) = [−∂R(a,t)

∂a + (1 − ρ(a))η(a)I(a, t) − (µ(a) + γ(a))R(a, t)]dt,
S (a, 0) = S 0(a), I(a, 0) = I0(a),R(a, 0) = R0(a),

(2.1)

where S (a, 0) = S 0(a), I(a, 0) = I0(a),R(a, 0) = R0(a) are initial conditions, with the following condi-
tions: 

S (0, t) =
∫ A

0
β(a)S (a, t)da,

I(0, t) = k1

∫ A

0
β(a)I(a, t)da,

R(0, t) = k2

∫ A

0
β(a)R(a, t)da,

(2.2)

where k1, k2 ∈ [0, 1] present the weight of the infected and recovered, respectively. All the parameters
are related to age a, positive and bounded, These parameters and their meaning are listed in the Table 1,
where η(a) = σ(a) + α(a), and δ(a) = µ(a) + φ(a) + σ(a) + α(a).

As we all know that the age density distribution function of the total population reaches a stable
state, i.e

S (a, t) + I(a, t) + R(a, t) = P(a). (2.3)

We focus on threshold dynamics on an age-structured SIRS epidemic model with vaccination. The
spread of many epidemics are age-related, such as Human Papilloma Virus (HPV) spread across the
population after ten years olds usually. And the World Health Organization believes that the most
appropriate age for HPV vaccination was 11-12 years old. Therefore, it makes sense to study the
vaccination is only given for a certain age to age-structured SIRS epidemic model.

The introduced vaccination rate u(A0) satisfies 0 ≤ u(A0) ≤ 1 and is only given for a certain age
and susceptible individuals of age A0 is inoculated at some point. The disease does not spread among
people younger than age A0, that is, there are no patients before the vaccination age A0. Therefore,
we can get that the system satisfied by the susceptible, infective, and recovering individuals based on
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Table 1. Parameter values used in numerical simulations.

Notation Biological meanings
S (a, t) Densities of susceptible individuals of age a at time t
I(a, t) Densities of infective individuals of age a at time t
R(a, t) Densities of recovery individuals of age a at time t
λ(a) Recruitment rate of age a
µ(a) Mortality rate of age a
β(a) Transmission coefficient of age a
γ(a) Immunity loss rate of age a
δ(a) Infected removal rate of age a
η(a) Infected recovery rate of age a
ρ(a) Switch between S IS ↔ S IR(S ) of age a
α(a) Treatment rate of age a
σ(a) Nature cure rate of age a
φ(a) Infected-induced mortality rate of age a

model (2.1) as following

S (a, t) = P(a), I(a, t) = 0, R(a, t) = 0, 0 < a < A0,

dS = (−∂S
∂a + λ(a, t) − µ(a)S − %(a, t)S + ρ(a)η(a)I)dt, A0 < a < A,

dI = (− ∂I
∂a + %(a, t)S − δ(a)I)dt, A0 < a < A,

dR = (−∂R
∂a + (1 − ρ(a))η(a)I − µ(a)Rdt, A0 < a < A,

S (A0, t) = (1 − u(A0))S (A−0 , t),
I(A0, t) = I(A−0 , t) = 0,
R(A0, t) = u(A0)S (A−0 , t),
S (a, 0) = S 0(a), I(a, 0) = I0(a), R(a.0) = R0(a),
%(a, t) = k(a)

∫ A

A0
I(â, t)dâ,

(2.4)

we call infectivity

%(a, t) = β(a)I(a, t) = k(a)
∫ A

A0

I(â, t)dâ < ∞,

where S (A−0 , t) and I(A−0 , t) are the densities of susceptible and recovering individuals in the left neigh-
borhood of age A0, k(a) is a positive continuous function. The vaccination rate u(A0) is a constant and
k(a) is a nonnegative continuous function defined on 0 ≤ a ≤ A, where A is the maximum age.

In this paper, unless otherwise specified. The H represents the Hilbert space, with inner product

〈ϕ1, φ1〉 =

∫ A

0
ϕ1(a)φ1(a)da, ϕ1, φ1 ∈ H, (2.5)

and we consider the state equations on space L1(0, A;H3), when ϕ = (ϕ1, ϕ2, ϕ3) and φ = (φ1, φ2, φ3),
ϕi, φi ∈ H, the definition of inner product on L1(0, A;H3) as

〈ϕ, φ〉 =

∫ A

0
(ϕ1(a)φ1(a) + ϕ2(a)φ2(a) + ϕ3(a)φ3(a))da =

∫ A

0
ϕ>(a)φ(a)da, ϕ, φ ∈ H3. (2.6)
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3. Threshold dynamics

The existence of time-independent equilibrium solutions for the model (2.4) is discussed. Obvi-
ously, the model (2.4) has disease-free equilibrium

S (a, t) = P(a), I(a, t) = 0, R(a, t) = 0, 0 < a < A0,

S (a, t) = (1 − u(A0))P(a), I(a, t) = 0, R(a, t) = u(A0)P(a), A0 < a < A.
(3.1)

In order to obtain the endemic disease equilibrium solution, S (a, t) = S (a), I(a, t) = I(a) and
R(a, t) = R(a) are substituted into the model (2.4) obtained

R(a) = 0, 0 < a < A0,

R(a) = u(A0)P(a), A0 < a < A.
(3.2)

And we know when R0(a) = u(A0)P(a), the R(a, t) = u(A0)P(a), and when the population reaches a
dynamic equilibrium P(a), Combining the equations (2.3) and (3.2), and substitute into (2.4) for the
equation that satisfies I(a, t). From (2.3), it shows that

∂I(a)
∂a

+
∂I(a)
∂t

= −δ(a)I(a) + k(a)(P(a) − I(a) − R(a))D(t), (3.3)

where D(t) =
∫ A

A0
I(â, t)dâ. Let ζ(a,D(t)) = δ(a)+k(a)D(t), in order to solve the (3.3), when A0 < a < A,

the expression of I(a, t) is

I(a, t) =I0(a − t)exp(−
∫ t

0
ζ(a − t + θ,D(θ))dθ)

+ [1 − u(A0)]
∫ t

0
exp(−

∫ t

τ

ζ(a − t + θ,D(θ))dθ)

× k(a − t + θ)P(a − t + θ)D(τ)dτ, a > t + A0,

I(a, t) =[1 − u(A0)]
∫ a

A0

exp(−
∫ a

τ

ζ(θ,D(t − a + θ))dθ)

× k(τ)P(τ)D(t − a + τ)dτ, a ≤ t + A0.

(3.4)

we can substitute (3.4) into the D(t) yields when A0 < a < A

D(t) =[1 − u(A0)]
∫ A

A0

∫ a

A0

k(τ)P(τ)D(t − τ)

× exp(−
∫ a+τ

a
ζ(θ,D(t − a − τ + θ))dθ)dadτ

+

∫ a

A0

I0(a)exp(−
∫ t

0
ζ(a + θ,D(θ))dθ)da.

(3.5)

Since

lim
t→∞

∫ a

A0

I0(a)exp(−
∫ t

0
ζ(a + θ,D(θ))dθ)da ≤

∫ a

A0

I0(a)exp(−
∫ t

0
µ(a + θ,N)dθ)da = 0,
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obviously, we have D(t) = D∞ if I(a, t) = I∞ as t → ∞ is equilibrium of model, then

D∞ =[1 − u(A0)]
∫ A

A0

∫ a

A0

k(τ)P(τ) · exp(−
∫ a+τ

a
ζ(θ,D∞)dθ)D∞dadτ

+

∫ a

A0

I0(a)exp(−
∫ t

0
ζ(a + θ,D∞)dθ)da,

(3.6)

then

D∞ =D∞[1 − u(A0)]
∫ A

A0

∫ a

A0

k(τ)P(τ) · exp(−
∫ a+τ

a
δ(θ)dθ)

× exp(−D∞

∫ a+τ

a
k(θ)dθ)dτda.

(3.7)

Then it expresses I∞ = 0 or

1 =[1 − u(A0)]
∫ A

A0

∫ a

A0

k(τ)P(τ) · exp(−
∫ a+τ

a
δ(θ)dθ)

× exp(−D∞

∫ a+τ

a
k(θ)dθ)dτda.

(3.8)

It is quite obvious the right-hand side of the equation (3.8) is the minus function about D∞, thus, we
can define

R0 = (1 − u(A0))
∫ A

0

∫ a

A0

k(τ)p∞(τ) · exp
(
−

∫ a

τ

δ(θ)dθ
)
dτda. (3.9)

When R0 < 1, (3.7) has only a unique zero solution and no positive root, when R0 > 1, the (3.7) formula
has zero root and the only positive root I∗ > 0 satisfies (3.8) formula, thus there are only positive root
E∗ = (S ∗, I∗,R∗) of (2.4). For ease of analysis, we converse i(a, t) =

I(a,t)
(1−u(A0))P , equation (2.4) about

I(a, t) can be transformed into
∂i(a,t)
∂t +

∂i(a,t)
∂a = [1 − i(a, t)][1 − u(A0)]k(a)

∫ A

A0
P(â)i(â, t)dâ − δ(a)i(a, t), a > A0,

i(A0, t) = 0, t ≥ 0,
i(a, 0) = i0(a) =

I0(a)
(1−u(A0))P , a ≤ A0.

(3.10)

From the transformation, we can see that the existence and stability of the positive equilibrium of
model (2.4) is equivalent to positive equilibrium of (3.10) model. R0 can be used as a threshold for the
existence or absence of endemic diseases. It is also a threshold for the disappearance of diseases. Let
~ = 1 − 1

R0
and we call ~ vaccination elimination point.

Similar to the [25] method, the following conclusion can be obtained. Before discussing the global
stability of equilibriums, we first propose the lemma 3.1, and the similar proof process have been
presented in [26].

Lemma 3.1. Let i1(a, t) and i2(a, t) are the solutions of the (3.10) equations, satisfying i1(a, 0) =

i10(a) ≤ i2(a, 0) = i20(a), where i10(a), i20(a) ∈ K, then there are following properties
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(1) i j(a, t) ∈ K, j = 1, 2;
(2) i1(a, t) ≤ i2(a, t), t ≥ 0;
(3) When 0 < ξ < 1, the solution i(a, t) of (3.10) that the initial value satisfies the i(a, 0) = i10(a)ξ,

then it must satisfy the i1(a, t)ξ ≤ i(a, t),

where the K is denoted

K = { f (a, t)| f (a, t) ∈ C, f (0, t) = 0, 0 ≤ f (a, t) ≤ 1}.

Theorem 3.2. When R0 < 1, the model (3.10) has only a disease-free equilibrium , which is globally
asymptotically stable, while when R0 > 1, the model (3.10) also has a unique endemic equilibrium E∗,
which is globally asymptotically stable and the disease-free equilibrium is unstable.

Proof. We only consider the asymptotic behavior of solutions where the initial values of the model
(3.10) satisfy 0 ≤ i(a, 0) ≤ 1 in (A0, A). The theorem of the global stability is given for solutions.

It is not difficult to see if the model (3.10) has a positive equilibrium equivalent to the (3.5) has a
positive root. Since the right of the (3.5) is reduced about D(t) and tends to zero when the D(t) tends to
positive infinity. There is no positive real root to the (3.5) when R0 < 1, and there is a unique positive
real root when R0 > 1, i.e. the model (2.4) has only a unique positive equilibrium when R0 > 1 and,
instead, no positive equilibrium when R0 < 1.

When R0 < 1, in order to study the global stability of the disease-free equilibrium, expression of
the solution of (3.10) about I(a, t) is obtained by using the characteristic line method

i(a, t) =i0(a − t)exp
(
−

∫ t

0
[δ(a − t + τ) + [1 − u(A0)]k(a − t + τ)

∫ A

A0

P(â)i(â, τ)dâ]dτ
)

+

∫ t

0
[1 − u(A0)]k(a − t + τ)

∫ A

A0

P(â)i(â, τ)dâ

× exp
(
−

∫ t

τ

[δ(a − t + θ) + [1 − u(A0)]k(a − t + θ)
∫ A

A0

P(â)i(â, θ)dâ]dθ
)
dτ, a ≥ t + A0,

(3.11)

i(a, t) =

∫ a

A0

[1 − u(A0)]k(τ)
∫ A

A0

P(â)i(â, t − a + τ)dâ

× exp
(
−

∫ a

τ

[δ(θ) + [1 − u(A0)]k(θ)
∫ A

A0

P(â)i(â, t − a + θ)]dθ
)
dτ, a < t + A0.

(3.12)

When t > A, we obtain

i(a, t) =

∫ a

A0

[1 − u(A0)]k(τ)χ(t − a + τ)

× exp
(
−

∫ a

τ

[δ(θ) + [1 − u(A0)]k(θ)χ(t − a + θ)]dθ
)
dτ, a < t + A0,

(3.13)

where χ(t) =
∫ A

A0
P(â)i(â, t)dâ, when t < A, the χ(t) satisfy is

χ(t) =[1 − u(A0)]
∫ A

0
P(â)

∫ â

A0

k(τ)χ(t − â + τ)

× exp
(
−

∫ â

τ

[δ(θ) + [1 − u(A0)]k(θ)χ(t − â + θ)]dθ
)
dτdâ, a < t + A0.

(3.14)
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For natural numbers n > 1, let χn = max
nA≤t≤(n+1)A

χ(t), Ln = max{χn−1, χn}. According to the (3.14) when

R0 < 1, we get

χ(t) ≤[1 − u(A0)]
∫ A

0
P(â)

∫ â

A0

χ(t − â + τ) · exp
(
−

∫ â

τ

δ(θ)dθ
)
dτdâ

≤R0 max
t−A≤τ≤t

χ(τ).
(3.15)

So we obtain χ(t) ≤ R0 max{χn−1, χn} when nA ≤ t ≤ (n + 1)A. Because of R0 < 1, we also obtain
χn < Ln = χn−1, i.e. χn < χn−1, χn is monotonous and reduced and χn < χn−1R0, from this delivery
lim

n→+∞
χn = 0. Considering above conditions and (3.13) can also derive lim

t→+∞
i(a, t) = 0. Finally, it is

concluded from (3.13) that the disease-free equilibrium of the model (3.10) is stable R0 < 1.
When R0 > 1, substituting i(a, t) = i(a) into the (3.10), the only endemic equilibrium of (3.10) is

given by

i(a) =[1 − u(A0)]
∫ a

A0

k(a)
∫ A

A0

P(â)i(â)dâ

× exp
(
−

∫ a

τ

δ(θ) + [1 − u(A0)]k(τ)
∫ A

A0

P(â)i(â)dâdθ
)
dτ.

(3.16)

When A0 ≤ a < A, the ∀ i(a, t) satisfy i(a, 0) > 0, and χ(t) > 0 can be derived from (3.12) and (3.14)
when 0 ≤ t ≤ A, and we also know that i(a, A) > 0 (A0 < a < A) by (3.13). Repeat this process then
the χ(t) > 0 is obtained when 0 ≤ t ≤ 3A, let χ0 = min

A≤t≤2A
χ(t), χ∗ = max

A≤t≤2A
χ(t), the following is got as

i(a, 2A) ≥[1 − u(A0)]
∫ a

A0

χ0k(τ)

× exp
(
−

∫ a

τ

(δ(θ) + [1 − u(A0)]χ∗k(θ))dθ
)
dτ.

(3.17)

Comparing the forms of (3.16) and (3.17), we can find a positive number 0 < ξ < 1 such that i(a, 2A) ≥
ξi(a), namely, the following formula holds for the solution i(a, t) of (2.4)

ξ · i(a) ≤ i(a, 2A) ≤ 1.

The Lemma 3.1 shows that the solutions iξ(a, t) and i1(a, t) with initial values of ξ · i(a, 0) and 1 respec-
tively when t = 0, must have

iξ(a, t) ≤ i(a, t + 2A) ≤ i1(a, t).

Based on the fact that i(a) is the equilibrium of (3.10), then the ξi(a) ≤ iξ(a, t), i.e. iξ(a, t) is a mono-
tone increasing function about t. Since i1(a, t) is a monotone subtraction function about t, and the
corresponding χξ(t) and χ1(t) are monotone increasing and monotone decreasing, respectively, and
there are lim

t→∞
χξ(t) = χ0

ξ ≤ lim
t→∞

χ1(t) = χ0
1. From (3.14), the equation has only unique normal number

solutions when R0 > 1, i.e. χ0
ξ = χ0

1 = ξ∗, the χ(t) corresponding to the i(a, t) also obtain lim
t→∞

χ(t) = ξ∗.
Reuse (3.13) when t > A0, can be obtained lim

t→∞
i(a, t) = i(a), i.e. the local disease equilibrium of (3.10)

is globally attractive. The stability of the local disease equilibrium can be obtained by linearization.
Therefore, the local disease equilibrium is globally asymptotically stable. �
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Remark 3.3. 3.2 shows that the epidemic disease will die out if R0 < 1, while the disease will be
prevalent if R0 > 1. This implies that R0 is the threshold of model (2.4).

4. Optimal control strategies

4.1. Formulation of the optimal control problem

In section 3, we consider the effect of a age determined vaccine immunization of the system on
threshold dynamics, which is one of the cases in which vaccines are added to all susceptible persons
in the system. In this section, we focus on the optimal control of (4.1) on the basis of age-structured
SIRS by implementing proportion of vaccination u(a, t) as control strategy at all ages of system, and
vaccination rate u(a, t) satisfies 0 ≤ u(a, t) ≤ 1. We aim to minimize the infected population, while
keeping the cost of applying such control strategy at the minimum level.

Let ((a, t0), x(a, t0)) ∈ [0,T ) × (H × H × H), and consider the following control system over on
(a, t) ∈ (0, A) × [t0,T ]:

S (a,t)
∂t +

∂S (a,t)
∂a = λ(a) − µ(a)S (a, t) − β(a)S (a, t)I(a, t) + ρ(a)η(a)I(a, t)

+γ(a)R(a, t) − u(a, t)S (a, t),
I(a,t)
∂t +

∂I(a,t)
∂a = β(a)S (a, t)I(a, t) − δ(a)I(a, t)),

R(a,t)
∂t +

∂R(a,t)
∂a = (1 − ρ(a))η(a)I(a, t) − (µ(a) + γ(a))R(a, t) + u(a, t)S (a, t),

S (a, t0) = S t0(a), I(a, t0) = It0(a),R(a, t0) = Rt0(a),

(4.1)

where S (a, t0) = S t0(a), I(a, t0) = It0(a),R(a, t0) = Rt0(a) is varying initial time value and denote the
initial state x(a, t0) as xt0(a). Here the control {u(·, ·) : (0, A) × [t0,T ] → U}, and u(·, ·) is measurable.
We obtain the schematic diagram of model (4.1) with introducing vaccination control (see Figure 1).

Figure 1. Schematic diagram of the model (4.1).

The object is to design the optimal controller u∗(a, t), (a, t) ∈ (0, A) × [t0,T ] for the system (4.1)
which minimizes the following performance index during the finite time interval [t0,T ] [27–30]. Our
goal is to minimize the total number of the infected and susceptible individuals by using minimal
control efforts. The cost function as follows

J(t0, xt0(a), u(a, t)) =

∫ T

t0

∫ A

0
(τ1I(a, t) + τ2u(a, t) +

1
2
τ3u2(a, t))dadt +

∫ A

0
h(I(a,T ))da, (4.2)

where I(a, t) : (a, t) ∈ [0, A] × [t0,T ] and we denote x = (S , I,R), xt0 ∈ (H × H × H), the terminal
value is V(x,T ) =

∫ A

0
h(I(a,T ))da. Let L(t, x, u) := τ1I(a, t) + τ2u(a, t) + 1

2τ3u2(a, t), where τ1, τ2
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and τ3 are the positive weighting factors, representing the cost per unit time of the components I(a, t),
u(a, t) and u2(a, t), respectively. In particular,

∫ T

t0

∫ A

0
τ1I(a, t)dadt is the cost that infected individual

creates for the society due to standard medical care, not including the vaccination treatment u(a, t).∫ T

t0

∫ A

0
(τ2u(a, t) + 1

2τ3u2(a, t))dadt is the cost of treating infected individuals. h : H × H × H → H are
measurable and h(I(a,T )) denotes the total number disease in population depend on the age at the time
T . The value function as V(t0, xt0(a)) = infu(·)∈U J(t0, xt0(a), u(a, t)), ∀t0 ∈ [0,T ),

V(T, xt0(a)) =
∫ A

0
h(I(a,T ))da.

(4.3)

The function V(·, ·) will play an important role in obtaining optimal control , thus, we would like to
study V(·, ·) in great detail. Let (x∗, u∗) is optimal pair, where x∗ = (S ∗, I∗,R∗). Noting that the initial
time (t = 0) and the initial state (x(a, 0) = x0) are fixed in the model [18]. The h(I(a,T )) satisfies∫ A

0
| h(I(a,T )) − h(Ĩ(a,T )) | da ≤ C‖I(a,T ) − Ĩ(a,T )‖C, (4.4)

where C is a positive constant, ‖ · ‖ represents norm on space H and I(a,T ), Ĩ(a,T ) ∈ H. The following
hypothesis are put forward and need to be satisfied.

D1 (U, d) is a separable metric space and T > 0.
D2 The control setU is bounded convex
D3 Different controls correspond to same terminal value.
Then we study dynamic programming method, to give optimal strategy of model (4.1). The basic

idea of this approach applied to optimal controls is to consider a family of optimal control problems
with different initial times (t = t0 ≥ 0) and initial states (x(a, t0) = xt0(a)) [see [31–33]], to estab-
lish relationships among these problems through the HJB equation. Firstly, we present the Bellman’s
principle of optimality as follows.

Theorem 4.1. Let (D1)-(D3) hold. Then for any (t0, xt0(a)) ∈ [0,T ) × H × H × H,

V(t0, xt0(a)) = inf
u(·)∈U[t0,T ]

{ ∫ t̂0

t0

∫ A

0
L(t, x(t; t0, xt0(a), u(·, ·)), u(a, t))dt

+ V(t̂0, x(t̂0; t0, xt0(a), u(·, ·)))
}
, ∀0 ≤ t0 ≤ t̂0 < T.

(4.5)

where L(t, x(t; t0, xt0(a), u(·, ·)), u(a, t)) = τ1It0(a) + τ2u(a, t) + 1
2τ3u2(a, t).

Proof. Let us denote the right-hand side of (4.5) by V(t0, xt0(a)). By (4.3), we have

V(t0, xt0(a)) ≤J(t0, xt0(a), u(a, t))

=

∫ t̂0

t0

∫ A

0
(τ1I(a, t) + τ2u(a, t) +

1
2
τ3u2(a, t))dadt

+ J(t̂0, x(a, t̂0), u(·, ·)), ∀u(·, ·) ∈ U.

Thus, taking the infimum over u(·, ·) ∈ U we get

V(t0, xt0(a)) ≤ V(t0, xt0(a)). (4.6)
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Conversely, for any ε > 0, there exists a uε(·, ·) ∈ U such that

V(t0, xt0(a)) + ε ≥ J(t0, xt0(a), uε(·, ·))

≥

∫ t̂0

t0

∫ A

0
(τ1Iε(a, t) + τ2uε(a, t) +

1
2
τ3u2

ε(a, t))dadt + V(t̂0, xε(a, t̂0))

≥ V(t0, xt0(a)).

(4.7)

Combing (4.6) and (4.7), we obtain (4.5). �

The equation (4.5) is dynamic programming equation, which gives a relationship among globally
and locally optimal via value function.

We would like to further study the (4.5), trying to obtain an equation for V(t0, xt0(a)) simpler form.
The following results give a partial differential equation that a continuously differentiable value func-
tion ought to satisfy. We know the V(t0, xt0(a)) is a continuously differentiable value function via 4.1
and basic theorem of calculus.

Define the Lyapunov equation (LE)

〈Vx, ( f (a, t, x) + g(a, t, x)u(a, t))〉 +
∫ A

0
(τ1I(a, t) + τ2u(a, t) +

1
2
τ3u2(a, t))da = 0.

That is

0 =〈VS , (−
∂S
∂a

+ λ(a) − µ(a)S − β(a)S I + ρ(a)η(a)I + γ(a)R − u(a, t)S )〉

+ 〈VR, (−
∂R
∂a

+ (1 − ρ(a))η(a)I − (µ(a) + γ(a))R + u(a, t)S )〉

+ 〈VI , (−
∂I
∂a

+ β(a)S I − δ(a)I)〉 +
∫ A

0
(τ1I(a, t) + τ2u(a, t) +

1
2
τ3u2(a, t))da

=

∫ A

0
VS (−

∂S
∂a

+ λ(a) − µ(a)S − β(a)S I + ρ(a)η(a)I + γ(a)R − u(a, t)S )da

+

∫ A

0
VR(−

∂R
∂a

+ (1 − ρ(a))η(a)I − (µ(a) + γ(a))R + u(a, t)S )da

+

∫ A

0
VI(−

∂I
∂a

+ β(a)S I − δ(a)I)da +

∫ A

0
(τ1I(a, t) + τ2u(a, t) +

1
2
τ3u2(a, t))da,

(4.8)

where Vx = (∂V
∂S ,

∂V
∂I ,

∂V
∂R )>, Vt = ∂V

∂t . The equation LE is the HJB equation when u(a, t) is optimal
control of (4.1).



0 =

∫ A

0
VS (−

∂S
∂a

+ λ(a) − µ(a)S − β(a)S I + ρ(a)η(a)I + γ(a)R − u(a, t)S )da

+

∫ A

0
VR(−

∂R
∂a

+ (1 − ρ(a))η(a)I − (µ(a) + γ(a))R + u(a, t)S )da

+

∫ A

0
VI(−

∂I
∂a

+ β(a)S I − δ(a)I)da +

∫ A

0
(τ1I(a, t) + τ2u(a, t) +

1
2
τ3u2(a, t))da,

V |t=T = h(x), x ∈ H × H × H.

(4.9)
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In this subpart, we write the HJB equation of model (4.1) as well as its viscosity solution is discussed
as following.

Theorem 4.2. Let (D1)-(D3) and V(t, x) ∈ C1([0,T ] × H × H × H). Then V(t, x) is a solution of the
following terminal value problem of HJB equation:{

Vt + infu∈U H(t, x, u,Vx) = 0, t ∈ [0,T ),
V |t=T = h(x), ∀(t, x, u) ∈ [0,T ] × H × H × H ×U.

(4.10)

which can be written as (4.9).

Proof. Fix (t0, xt0(a)) ∈ [0,T ) × H × H × H and u ∈ U. Let x(·, ·) be the state trajectory corresponding
to the control u(·, ·) ∈ Uω[s,T ] with u(a, t) ≡ u. On the one hand, we can write according to (4.5)

0 ≥{V(t̂0, x(t̂0, a)) − V(t0, xt0(a))}

−

∫ t̂0

t0

∫ A

0
(τ1I(a, t) + τ2u(a, t) +

1
2
τ3u2(a, t))dadt.

(4.11)

Rearranging the equation (4.11) and dividing the both side of the equation by t̂0 − t0 yield

0 ≥ −
{V(t̂0, x(a, t̂0)) − V(t0, xt0(a))}

t̂0 − t0

−
1

t̂0 − t0

∫ t̂0

t0

∫ A

0
(τ1I(a, t) + τ2u(a, t) +

1
2
τ3u2(a, t))dadt

= −
{V(t̂0, x(a, t̂0)) − V(t̂0, xt0(a)) + V(t̂0, x(a, t̂0)) − V(t0, x(a, t̂0))}

t̂0 − t0

−
1

t̂0 − t0

∫ t̂0

t0

∫ A

0
(τ1I(a, t) + τ2u(a, t) +

1
2
τ3u2(a, t))dadt.

(4.12)

By (4.5) with t̂0 ↓ t0, we obtain

0 ≥ − Vt(t0, xt0(a)) − 〈Vx(t0, xt0(a)),
dx
dt
〉 −

∫ A

0
(τ1I(a, t) + τ2u(a, t) +

1
2
τ3u2(a, t))da

= −

∫ A

0

{
VS (t0, xt0(a))

(
−
∂S (a, t)
∂a

+ λ(a) − µ(a)S (a, t) − β(a)S (a, t)I(a, t)

+ ρ(a)η(a)I(a, t) + γ(a)R(a, t) − u(a, t)S (a, t)
)

− VI(t0, xt0(a))
(
−
∂I(a, t)
∂a

+ β(a)S (a, t)I(a, t) − δ(a)I(a, t)
)

− VR(t0, xt0(a))
(
−
∂R(a, t)
∂a

+ (1 − ρ(a))η(a)I(a, t) − (µ(a)

+ γ(a))R(a, t) + u(a, t)S (a, t)
)}

da −
∫ A

0
(τ1I(a, t) + τ2u(a, t) +

1
2
τ3u2(a, t))da.

(4.13)
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This results in
0 ≤Vt(t, x(a, t))

+ inf
u∈U

∫ A

0

{
VS (t, x(a, t))

(
−
∂S (a, t)
∂a

− µ(a)S (a, t) − β(a)S (a, t)I(a, t) + ρ(a)η(a)I(a, t)

+ λ(a) + γ(a)R(a, t)
)

+ VI(t, x(a, t))
(
−
∂I(a, t)
∂a

+ β(a)S (a, t)I(a, t) − δI(a, t)
)

+ VR(t, x(a, t))
(
−
∂R(a, t)
∂a

+ (1 − ρ(a))η(a)I(a, t) − (µ(a) + γ(a))R(a, t)
)}

da

+

∫ A

0

(
τ1I(a, t) − τS (VS (t, x(a, t)) − VR(t, x(a, t)))

+
1

2τ3
(S (VS (t, x(a, t)) − VR(t, x(a, t))))2

)
da.

(4.14)

On the other hand, for any ε > 0, ∀0 ≤ t0 ≤ t̂0 < T with t̂0 − t0 > 0 small enough, there exists a
u(·, ·) ≡ uε,t̂0(·, ·) ∈ U such that

V(t0, xt0(a)) + ε(t̂0 − t0) ≥V(t̂0, x(t̂0; t0, xt0(a), u(a, t)))

+

∫ t̂0

t0

∫ A

0
(τ1I(a, t) + τ2u(a, t) +

1
2
τ3u2(a, t))dadt.

(4.15)

Thus, it follows that as (noting V ∈ C1([0,T ] × H × H × H))

−ε ≤ −
{V(t̂0, x(t̂0)) − V(t0, x(t0))}

t̂0 − t0
−

1
t̂0 − t0

∫ t̂0

t0

∫ A

0
(τ1I(a, t) + τ2u(a, t) +

1
2
τ3u2(a, t))dadt

≤
1

t̂0 − t0

∫ t̂0

t0
[−Vt(t0, xt0(a)) − 〈Vx(t0, xt0(a)),

dx
dt
〉 −

∫ A

0
(τ1I(a, t) + τ2u(a, t) +

1
2
τ3u2(a, t))da]dt

≤
1

t̂0 − t0

∫ t̂0

t0
[−Vt(t0, xt0(a)) − 〈Vx(t0, xt0(a)),

dx
dt
〉 − inf

u∈U

∫ A

0
(τ1I(a, t) + τ2u(a, t) +

1
2
τ3u2(a, t))da]dt

≤
1

t̂0 − t0

∫ t̂0

t0
−Vt(t0, xt0(a)) + inf

u∈U
H(t, x(a, t), u(a, t),Vx(t, x(a, t)))dt.

(4.16)

Taking limit on (4.16) with respect to t̂0 ↓ t0, we have

0 ≥Vt(t, x(a, t))

+ inf
u∈U

∫ A

0

{
VS (t, x(a, t))

(
−
∂S (a, t)
∂a

− µ(a)S (a, t) − β(a)S (a, t)I(a, t) + ρ(a)η(a)I(a, t)

+ λ(a) + γ(a)R(a, t)
)

+ VI(t, x(a, t))
(
−
∂I(a, t)
∂a

+ β(a)S (a, t)I(a, t) − δI(a, t)
)

+ VR(t, x(a, t))
(
−
∂R(a, t)
∂a

+ (1 − ρ(a))η(a)I(a, t) − (µ(a) + γ(a))R(a, t)
)}

da

+

∫ A

0

(
τ1I(a, t) − τS (VS (t, x(a, t)) − VR(t, x(a, t)))

+
1

2τ3
(S (VS (t, x(a, t)) − VR(t, x(a, t))))2

)
da.

(4.17)
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Combining (4.14) and (4.20), we obtain our results. �

Definition 4.3. [34] A function v ∈ C([0,T ] × H × H × H) is called a viscosity solution of (4.9) if

v(T, x(a,T )) ≤ h(x(a,T )), ∀x(a,T ) ∈ H × H × H, (4.18)

and for any ψ ∈ C1([0,T ]×R), whenever v−ψ attains a local maximum at (t, x) ∈ [0,T )×H×H×H,
we have

− ψt(t, x) + sup
u∈U

H(t, x, u,−ψx(t, x)) ≤ 0. (4.19)

The function v ∈ C([0,T ] × H × H × H) is called a viscosity solution of (4.9) if in (4.18)-(4.19) the
inequalities ≤ are changed to ≥ and local maximum is changed to local minimum. In the case that v is
both a viscosity subsolution and supersolution of (4.9), it is called a viscosity solution of (4.9).

Theorem 4.4. Let (D1)-(D3) hold. Then the value function of V(t, x) satisfies

|V(t0, xt0(a)) − V(t̂0, xt̂0(a))| ≤ K{|t0 − t̂0|},

∀(t0, xt0(a)), (t̂0, xt̂0(a)) ∈ [0,T ] × H × H × H,
(4.20)

for some K > 0. Moreover, V(t, x(a, t)) is the only solution of (4.9) in the class C([0,T ] ×H ×H ×H).

Proof. Through 4.2 and t0 ≤ t̂0 we obtain

|V(t0, xt0(a)) − V(t̂0, xt̂0(a))|

≤ inf
u∈U
{

∫ t̂0

t0

∫ A

0
(τ1I(a, t) + τ2u(a, t) +

1
2
τ3u2(a, t))dadt}

≤

∫ t̂0

t0

∫ A

0
(τ1I(a, t) + τ2u(a, t) +

1
2
τ3u2(a, t))dadt

≤ |t0 − t̂0| max
t0≤t≤t̂0

∫ A

0
(τ1I(a, t) + τ2u(a, t) +

1
2
τ3u2(a, t))da

≤ K|t0 − t̂0|.

(4.21)

Thus, V(t, x(a, t)) satisfies (4.21). We can know that V(t, x(a, t)) is unique viscosity of the HJB equation
via the same method as [ [34], Theorem 2.5]. �

4.2. Optimal control

In this subsection, we study the existence of the optimal control pair in finite time for the system
(4.1) and construct the Hamiltonian of the optimal control problem.

Theorem 4.5. There exists an optimal control u∗ ∈ U and a corresponding optimal state S ∗, I∗, R∗

such that

V(t0, xt0(a)) = inf
u(·)∈U

J(t0, xt0(a), u∗(a, t)), ∀(t0, xt0(a)) ∈ [0,T ) × H × H × H,

subject to the control system (4.1).
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Proof. To show the existence of the optimal control for the problem under consideration, we use the
result in [35,36]. We notice that the state and control variables are non-negative, and the control setU,
by definition, is closed and bounded. The optimal system is bounded, which ensures the compactness
needed for the existence of an optimal control. Further, the integrand

∫ T

t0

∫ A

0
(τ1I(a, t) + τ2u(a, t) +

1
2τ3u2(a, t))dadt is convex on the control set U due to the biquadratic and quadratic nature of control
variable u(a, t), which represents vaccination proportion. In addition, there exists a constant ν > 1 and
positive numbers κ1, κ2 such that

τ1I(a, t) + τ2u(a, t) +
1
2
τ3u2(a, t) ≥ κ1|u(a, t)|ν − κ2.

We complete the existence of the optimal control of state variables. �

Theorem 4.6. Let u∗(a, t) be optimal control variable, S ∗(a, t), I∗(a, t) and R∗(a, t) be corresponding
optimal state variable of model (4.1). The corresponding optimal control is given as follows:

u∗(a, t) = min{max[0,−
1
τ3

S (a, t)∗(VR(x, t) − VS (x, t)) + τ], 1}

where τ2
τ3

= τ.

Proof. We define the Hamiltonian function H(t, x, u(a, t),Vx), t ∈ [0,T ], u(a, t) ∈ Uad, x, Vx(x, t) ∈
H×H×H and by constructing the Hamiltonian function and HJB equation to characterize this optimal
control u(a, t) as follows:

H =(−
∂S
∂a

+ λ(a) − µ(a)S − β(a)S I + ρ(a)η(a)I + γ(a)R − u(a, t)S )VS (x, t)

+ (−
∂I
∂a

+ β(a)S I − δ(a)I)VI(x, t) − τ1I − τ2u(a, t) −
1
2
τ3u2(a, t)

+ (−
∂R
∂a

+ (1 − ρ(a))η(a)I − (µ(a) + γ(a))R + u(a, t)S )VR(x, t).

(4.22)

Let u∗(a, t) be given optimal control and S ∗(a, t), I∗(a, t) and R∗(a, t) be corresponding optimal state
variable of model (4.1). By the Hamiltonian function (4.22), optimal control u(a, t) = u∗(a, t) is ob-
tained

u∗(a, t) = −
1
τ3

S (a, t)∗(VR(x, t) − VS (x, t)) + τ. (4.23)

From the properties of the control set with the findings, then there is exists optimal control

u∗(a, t) =



0, −
1
τ3

S ∗(VR − VS ) + τ < 0,

−
1
τ3

S ∗(VR(x, t) − VS (x, t)) + τ, 0 ≤ −
1
τ3

S ∗(VR − VS ) + τ < 1,

1, 1 ≤ −
1
τ3

S ∗(VR − VS ) + τ.

(4.24)

�
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Remark 4.7. If we could obtain the value function V(t, x(a, t)) by solving the HJB equation, then we
could, at least formally, construct an optimal pair for each of optimal control problem for different
initial values. The principle involves the following steps to solve optimal control problem

S tep.1. Solve the HJB equation (4.10) to find the V(T, x(a, t));
S tep.2. Find u∗(a, t) through Hamiltonian function (4.22);
S tep.3. Combine the u∗(a, t) to solve model (4.1) to get the optimal pair (x∗(a, t), u∗(a, t)).

5. Numerical simulation

This section aims to illustrate the effectiveness of our theoretical results obtained in previous sec-
tions.

5.1. Numerical simulation of the stability of equilibria

Table 2. Parameter values used in numerical simulations.

Parameter Value Source of data
λ 0.20548 [16], Lan et al.
β 1.6805 × 10−4 [16], Lan et al.
µ 3.4246 × 10−5 [18], Mu & Zhang
η 0.02 [18], Mu & Zhang
ρ 0.05 [18], Mu & Zhang
γ 0.027 [16], Lan et al.
δ 0.2227 Assumed
% 0.2 Assumed
u 0.35 Assumed
A 80 years [16], Lan et al.
T 500 days Assumed

In the numerical simulation, the parameters are given in Table 2. We assume that (a, t) ∈ [0, 80] ×
[0, 500], ∆t = 0.1, ∆a = 1, take p∞ = 1.0, % = 0.2, δ = 0.1827, k = 0.2, then R0 ≈ 2.69 > 1. The
parameters that we partially need to assume are reasonable according to the study of Yang et al. [14]
has shown that the range of the basic reproduction number of the pandemic influenza in 1.0 − 4.0. We
see from 3.2 the E∗ is globally asymptotically stable. Actually, as showing in the following Figure 2
(a), the density of the infected individual I(a, t) tends to be a positive constant over time.

Take % = 0.1, δ = 0.1827, k = 0.1, then R0 ≈ 0.78 < 1, thus we can know the E0 is globally
asymptotically stable, as showing in the following Figure 2 (b), the density of the infected individual
I(a, t) tends to zero over time. These are the same conclusions as 3.2.

We choose δ = 0.1827, 0.2027 and 0.2227 to study the effect on the infected population and all the
other parameters are fixed as in Table 2. We calculate the corresponding basic reproduction number
R0 ≈ 0.9427, 0.8979 and 0.7802 when R0 < 1, respectively. In Figure 3 (a), we can see that the
extinction time of decreases with the increase of infected removal rate δ. In order to simulate the cases
of R0 > 1, we calculate the corresponding basic reproduction number R0 ≈ 1.3468, 2.2441 and 2.6930,
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(a) (b)

Figure 2. The evolution of I(a, t) of (2.4) for R0 ≈ 2.69 > 1 (a) and R0 ≈ 0.78 < 1 (b).

respectively. The simulation result is presented in Figure 3 (b). Synthetically , it is obvious to see from
Figure 3 that the peak of I(a, t) decreases significantly as infected removal rate δ of age a goes up.
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Figure 3. (a): the path of I(a, t) under different δ when R0 < 1 at age a = 30; (b): the path of
I(a, t) under different δ when R0 > 1 at age a = 30.

5.2. Numerical simulation for optimal control

In this section, we show the result of optimal control using a numerical example. The parameters
are given in Table 2. (a, t) ∈ [0, 80] × [0, 500], ∆t = 0.1, ∆a = 1 by performing some numerical
simulations. We take τ1 = 11.7, τ2 = 3.4 and τ3 = 12. The corresponding paths of control and
infective populations I(a, t) are plotted in Figure 4, Figure 5 (a), Figure 6 and Figure 7 (a) show the
section view at age a = 20 and a = 30 of the image variation tendency of I(a, t) with and without
control and the tendency of corresponding optimal control u(a, t). We observe that the comprehensive
use of control u(a, t) works better than no control applied during the course of disease. The effect
of applying control reduces the number of infective populations I(a, t) dramatically. In short, control
variable u(a, t) play an important role in the control of the disease. At the same time, we can also
observe a reduced epidemic time of population infection.

We note that a significant decline in the number of infected persons I(a, t) during vaccine control of
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susceptible at age a = 20 and a = 30 from these following figures.
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Figure 4. When R0 > 1, (a): the paths of I(a, t) with and without control u(a, t) at age a = 20;
(b): The paths of I(a, t) with and without control u(a, t) at age a = 30.
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Figure 5. (a): when R0 > 1, the paths of control at age a = 20 and a = 30; (b): the path of
control at t = 500.

When R0 > 1, I(a, t) trends is regard to the optimal controls, where the upper-level image is the
evolution of I(a, t) without control and the lower-level image is the evolution of I(a, t) with control on
in Figure 4. In Figure 5 (a) shows the optimal control pathes at ages a = 20 and a = 30, repectively.
Eventually the disease tends to extinction with control. Compared with the path of non-vaccinated
I(a, t), the epidemic time of I(a, t) with vaccination is significantly shortened, as well as the density of
infected population verge to zero eventually.
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Figure 6. When R0 < 1, (a): the paths of I(a, t) with and without control u(a, t) at age a = 20;
(b): The paths of I(a, t) with and without control u(a, t) at age a = 30.
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Figure 7. (a): when R0 < 1, the paths of control at age a = 20 and a = 30; (b): the paths of
control at t = 500.

When R0 < 1, I(a, t) trends is regard to the optimal controls, where the upper-level image is the
evolution of I(a, t) without control and the lower-level image is the evolution of I(a, t) with control
in Figure 6. In Figure 7 (a) shows the optimal control pathes at ages a = 20 and a = 30, repectively.
Eventually the disease tends to extinction with control. Compared with Compared with the path of non-
vaccinated I(a, t), the epidemic time of I(a, t) with vaccination is significantly shortened. Combined
with Figure 4 and the corresponding conclusions, it is clear that vaccination have a certain degree
of hindrance to the transmission of epidemics. We also observe the Figure 5 (b) and Figure 7 (b)
that vaccine control varies for different ages, mainly adolescents and middle age, and this control
strategy is consistent with the actual control of many epidemics such as pneumonia, influenza and
so on. The pneumococcal vaccine, COVID-19 vaccine and influenza vaccine are not suitable for the
elderly. Overall, population age has a significant effect on the implementation of vaccine control
strategies for many common diseases.
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6. Concluding remarks

In this paper, we recurred an age-structured SIRS epidemic model (2.1) with vaccination control,
and obtained the condition for disease extinction and persistence. The research results showed that
when R0 < 0, the disease extincted; when R0 > 0, the disease persisted. The conditions of disease
extinction and permanence were given in 3.2. And we verified the resluts by numerical simulation.
However, since the bifurcation phenomenon will occur when R0 = 0, this part will also be an important
point for our further study of the age-structured SIRS epidemic system dynamics. Besides, we also
studied the control problem of SIRS epidemic model with age structure. By proving the existence of
viscosity solution, we obtain the existence of optimal control. Then, we obtained the implicit expres-
sion for optimal control and HJB equation. Finally, by using Milstein method, the optimal proportion
of vaccination is obtained. In addition, we plan that in the next step, traveling wave solutions of an age-
structured SIRS epidemic model will become one of our main research contents. Wu et al. [37] studied
the existence and non-existence of traveling wave solutions for a diffusive age-structured SIR epidemic
model. Their work provides some insights on how to deal with the high dimensional age-structured
epidemic models.
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