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Abstract: Protein S-nitrosylation is one of the most important post-translational modifications, a 
well-grounded understanding of S-nitrosylation is very significant since it plays a key role in a variety 
of biological processes. For an uncharacterized protein sequence, it is a very meaningful problem for 
both basic research and drug development when we can firstly identify whether it is a S-nitrosylation 
protein or not, and then predict the specific S-nitrosylation site(s). This work has proposed two models 
for identifying S-nitrosylation protein and its PTM sites. Firstly, three kinds of features are extracted 
from protein sequence: KNN scoring of functional domain annotation, PseAAC and bag-of-words 
based on the physical and chemical properties of amino acids. Secondly, the synthetic minority 
oversampling technique is used to balance the data sets, and some state-of-the-art classifiers and 
feature fusion strategies are performed on the balanced data sets. In the five-fold cross-validation for 
predicting S-nitrosylation proteins, the results of Accuracy (ACC), Matthew’s correlation coefficient 
(MCC) and area under ROC curve (AUC) are 81.84%, 0.5178, 0.8635, respectively. Finally, a model 
for predicting S-nitrosylation sites has been constructed on the basis of tripeptide composition (TPC) 
and the composition of 𝑘-spaced amino acid pairs (CKSAAP). To eliminate redundant information 
and improve work efficiency, elastic nets are employed for feature selection. The five-fold cross-
validation tests have indicated the promising success rates of the proposed model. For the 
convenience of related researchers, the web-server named “RF-SNOPS” has been established at 
http://www.jci-bioinfo.cn/RF-SNOPS 

Keywords: S-nitrosylation; random forest; post-translational modification; multiple features; 
identification 
 

1. Introduction  

Protein post-translational modification is an important chemical process, which plays a key role 
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in regulating cell functions [1] and also changes the physical and chemical properties of protein. More 
than 400 post-translational modifications including methylation [2], acetylation [3], phosphorylation [4], 
and S-nitrosylation (SNO) [5] have been discovered so far. As SNO is a reversible post-translational 
modification of proteins, a large number of studies have shown that SNO plays an important role in 
multiple biological processes such as redox signal transduction [6], cell signal transduction [7], cell 
senescence [8], and transcription [9]. SNO is also related to many human diseases such as cancer [10], 
Alzheimer’s disease [11], and chronic renal failure [12]. Therefore, a well-grounded understanding of 
SNO is of great significance for the study of basic biological processes [9,13] and the development of 
drugs [14]. In recent years, many SNO sites have been identified through molecular signals [15,16], 
but identification of SNO sites still faces some challenges including low accuracy, time-consuming 
and labor-intensive. With the continuous development of computer technology, a large number of 
computational models have been used to predict the specific sites of SNO modification. 

Many post-translational modifications of proteins have been detected by a variety of 
computational models. Qiu identified phosphorylated [17] and acetylated [18] proteins with GO 
notations. GPS-SNO [19], SNOSite [20], iSNO-PseAAC [21], PreSNO [5] and RecSNO [22] have 
been applied to the prediction of SNO sites. The GPS-SNO, SNOSite and iSNO-PseAAC models use 
relatively small data sets. In addition, many negative samples in these data sets are now experimentally 
verified as positive samples. The data sets used by PreSNO and RecSNO are relatively large and new, 
but there is still room for improvement in the performance of the model.  

On the basis of previous research, this work established two models for predicting SNO proteins 
and sites. In predicting SNO proteins, a bag-of-words model has been proposed on the basis of KNN 
scoring matrix obtained from proteins’ GO annotation information [18], PseAAC [23,24] of amino acids 
sequence. Fusion of multiple features can more comprehensively reflect the information of the protein 
sequence and improve the prediction results. A combination of oversampling technique and random 
deletion method are applied to balance the training set since the issue is involved in imbalanced data sets. 
In predicting SNO sites, two feature extraction methods, TPC [25] and CKSAAP [26], are used to extract 
the features of protein sequence fragments. In order to eliminate the redundancy and noise information 
of the original feature space, elastic nets [27] are used to reduce the dimensionality of the feature space 
after the fusion strategy is performed on the original features. Random Forest severed as the classifiers 
and be verified with 5-fold cross-validation. The specific flow chart is shown in Figure 1. 

 

Figure 1. The framework of RF-SNOPS. 
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2. Materials 

2.1. Datasets for prediction SNO proteins 

To obtain a scientifical prediction result, a strict benchmark data set is essential. The UniProKB 
has been accepted by most bioinformatics researchers. Here, the negative samples are extracted from 
the UniProKB and the positive sample are extracted from Xie’s [28], which is a high-quality data set 
based on extensive literature research. The protein sequence can be expressed as: 

𝑃 𝑅 𝑅 𝑅 ⋯ 𝑅 ⋯ 𝑅          (1) 

where 𝑅  represents the 𝑖-th amino acid residue, and 𝐿 represents the length of the protein sequence. 
In order to identify SNO proteins, we constructed a benchmark data set similar to dataset of Hasan 

et al. [5], which consists of 3113 SNO proteins. Every one of the positive samples, i.e., SNO proteins, 
has at least one SNO site. For negative samples, we randomly selected 18,047 proteins without any 
SNO site from the UniProKB. In order to make the results more rigorous, the CD-HIT was used to 
remove 30% of the 3113 positive samples and 18,047 negative samples. Finally, 2192 positive samples 
and 7809 negative samples are collected in the proposed benchmark data set. 

2.2. Datasets for predicting SNO Sites 

The benchmark data set for predicting SNO sites are the same as Hasan et al. [5], which consists 
of 3383 positive samples and 3365 negative samples. A potential SNO(C) site-containing peptide 
sample can be generally expressed by 

𝐏 𝑅 𝑅 ⋯ 𝑅 𝑅  𝐶 𝑅 𝑅 ⋯ 𝑅 𝑅      (2) 

where the subscript ξ is an integer, 𝑅  represents the ξ-th upstream amino acid residue from the 

center, the 𝑅  the ξ-th downstream amino acid residue, and so forth. If the number of left or right 

residues of the center 𝐶 is less than ξ, then the pseudo amino acid “𝑋” would be used to supplement 

the sequence. The 2ξ 1 -tuple peptide sample 𝐏  can be further classified into the following two 

categories: 

𝐏𝛏 ∈
𝐏 ,   if its center is a SON site  

𝐏 ,   other wise                           
        (3) 

where 𝐏  denotes a true SNO segment 𝐶 with at its center, 𝐏  a corresponding false SNO segment, 

and the symbol ∈ means “a member of” in the set theory. 
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3. Feature extraction 

3.1. Feature extraction methods for predicting SNO proteins 

3.1.1. GO-KNN 

GO-KNN [18] features were extracted on the basis of the GO annotations of proteins. In this work, 
we need to find out the GO terms of all protein sequences and calculate the distance between proteins. 
Take protein 𝑃  as an example, for anyone of other proteins, for example, 𝑃 , then their GO terms 
can be listed as 𝑃 𝐺𝑂 , 𝐺𝑂 , ⋯ , 𝐺𝑂  and 𝑃 𝐺𝑂 , 𝐺𝑂 , ⋯ , 𝐺𝑂  are obtained. If there 
is no GO term for a protein, we will replace it with GO terms of its homologous protein. The distance 
between two proteins can be calculated with Eq (4): 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑃 , 𝑃 1
∩

∪
        (4) 

where, 𝐺𝑂  and 𝐺𝑂  represent the 𝑖-th GO of 𝑃  and 𝑃 , respectively. The 𝑀 and 𝑁 represent 
the numbers of GO, respectively, ∪and ∩ are the union and intersection in the set theory, and ⌊ ⌋ 
represents the number of elements in the set. Then, the GO-KNN features could be extracted according 
to the following steps: 1) Sorting the calculated distances in ascending order; 2) Selecting the first 𝑘 
near neighbors of the test protein; 3) Calculating the percentage of positive samples in the 𝑘 neighbors. 
In this study, 𝑘 were selected as 2, 4, 8, 16, 62, 64, 128, 256, 512, 1024. In this way, a 10-dimensional 
feature vector 𝑥 , 𝑥 , ⋯ , 𝑥  could represents the protein 𝑃 . 

3.1.2. BOW 

A bag-of-words model [29] based on the physical and chemical properties of protein has been 
used in identifying GPCR-drug interaction. The main steps are listed as follows: 1) Encoding the 
protein sequence with its physical and chemical properties. Up to now, scientists have obtained various 
physical and chemical properties of 20 common amino acids [30]. After careful experimental 
comparison, hydrophilicity was selected as an indicator for the proposed model. 2) Designing 
wordbooks for protein. When the window sizes are 1, 2 and 3, and the step size of the moving window 
is 1, the coding sequence is divided into segments of different lengths. Segments of length 1 form 
wordbook 𝑊𝐵 , segments of length 2 form wordbook 𝑊𝐵 , and segments of length 3 form wordbook 
𝑊𝐵 . When the window size is 2, the step size of moving the window is still 1. But the window at this 
time is different from the above, it is separated by an amino acid. At this time, the coding sequence is 
divided into fragments of length 2, and these fragments form the wordbook 𝑊𝐵 . 3) Clustering the 
word books. We divided the words in the wordbook 𝑊𝐵  into 20 sub-groups according to the types 
of amino acids. Words in 𝑊𝐵 , 𝑊𝐵   and 𝑊𝐵   were clustered with K-means algorithm. The 
numbers of clusters were 16, 62 and 16. 4) Calculating the ratio of the number of each amino acid to 
the total number of words in the vocabulary with Eq (5).  

𝑋       𝑖 1, … , 𝐾      𝑗 1,2,3,4       (5) 
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here, 𝐾 is the number of clusters in the wordbook 𝑊𝐵 , 𝑋  is the number of words in the 𝑖-

th category of the wordbook 𝑊𝐵 , and 𝑁 is the total number of words in the wordbook 𝑊𝐵 . 
Then a 114-D feature vector was formed for a given protein sequence, i.e. 

𝑋 , … , 𝑋 , 𝑋 , … , 𝑋 , 𝑋 , . . . 𝑋 , 𝑋 . . . , 𝑋 . 

3.1.3. PseAAC 

PseAAC [23,24] is a very popular feature for bioinformatics. In this work, six physical and 
chemical properties of hydrophobicity, hydrophilicity, molecular side chain mass, PK1, PK2 and PI 
are used. We first used Eq (6) to transform the original physical and chemical properties of amino acids: 

𝑊 𝑖
∑

∑ ∑

         (6) 

where, 𝑎 ∈ 1,2, ⋯ ,6   and 𝑖 ∈ 1,2, ⋯ ,20  . 𝑊 𝑖   represents the value of the 𝑎 th original 
physical and chemical properties of the 𝑖th amino acid. We substitute the values of the transformed 
physical and chemical properties with Eq (7): 

𝛩 𝑅 , 𝑅 ∑ 𝑊 𝑅 𝑊 𝑅             (7) 

where, 𝑊 𝑅 represents the value of hydrophobicity of 𝑅 . By analogy, 𝑊 𝑅  represents the PI 
value of 𝑅 . Then the correlation factor of each layer can be obtained by using the Eq (8): 

𝜃 ∑ 𝛩 𝑅 , 𝑅       𝜆 L       (8) 

where 𝜃   represents the correlation factor of the 𝜆 -th layer of the protein sequence. Finally, the 
protein sequence is converted into a feature by Eq (9): 

𝑥

⎩
⎪
⎨

⎪
⎧∑ ∑

1 𝑖 20

∑ ∑
20 1 𝑖 20 𝜆

  

 

      (9) 

here, 𝑓  represents the frequency of the 𝑖-th amino acid, 𝜔 is 0.5, and 𝜆 is 5. In this way, a 25-
dimensional feature vector is formed. 

3.2. Data balancing methods for predicting SNO protein 

In order to reduce the adverse effect of unbalanced data on the performance of the model, many 
methods for dealing with unbalanced data have been proposed, such as Synthetic Minority 
Oversampling Technique [31] (SMOTE) and Random Under Sampler [32] (RUS). SMOTE is a 
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method proposed by Chawla et al. It has been used to predict protein sites [27] and improve the 
prognostic assessment of lung cancer [33]. RUS is a very simple and popular method of under-
sampling. It can be used in pediatric pneumonia detection [34] and convolutional neural network 
performance improvement issues [35]. In this study, we combined these two methods to process the 
data. SMOTE is used to oversample the positive samples, and RUS is used to under-sample the 
negative samples. In the end, the number of processed positive samples is equal to negative samples. 
The specific process is shown in Figure 2. 

3.3. Feature extraction methods for predicting SNO sites 

3.3.1. CKSAAP 

CSKAAP [25] has been widely used in protein site prediction [26] since it can effectively express 
internal laws for a given protein sequence. The protein fragment is composed of 20 common amino 
acids and a pseudo amino acid, which contains 441 residue pairs (AA, AC, ..., XX) for each 𝑙. Here 𝑙 
represents the space between each residue pair. The following formula is used to calculate the 
characteristics of the fragment: 

, , , ⋯ ,        (10) 

here 𝑁 , 𝑁 , ⋯ represent the number of times the corresponding amino acid pair appears in the 
fragment, 𝐿 is the length of the protein fragment. 𝑁 𝐿 𝑙 1. In this study, the values of 𝑙 
are 0, 1, 2, 3, 4, and the corresponding 𝑁  are 40, 39, 38, 37 and 36, respectively. Then, a 2205-
D feature vector is formed. 

 

Figure 2. Balance database processing. 
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3.3.2. TPC 

Based on the structural properties of proteins, researchers have proposed the tripeptide 
composition (TPC). It has been used to predict protein subcellular localization [36] identification of 
plasmodium mitochondrial proteins [37]. TPC calculates the frequency of three consecutive amino 
acids, and then a protein fragment can be represented by a 9261-dimensional vector. 

𝑃
∑

           (11) 

where 𝑁  represents the total number of 𝑖-th in 9261 tripeptides. 

3.4. Feature selection for predicting SNO sites 

The elastic net proposed by Zou and Hastie [38] is an effective feature selection method. By 
introducing the 𝐿 , 𝐿  norm into a simple linear regression model, the elastic net can not only perform 
continuous shrinkage and automatically select variables at the same time, but also predict related 
variables. At present, elastic nets have been widely used in protein site prediction [27,39] and achieved 
good results.  

4. Model evaluation metrics and operation engine 

4.1. Model evaluation metrics 

In this study, four indicators were used to evaluate the performance of the models. They are 
accuracy (ACC), sensitivity (SN), specificity (SP) and Matthews correlation coefficient (MCC) [40], 
which are defined by Eq (12): 

⎩
⎪
⎨

⎪
⎧                                                                         

                                                                        

                                                    

  

      (12) 

In predicting SNO proteins, 𝑇𝑃 indicates the number of proteins that are predicted to have SNO 
sites and actually have SNO sites, and 𝑇𝑁 is the number of proteins that are predicted to have no SNO 
sites that are actually not have SNO sites. 𝐹𝑃 is the number of proteins without SNO sites but predicted 
to have SNO sites, 𝐹𝑁 is the number of proteins with SNO sites but predicted to have no SNO sites. 
In addition, the area under the ROC curve AUC is also used to evaluate this model. 

In predicting SNO sites, TP indicates the number of actual SNO sites predicted to be SNO sites, 
and TN indicates the number of non-SNO sites predicted to be not SNO sites. FP is the number of non-
SNO sites predicted to be SNO sites, and FN is the number of actual SNO sites predicted to be non-
SNO sites. 
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4.2. Operation engine 

4.2.1. Random Forest 

Random Forest [41] is an algorithm that integrates multiple trees through the idea of ensemble 
learning. Its basic unit is decision tree. As a highly flexible machine learning algorithm, Random Forest 
(RF) has been widely used in data analysis [42], biological information [43] and technological 
development [44]. 

4.2.2. Naive Bayes 

Naive Bayes (NB) [45] is a simple and effective classifier, which is widely used in software defect 
prediction [46], medical diagnosis [47] and biological information [48]. NB is based on the Bayes 
theorem and the assumption of the conditional independence of features, which greatly reduces the 
complexity of the classification algorithm. 

4.2.3. K Nearest Neighbor 

K Nearest Neighbor (KNN) [49] is one of the supervised machine learning algorithms, which is 
widely used in face recognition [50] , disease research [51] and engineering applications [52]. Its main 
idea is to judge the category of the predicted value based on the category of the 𝑘 points closest to 
the predicted value. 

4.2.4. eXtreme Gradient Boosting 

XGBoost [53,54] is an improved algorithm for boosting based on GBDT [55]. XGBoost is an 
integrated lifting algorithm that integrates many basic models to form a strong model. Because of its 
advantages such as good prediction effect and high training efficiency, XGBoost has been widely used 
in the field of data analysis. 

5. Results and discussion 

5.1. Results and discussion for SNO proteins prediction 

5.1.1. Effect of features 

In this research, GO-KNN, BOW and PseAAC three kinds of feature extraction methods were 
used to encode the protein sequence, and obtained 10-D, 114-D and 25-D feature vectors, respectively. 
These three kinds of features were fused into a 149-D feature vector ALL. Through the 5-fold cross-
validation, the prediction results obtained by different feature extraction are shown in Table 1. 
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Table 1. The predict results of different features. 

Feature Acc (%) Sn (%) Sp (%) MCC AUC 

GO-KNN 82.72 48.36 92.37 0.4533 0.8521 

BOW 78.83 13.04 97.30 0.1969 0.7359 

PseAAC 79.38 19.43 96.22 0.2503 0.7616 

ALL 83.77 49.49 93.40 0.4840 0.8593 

It can be seen from Table 1 that different features obtained varied prediction results. Among the 
three methods, GO-KNN has the highest ACC, Sn, MCC and AUC, of which are 82.72%, 48.36%, 
0.4533 and 0.8521 respectively. The ACC, Sn, MCC and AUC of BOW are the lowest, of which 
are 78.83%, 13.04%, 0.1969 and 0.7359, respectively. But the Sp of BOW is 97.30%, which is the 
highest. After combining these three characteristics, ACC, Sn, Sp, MCC, AUC are 83.77%, 49.49%, 
93.40%, 0.4840, 0.8593, respectively. Among them, ACC, Sn, MCC and AUC are all higher than 
those produced by GO-KNN. The results show that multi-feature fusion can improve a number of 
indicators. In order to better analyze the influence of different features on the prediction of SNO 
proteins, the prediction results obtained from the three features and their fusion features are shown 
in Figure 3. 

 

Figure 3. Comparison of prediction results on different features. 

It can be seen from Figure 3 that the three features and their fusion affect the five evaluation 
indicators to some extent. They are less effective on Sn and MCC, and better on ACC, Sp and AUC. 
Comparing these four feature codes, the ACC, Sn, MCC and AUC of the fusion feature ALL are 
improved. Multi-feature fusion can reflect sequence information more comprehensively, thereby 
improving prediction ability. Therefore, multi-feature fusion can be used to predict SNO proteins. 

5.1.2. Effect of the SR balancer 

Here, SMOTE and RUS are denoted as SR balancer. We input the pre-balanced and post-balanced 
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data sets into the model, and passed the 5-fold cross-validation to obtain the prediction results of ACC, 
Sn, Sp, MCC, AUC on the balanced and unbalanced data sets, as shown in the Table 2. 

Table 2. Comparison of predict results before and after SR Balancer. 

 Acc (%) Sn (%) Sp (%) MCC AUC 

Imbalance 83.77 49.49 93.40 0.4840 0.8593 

Balance 81.84 70.82 84.93 0.5178 0.8635 

It can be seen from Table 2 that the balanced Sn and Sp are relatively balanced. In addition, Sn, 
MCC and AUC have improved. Therefore, in summary, it is very necessary to balance the dataset. 

5.1.3. Effect of classifiers 

Classifiers play an important role in model prediction. This work used the above four classifiers 
to identify SNO proteins. After 5-fold cross-validation, the results of each classifier for ACC, Sn, Sp, 
MCC and AUC are shown in Table 3. It can be seen from Table 3 that the effect of random forest on 
various evaluation indicators is the best. In order to better compare the effects of different classifiers, 
the prediction results of the four classifiers are shown in Figure 4. 

Table 3. The prediction results of different classifiers. 

Algorithms Acc (%) Sn (%) Sp (%) MCC AUC (%) 

RF 81.84 70.82 84.93 0.5178 0.8635 

NB 63.81 78.37 59.73 0.3154 0.7710 

KNN 71.97 83.44 68.75 0.4366 0.8360 

XGBoost 80.73 70.07 83.72 0.4953 0.8553 

 

Figure 4. The ROC curves of different classification methods. 
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The area under the ROC curve can evaluate the predictive performance of the model. It can be 
seen from Figure 4 that when the random forest is used as a classifier, the area under the ROC curve 
is the largest. Therefore, random forest is the best choice for the proposed model. 

5.2. Results and discussion for SNO sites prediction 

5.2.1. Effect of features 

In this study, two kinds of features, CKSAAP and TPC, were used, and the 2205-dimension 
and 9261-dimension feature vectors were obtained on the basis of above-mentioned algorithms. In 
order to better reflect the information of protein fragments, these features are fused into a 11,466-
dimension feature vector. Through 5-fold cross-validation, the prediction results obtained by different 
feature extraction are shown in Table 4. 

Table 4. The prediction results of different feature extraction methods. 

Feature Acc (%) Sn (%) Sp (%) MCC AUC 

CKSAAP 73.97 83.67 64.27 0.4891 0.8036 

TPC 71.38 66.07 76.74 0.4305 0.8069 

ALL 75.36 86.39 64.31 0.5201 0.8196 

It can be seen from Table 4 that the ACC, Sn and MCC of CKSAAP are higher than those of TPC. 
TPC performs better than CKSAAP on Sp and AUC. After feature fusion, Acc, Sn, MCC and AUC are 
all higher than single feature. Therefore, feature fusion is necessary for this issue. 

5.2.2. Effect of elastic net 

Multi-information fusion can more comprehensively extract protein sequence information, but 
redundancy and noise information will also be generated. The dimensionality reduction method can 
not only retain important features, but the computational efficiency of the model will also be improved. 
In this paper, elastic net was used to reduce the dimensionality of the fused feature data set, and obtain 
the feature subset of 704. After 5-fold cross-validation, the prediction results of Random Forest are 
shown in Table 5. 

The features after dimensionality reduction using elastic nets, except for Sn, all other evaluation 
indicators have been improved. In addition, because the feature dimension is greatly reduced after 
dimensionality reduction, the efficiency of the model is also significantly improved. 

Table 5. Results before and after feature selection. 

 Acc (%) Sn (%) Sp (%) MCC AUC 

All 75.36 86.39 64.31 0.5201 0.8196 

Elastic net   76.02 85.68 66.33 0.5304 0.8260 
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5.2.3. Effect of different classifiers 

Four kinds of classifiers, Random Forest, Naive Bayes, K-Nearest Neighbor and XGBoost, were 
tested in this work for predicting SNO sites. After 5-fold cross-validation, the results were shown in 
Table 6. From Table 6 we can get that Naive Bayes and K-Nearest Neighbors are relatively inferior. 
Except for Sp, all indicators of Random Forest were the best. In order to evaluate the performance of 
the classifier more comprehensively, the ROC curves of different classifiers are shown in Figure 5. 

From Figure 5, we can clearly see that the area under the ROC curve of the random forest is the 
largest. Therefore, random forest has been selected as the classifier of the proposed model. 

Table 6. The prediction results of different classifiers. 

Algorithms Acc (%) Sn (%) Sp (%) MCC AUC (%) 

RF 76.02 85.68 66.33 0.5304 0.8260 

NB 69.74 79.46 59.98 0.4022 0.7605 

KNN 63.63 46.39 81.00 0.2923 0.7246 

XGBoost 72.88 74.37 71.40 0.4580 0.8015 

 

Figure 5. The ROC curves of different classification methods. 

5.2.4. Comparison with other methods 

To further evaluate the performance of this model, and we compared it with the PreSNO and 
RecSNO models. The prediction results of three different methods for the same data set are shown in 
Table 7. From Table 7, we can see that the ACC, Sn and MCC models of this model are all the highest. 
In addition, the Sp and AUC of the model in this paper also have good results. Therefore, the 
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performance of this model is better than PreSNO and RecSNO. 

Table 7. Comparison of the RF-SNOPS with other methods. 

Feature Acc (%) Sn (%) Sp (%) MCC AUC 

PreSNO 70% 54% 86% 0.42 0.84 

RecSNO 72% 79% 66% 0.45 0.79 

RF-SNOPS 76.02 85.68 66.33 0.5304 0.8260 

6. Conclusions 

In order to identify SNO proteins, we used GO-KNN, BOW and PseAAC to extract the sequence 
information. GO-KNN extracted KNN neighbor information based on protein GO information, and 
BOW and PseAAC extracted protein sequence information based on physical and chemical properties. 
In addition, we used the SR balancer to process the unbalanced data set, reduce the negative impact of 
the unbalance on the model. Finally, Random Forest was used to make predictions. For predicting SNO 
sites, CKSAAP and TPC were used to extract protein fragment information. In order to improve the 
computational efficiency and eliminate the redundancy and noise generated by the fusion features, we 
used elastic nets to reduce the dimensionality of the fusion features. These processes only need to 
require calculation models without any physical and chemical experiments, which can save 
experimental costs and improves work efficiency. We hope that this work will be helpful for solving 
biological problems with computational methods. 
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