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Abstract: Spatial co-location pattern mining discovers the subsets of spatial features frequently 
observed together in nearby geographic space. To reduce time and space consumption in checking 
the clique relationship of row instances of the traditional co-location pattern mining methods, the 
existing work adopted density peak clustering to materialize the neighbor relationship between 
instances instead of judging the neighbor relationship by a specific distance threshold. This approach 
had two drawbacks: first, there was no consideration in the fuzziness of the distance between the 
center and other instances when calculating the local density; second, forcing an instance to be 
divided into each cluster resulted in a lack of accuracy in fuzzy participation index calculations. To 
solve the above problems, three improvement strategies are proposed for the density peak clustering 
in the co-location pattern mining in this paper. Then a new prevalence measurement of co-location 
pattern is put forward. Next, we design the spatial co-location pattern mining algorithm based on the 
improved density peak clustering and the fuzzy neighbor relationship. Many experiments are 
executed on the synthetic and real datasets. The experimental results show that, compared to the 
existing method, the proposed algorithm is more effective, and can significantly save the time and 
space complexity in the phase of generating prevalent co-location patterns. 

Keywords: spatial data mining; spatial co-location pattern; density peak clustering; fuzzy neighbor 
relationship; cluster fuzzy participation index 

 

1. Introduction  

As an important branch of spatial data mining, spatial co-location pattern mining has been a 
research hot recently. A prevalent spatial co-location pattern represents a subset of spatial features 
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whose instances are frequently located together in a spatial neighborhood. There are many 
application domains such as Earth science, public health, biology, transportation, etc. [1]. 

The traditional co-location pattern mining framework materializes the neighbor relationship 
between spatial instances according to a certain distance threshold set by the users, which is very 
time-consuming to repeatedly check the clique relationship of row instances, and also very 
space-consuming to store row instances. To address this problem, Fang et al. [2] materialized the 
spatial neighbor relationship between instances by clustering technology, and based on the Density 
Peak Clustering, they proposed the algorithm for Mining Prevalent Co-locations (the DPC-MPC 
algorithm). The DPC-MPC algorithm employed the basic idea of density peak clustering to cluster 
the instances. After finding the cluster center through the decision graph, the remaining instances 
were fuzzy clustered for overlapping distribution according to the membership value. The sum of the 
membership values of an instance to all clusters was 1. After clustering, the neighbor relationship 
between instances was simplified in the cluster. Namely, a λ-cluster (λ cut set of a cluster) was 
regarded as a cluster, and the instances in the cluster meet the λ-proximity. Finally, in the prevalent 
co-location filtering phase, the membership of an instance to the cluster in the table instance was used 
to calculate the prevalence measurement of the co-location. However, the DPC-MPC algorithm had the 
following two shortcomings: 

First, when calculating the local density of an instance in the process of density peak clustering, 
only the number of data points in the circle with the instance as the center and the cutoff distance as 
the radius was counted, ignoring the fuzziness of neighbor relationship between the center instance 
and other instances in the circle. For example, Figure 1 shows two circles with the same radius. The 
red dot is the center of the circle, and both circles have a density of 6. However, it can be observed 
that the points around the center of (a) are more compact than those around the center of (b). That is 
to say, the local density of the center of the circle in (a) should be larger than that in (b). However, 
the DPC-MPC algorithm treated the two cases as the same, which affected the accuracy of local 
density and relative distance in density peak clustering, and further affected the accuracy of the 
clustering results. 

                   

(a)                 (b) 

Figure 1. Local density. 

Secondly, because the sum of the membership of an instance to all clusters was constrained by 1, 
when λ takes as 0, each λ-cluster is the whole data set, so that the participation index of all features 
was the value 1, it is unreasonable to take λ as 0; when λ is greater than 0, the contribution of an 
instance to the participation ratio of its feature must be less than 1. That is to say, if an instance is not 
in a λ-cluster, it will always take away part of its contribution to the participation ratio. The larger the 
λ is, the greater the contribution to the participation ratio to be taken away, causing the maximum 
value of the participation ratio is on longer 1, but a certain value in the interval < 0, 1 >. So the 
participation ratio calculated by the membership value lacks of accuracy. The reason is that the 
overlapping division of instances usually occurs at the intersection of two or more clusters, but the 
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DPC-MPC algorithm strictly divided instances into each cluster according to the membership value, 
and the membership values were finally used to calculate the participation ratio. 

To solve the above two shortcomings, we need to adopt a technology that can not only 
distinguish the difference of local density between instances, but also correctly measure the 
similarity between an instance and its cluster center. A fuzzy neighbor method was proposed to 
improve the calculation of the local density of density peak clustering [3]. It defined a fuzzy 
proximity function to measure the contribution of a data point to the local density of the center. The 
fuzzy proximity function could measure the similarity between the data point and the center within 
the cutoff distance, but couldn’t measure the similarity between any two points on the spatial data set. 
Therefore, it cannot solve the second shortcoming. Kernel density estimation is a function used to 
estimate the unknown density, which is widely used in many types of research, including density 
peak clustering. It can distinguish the differences of local density, and also can measure the 
similarity between two instances. However, the fuzzy neighborhood relationship, which can also 
solve the above two shortcomings, is more effective than the kernel density estimation method [4]. 
Therefore, in this paper, the co-location pattern mining based on the improved density peak 
clustering and the fuzzy neighbor relationship is studied. 

The following is the main contributions of this paper: 
1) To make the clustering results better applied to the co-location pattern mining, three 

improvements are adopted to the classical density peak clustering algorithm: Define the local density 
and relative distance based on the fuzzy neighbor relationship; Propose an automatic generation 
strategy of cluster center instances; Propose a new overlapping allocation strategy of instances; 

2) A new measure of co-location pattern prevalence, cluster fuzzy participation index, is given 
in the framework of co-location pattern mining based on clustering; 

3) A co-location pattern mining algorithm based on the improved density peak clustering and 
the fuzzy neighbor relationship is designed; 

4) Compared with the existing algorithms, the effectiveness of the proposed algorithm is 
verified, and the efficiency and the memory consumption in the stage of co-location pattern 
generation are evaluated. 

Section 2 describes the related works. The preliminaries are given in Section 3. Some related 
definitions are provided in Section 4. Section 5 presents the algorithm. Section 6 performs the 
experiments to verify the proposed algorithms. Finally, the conclusion is presented in Section 7. 

2. Related work 

The concept of co-location pattern was first proposed by Shekhar et al. [5]. Unlike association 
rule mining in transaction databases, which uses support degree to measure the frequency of 
transactions, spatial co-location pattern mining employs the participation index to measure the 
prevalence of co-location patterns. A join-based method which was an Apriori-like algorithm for 
co-location pattern mining was proposed by Huang [1]. For reducing the join operations between 
table instances of the join-based algorithm, the join-less and the partial join algorithms were 
presented in [6,7]. The prefix-tree structure was adopted in the CPI-tree algorithm [8] and the 
iCPI-tree algorithm [9] to prune the candidate co-locations and reduce the memory consumption for 
storing table instances. For discovering co-location patterns on uncertain data sets, lots of research 
had been done in [10,11]. And the work in [12] aimed to find co-location patterns from the interval 
data. For more efficiently and losslessly compressing the prevalent co-location patterns than the 
closed co-locations strategy, Wang et al. [13] put forward the concept of the SPI-closed co-location. 
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The work in [14] studied the strategy of reducing the redundancy of prevalent co-locations according 
to the distribution information of the instances. The research on finding maximal co-location patterns 
was conducted in [15–17]. Parallel co-location mining based on map-reduce was studied in [18,19] 
for massive spatial data. The fuzzy set theory had been integrated with the co-location pattern 
mining [2,20,21].  

The density peak clustering (DPC) algorithm was originally proposed in 2014 [22]. Over the past 
six years, various methods have been adopted to extend the classic DPC algorithm. The paper [23] 
proposed a robust clustering by computing the local density relative to the K-nearest neighbors 
independent of the cutoff distance and using two new point assignment strategies to assign the 
remaining points to the most probable clusters. An improved density peaks clustering algorithm with 
fast finding cluster centers was proposed for the large-scale data set [24]. Liu et al. [25] put forward 
the shared-nearest-neighbor-based clustering by fast searching and finding of density peaks 
(SNN-DPC). The constraint-based clustering by fast search and find of density peaks (CCFDP) 
method was studied in [26]. [27] presented a new semi-supervised density peaks clustering algorithm 
(SSDPC) which used constraint projection. 

As far as we know, no work adopted the fuzzy neighbor relationship in the co-location pattern 
mining based on the density peak clustering framework, which will be addressed in this paper. 

3. Preliminaries 

3.1. Density peak clustering 

Density peak clustering (DPC) [22] is to find high-density areas separated by low-density areas, 
which is based on the following two hypotheses: 1) The density of a cluster center is large enough, 
and the density of any data point around it is not more than which of itself; 2) The distance between a 
cluster center and a higher density cluster center is also large enough. 

The DPC algorithm defines two important parameters: local density and relative distance. It 
determines the cluster centers and assigns other instances to the clusters according to these two 
parameters. The definitions of the two parameters are given below. 
Definition 1. (Local Density) [22]. Given a data set S = {s1, s2, …, sn}, a cutoff distance dc, the local 
density i  of data point si ( is S ) is defined as the number of data points that are closer than dc to 
point si , namely,  

where, dist (si, sj), i ≠ j, is the distance between si and sj, and dc is a parameter set by the user. The 
literature [22] proved by experiments that, when the data set is large enough, the value of dc has little 
influence on the final clustering result, and provided a method of selecting an appropriate distance: 
First, arrange the distances between all data points in ascending order (the distance matrix between 
all data points is obtained by preprocessing and is the input of the algorithm), then select the distance 
corresponding to the percentage (0.5~5% is recommended)) as the cutoff distance. 
Definition 2. (Relative Distance) [22]. The relative distance i of the data point si is defined as the 
minimum distance between the point si and any other point with a higher local density. For the point 
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with the highest local density si, i  is defined as the maximum distance between si and the other 
data points, formalized as: 
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The DPC algorithm first calculates binary pairs ( i , i ) for each data point. All binary pairs ( i ,

i ) are plotted into a decision diagram with i  as the horizontal axis and i  as the vertical axis. 

Then select the points with larger i and i manually, that is, the points close to the upper right 

corner of the decision graph and obviously different from other data points as the clustering center. 
Finally, classify the remaining data points into the cluster of the nearest sample points with higher 
local density according to the order of local density from large to small. 

3.2. Fuzzy neighbor relationship between spatial instances  

Let there be a spatial instance data sets S, fuzzy neighbor relationship (FNR) [4] is used to 
measure the proximity level between instances in S. Taking the Euclidean distances ED between the 
instances in S as the domain, where [0, )ED   , FNR is a fuzzy subset on ED. Namely, there is a 
mapping for FNR： [0,1]ED  , ( )d d , where d ED represents the Euclidean distance between 
any two specific instances in S, μ is the proximity function of FNR, and ( )d is the membership 
value of Euclidean distance d, which refers to the probability of d belonging to FNR.  

4. Related definitions  

4.1. Density peak clustering based on FNR  

This section defines the local density and the relative distance of an instance based on fuzzy 
neighbor relationship (FNR). 
Definition 3. (Local density based on FNR). Given the set of spatial instances S, the fuzzy neighbor 
relationship FNR on S, the local density FNR

i  of is ( is S ) based on FNR is defined as the sum of 
the membership value between the center point and the data points that are closer than dc to point si. 
The formal expression is as follows: 

,

( ( , )) ( , )
j

FNR
i i j i j c

s S j i

dist s s dist s s d 
 

  ，  (3) 

In the DPC algorithm, the contribution (equal to the membership value) of a data point to the 
density of the center is 0 or 1. The definition of FNR

i  considers the difference in the distance 

between instance within the cutoff distance and the center. In this case, the contribution to the local 
density is a certain value on the interval [0,1], which is more accurate than that in the DPC 
algorithm. 

Figure 2 shows an example spatial instance data set and the coordinates of each instance in the 
data sets. The membership function of FNR on the data sets is shown in Eq (4). 
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Suppose that the cutoff distance dc = 3. Table 1 lists the local density and the local density based 
on FNR of some instances. It can be observed that a local density value was shared by multiple 
instances shared. In contrast the local density based on FNR distinguished the local density of each 
instance, which was helpful to select the cluster center instance accurately. 

 

Figure 2. An example spatial instance data sets. 

Table 1. The local densities of some instances. 

Instances A.1 A.2 A.3 A.4 A.5 A.6 A.7 B.1 B.2 B.3 

The local density based on FNR 3.47 2.84 1.38 2.09 1.78 3.63 3.67 3.93 1.59 2.59 

The local density 5 4 2 3 3 5 5 5 2 4 

Definition 4. (Relative distance based on FNR). Given the set of spatial instances S, the fuzzy 
neighbor relationship FNR on S, the relative distance of is ( is S ) based on FNR FNR

i is defined as 
the minimum distance between is and the other instances with higher local density. For the instance

is with the highest local density, FNR
i is defined as the largest distance between is and the other 

instances, formalized as: 
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The relative distance based on FNR is similar to that in the DPC algorithm. The critical 
difference between the two is that the relative distance based on FNR is calculated by the local 
density based on FNR, so it is more precise than that in the DPC algorithm. 

4.2. Automatically generate cluster center instances  

In the classic DPC algorithm, the decision graph is constructed by local density and the relative 
distance to select the points with larger local density and relative distance as cluster centers. 
However, this method is carried out manually with a certain subjectivity. To avoid the errors caused 
by human intervention in cluster center selection, a strategy based on the statistical characteristics of 
local density and relative distance was proposed in [28] to generate cluster centers automatically. It 
selected the instances with local density greater than the mean of local density and relative distance 
greater than twice the relative distance standard deviation as cluster centers. Unlike the classic DPC 
algorithm, in the clustering for co-location pattern mining, an instance may belong to multiple 
different clusters. That is to say, it is allowed to overlap between clusters. Therefore, in this paper, 
we select the instances with the local density greater than the mean value of the local density and the 
relative distance greater than the relative distance standard deviation as the cluster center instead.  
Definition 5. (Cluster center instance). Given the spatial instance set S, let E(ρ) be the mean value of 
the local density based on FNR of S, let σ() be the standard deviation of the relative distance based 
on FNR, if the local density FNR

i  and relative distance FNR
i of the instance is  satisfy: 

( )

( )

FNR
i
FNR

i

E 
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 



 (6)  

Then is is a cluster center instance. 

Table 2 lists the selected cluster centers by the decision graph and the cluster center automatic 
generation strategy respectively. The validity of the result will be evaluated in subsequent 
experiments in this paper. 

Table 2. The selected cluster center instances by two different selection methods. 

Selection strategy The cluster center instances 

Automatic generation strategy A.1, A.6, B.7, C.1 

Decision graph A.6, B.7 

4.3. Overlapping allocation of instances  

According to the basic idea of density peak clustering, after determining the cluster centers, it is 
necessary to divide the remaining instances into clusters with higher density. In this way, an instance 
must and can only be allocated to a specific cluster. Because clustering results in this paper are 
applied to co-location pattern mining, as mentioned above, instances may belong to multiple row 
instances, which will happen not only in a single cluster but also among multiple clusters.  

To realize overlapping division of instances, the definition of a cluster is as following.  
Definition 6. (Cluster). Given a set of spatial instances S, a set of m cluster centers v  {v1, v2…,vm}, 
a set of m clusters V  {V1, V2…, Vm}, a user-defined proximity threshold β (0 ≤ β ≤ 1), The cluster 
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Vi (1 ≤ i≤ m) is defined as the set of instances whose proximity to the cluster center vi is no less than 
β. Namely, 

{( , ( ( , )) | , ( ( , )) }i j i j j i jV s dist v s s S dist v s      (7)  

where, the membership value ( ( , ))i jdist v s is also referred to the membership of sj to the cluster Vi . 
For the cluster center vi, the membership to the cluster Vi is assigned the value 1. 

According to the membership threshold β given by the user, instances can be divided into 
clusters in one step. After the division, an instance may not be divided into any cluster, or may be 
divided into multiple clusters. For the example datasets in Figure 2, set β = 0.1. Table 3 lists the 
clustering results after overlapping allocation of the instances to the cluster centers A.1, A.6, B.7 and 
C.1. The first instance in each cluster is the cluster center instance. Each cluster also stores the 
proximity of the instances to the cluster center. For example, the proximity of B.2 to A.1 is 0,898. 
The underlined instances are overlappingly allocated.  

Table 3. Clustering results by overlapping allocation (β = 0.1). 

Cluster ID Instances of clusters 

Cluster-1 {<A.1, 1.0>, <A.3, 0.9039>, <B.2, 0.898>, <B.3, 0.46>, <B.5, 0.69>, <B.4, 0.133>, <C.5, 0.69>} 

Cluster-2 { <A.6, 1.0>, <B.3, 1.0>, <B.4, 0.69>, <B.5, 0.898>, <C.5, 0.542>, <A.5, 0.35>, <B.8, 0.25>, < B.2, 0.22 >} 

Cluster-3 {<B.7, 1.0>, <A.2, 0.5>, <A.4, 0.898>, <A.5, 0.22>, <A.7, 0.69>, <B.1, 0.69>, <B.8, 0.46>, <C.2, 0.69>, <C.3, 0.35>} 

Cluster-4 {<C.1, 1.0>, <B.6, 0.54>, <C.3, 0.75>, <A.5, 0.132>, <A.4, 0.69>} 

4.4. Prevalence measurement and properties 

According to the clustering results, there are the following new definitions. 
Definition 7. (β-proximity). Given a set of spatial instances S, a set of m clusters on S V{V1, 

V2,…,Vm}, a cluster Vt∈V(1≤t≤m), for any two instances si, sj in S, if si∈Vt and sj∈Vt, then si and sj 
satisfy β-proximity. 

For example, in Cluster-1, A.1, A.3, B.2, B.3, B.5, B.4 and C.5 all satisfy β-proximity pairwise.   
From the above definition, we can see that both instances in a cluster satisfy the β-proximity 

relationship. The α-proximity [4] is obtained by calculating the proximity between two instances. 
The β-proximity requires that the two instances are in the same cluster. Then a cluster is also a clique. 
Therefore, we can obtain the cluster row instances and cluster table instances which are defined 
below.  

Definition 8. (Cluster row instance and cluster table instance). Given a set of spatial instances S, 
a set of m clusters on S V{V1, V2,…,Vm}, for a co-location c, if the subset I of the cluster tV ( tV ∈V) 
satisfies: 1) I contains all instances of the features in c; 2) There is no subset of I containing the 
instances of all features in c, then I is called a cluster row instance of c. The set of all cluster row 
instances of c is called the cluster table instance of c, denoted as VT (c).  

For example, in Cluser-1, for the co-location c = {A,B,C}, {A.1, B.2, C.5} is a cluster row 
instance of c; the cluster table instance of c, VT(c) = {{A.1, B.2, C.5},{A.1, B.3, C.5}, {A.1, B.4, 
C.5}, {A.1, B.5, C.5}, {A.3, B.2, C.5}, {A.3, B.3, C.5},{A.3, B.4, C.5},{A.3, B.5, C.5}}. 

Unlike the fuzzy row instance and fuzzy table instance in the classic co-location pattern, the 
cluster row instance and cluster table instance do not need to be generated and stored. 
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Definition 9. (Cluster Fuzzy Participation Ratio (VFPR) and Cluster Fuzzy Participation Index 
(VFPI)). Given a set of spatial instances S, a set of m clusters on S V  {V1, V2,…,Vm}, a size-k 
candidate co-location c {o1, o2,…, ok}, for the feature ou∈c, the cluster fuzzy participation ratio 
VFPR of ou is defined as the ratio of the sum of the membership of an instances that do not recur in 
the cluster table instances of c to the cluster in which they are located and the total number of the 
instances of ou . 

1 ( ( ))

max( ( ( , )))

( , )
( )

oj u

m

i j
i s VT c

u
u

dist v s

VFP
o

R c o
N




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


 
(8) 

where, ( ( )
ou

VT c
 is the projection of the feature ou on the table instance VT (c); N(ou) is the total 

number of the instances of ou. 
In the above formula, for an instance that is overlapping allocation, only the maximum 

membership of the cluster it belongs to is counted in the summation expression. 
The cluster fuzzy participation index of the co-location c is defined as the minimum cluster 

fuzzy participation ratio of all features in c, namely, 

1( )=min { ( , )}k
u uVFPI c VFPR c o  (9) 

The following is the analysis of the range of cluster fuzzy participation ratio (VFPR) and cluster 
fuzzy participation index (VFPI). Because the range of the membership of an instance to a cluster is 
[0,1], when an instances of feature ou of c all appear in the cluster table instance, and each instance 
has a membership value of 1 to the cluster it belongs, the cluster fuzzy participation ratio takes the 
maximum value of 1; when the membership value of an instance to its cluster takes a value in the 
interval (0,1), the cluster fuzzy participation ratio increases with the increase of the membership 
value, When all instances of the feature ou do not appear in the cluster table instance, the cluster 
fuzzy participation ratio of ou takes the minimum value of 0. Therefore, the value range of the cluster 
fuzzy participation ratio is also [0,1]. According to the definition, the range of the cluster fuzzy 
participation index is also [0,1]. 

Given a minimum cluster fuzzy participation threshold min_vfprev, if ( ) min_ vVFPI c fprev , 
then the co-location c is prevalent. 

For example, in Figure 2, for the co-location c={A,B}, the fuzzy participation ratio of A is  

A

4
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and of B is  

B
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, 

then the fuzzy participation index of c is VFPI(c)= 0.7321. If min_vfprev = 0.5, then c is prevalent. 
The cluster fuzzy participation ratio and cluster fuzzy participation index has anti-monotonicity 

and downward closure property. 
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Lemma 1. (Anti-monotonicity). The cluster fuzzy participation ratio (VFPR) and the cluster 
fuzzy participation index (VFPI) are anti-monotone with increasing of the size of the co-location 
pattern. 

Proof. For a co-location pattern c, if an instance of the feature in c appears in a cluster row 
instance of a super-set of c, then the instance must also appear in the cluster row instance of c, not 
vice versa. Since the calculation of the cluster fuzzy participation ratio considers the maximum 
membership value of an instance to the cluster it belongs. So, the cluster fuzzy participation rate 
VFPR is monotonically non-increasing. According to the definition of the cluster fuzzy participation 
index (VFPI), VFPI is also monotonically non-increasing. 

Lemma 2. (Downward closure properties). In the co-location pattern mining based on improved 
density peak clustering and fuzzy neighbor relationship, if a co-location c is prevalent, all its subsets 
are prevalent too; if c is not prevalent, all its supersets are also not prevalent. 

Proof. Available from Lemma 1. 

5. Algorithms 

The co-location pattern mining algorithm based on improved density peak clustering and fuzzy 
neighbor relationship (CPM-IDPCFNR algorithm) is described as follows: 

Algorithm 1. the CPM- IDPCFNR algorithm 
Input:  
O: set of spatial features, S: spatial data set, dc: cutoff distance, μ: proximity function of FNR,  
β: membership threshold 
Variables: 
FNR: fuzzy neighbor relationship, k: size of co-location, v: set of cluster center, V: set of cluster, 
Den: set of local density based on FNR, RD: set of relative distances based on FNR, Ck: size-k 
co-location, Pk: set of size-k prevalent co-locations, min_vfprev：the minimum fuzzy participation index 
threshold 
Output: 
co-location pattern set P with VFPI ≥ min_vfprev  
Steps: 
1) FNR = get_fuzzy_neighbor_relationship (S, μ); 
2) Den = calculate_local_density (FNR, dc);  
3) RD = get_peaks (Den, S);  
4) v = select_cluster_center (Den, RD); 
5) Vi = assign_to_cluster (S, FNR, β, v); 
6) k = 1; P1= O; 
7) while(not empty Pk-1) do 
8)  Ck = generate_candidate_co-locations (Pk-1); 
9)  Pk = select_prevalent_co-locations (Ck, V, min_vfprev);  
10)  P = P∪Pk;  
11)  k = k + 1; 
12) end while 

The CPM-IDPCFNR algorithm mainly includes the following three steps: 
1) Calculate the fuzzy neighbor relationship of the spatial data set (line 1). According to the 

proximity function of the fuzzy neighbor relationship, the grid division technique is adopted to 
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calculate the fuzzy neighbor relationship of the spatial data set; 
2) Cluster the spatial data set (lines 2–5). The local density and relative distance of the instances 

based on FNR are calculated. Then the cluster center instances are automatically generated according 
to the local density mean and relative distance variance. Finally, the remaining instances are assigned 
to the clusters overlappingly. 

3) Filter prevalent co-location patterns (lines 7–12). Generate size-k candidate co-location 
patterns from size-k-1 prevalent co-location patterns, calculate the cluster fuzzy participation index 
of each candidate co-location, and select the cluster fuzzy participation index no less than the 
minimum cluster fuzzy participation threshold.  

6. Experiments 

This section conducts an experimental evaluation of Algorithm 1 (CPM-IDPCFNR algorithm) 
on real data sets and synthetic data sets. The primary purpose is: 1) Evaluate the three adopted 
strategies by comparing the densities of instances, the clusters selected and overlapping allocation of 
instances CPM-IDPCFNR and DPC-MPC [2] , and evaluate the effectiveness of the mining results 
of CPM-IDPCFNR by analyzing and comparing the mining results of CPM-IDPCFNR, CPFNR [4] 
and DPC-MPC. The prevalent measures of the three algorithms are cluster fuzzy participation index 
VFPI, fuzzy participation index FPI and fuzzy participation index DFPI (named in this paper) 
respectively. 2) Evaluate the performance of CPM-IDPCFNR in generating prevalent co-locations by 
analyzing and comparing the number of prevalent co-locations generated, running time and memory 
consumption. 

All the algorithms in the experiment are implemented in Java language and run on a Windows 7 
operating system PC with an Intel Core i7-6700 processor, a main frequency of 3.4 GHz, and a 
memory of 8 GB. 

6.1. Data set 

Two real data sets are used in the experiments in this section. The real data set Real-1 is a rare 
plant data set in the “Three Rivers in Parallel” region of Yunnan Province. It contains 31 features and 
a total of 336 instances. The vegetation distribution data set of Gaoligong Mountains, which contains 
25 features and a total of 13,350 spatial instances. The synthetic datasets in the experiment are 
generated using the data generator similar to the literature [1]. All data sets are normalized to a 2000 
× 2000 space. The proximity function of FNR of all spatial data sets used in the experiment is defined 
as follows: 

2

2

1

( )
( ) 1

( )

0

d a

d a
d a d b

b a

d b




      
   

(10)  

where, d is the Euclidean distance between any two instances in the spatial data set, a and b are the 
parameters of proximity function. 

6.2. Evaluation of the effectiveness of the proposed algorithm 

The related parameter settings in the experiments are shown in Table 4.  
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Table 4. Experimental parameter information on real data sets. 

Parameters Meaning 
 CPM-IDPCFNR CPFNR DPC-MPC 

Real-1 Real-2 Real-1 Real-2 Real-1 Real-2 

a proximity function parameter 20 20 20 20 - - 

b proximity function parameter 150 100 150 100 - - 

α/β/λ proximity function 0.1(β) 0.1(β) 0.01(α) 0.01(α) 0.2(λ) 0.2(λ) 

dc cutoff  distance 54 32 54 32 54 32 

min_(v) fprev minimum(cluster) fuzzy participation index 0.3 

6.2.1. Evaluation of the three strategies adopted 

In this section, to evaluate the three strategies adopted in our algorithm, we analyze some 
intermediate results of the CPM-IDPCFNR algorithm and the DPC-MPC algorithm on real-1. Tables 5 
and 6 list the top 10 local densities based on FNR (ρi

FNR) and their instance indexes(i) in the 
CPM-IDPCFNR algorithm as well as the the top 10 local densities(ρi) and the instance indexes(i) of 
the DPC-MPC algorithm. We can observe that ρi

FNR can tell the difference in density while ρi cannot 
do (several instances share the same ρi). We employ the Non-Repeat Ratio (NRR) as the 
effectiveness indicator of the density value, *100%non

total

n
NRR

n
 , where nnon is the number of no 

repeated non-zero density values, ntotal is the number of non-zero density values. We can get that 
NRR(ρi

FNR) = 99.8%, and NRR(ρi) = 0. Therefore, thanks to the FNR strategy, ρi
FNR is more effective 

than ρFNR.. Moreover, because the relative distances of instances are obtained according to the local 
density, the relative distance based on FNR FNR

i  of CPM-IDPCFNR is more effective than the 
relative distance i of DPC-MPC.  

Table 5. Top 10 ρi
FNR and their corresponding instance indexes of CPM-IDPCFNR on Real-1. 

index(i) 128 155 11 32 30 56 315 12 153 48 

ρi
FNR 6.829 6.752 5.877 5.866 5.835 5.807 5.744 4.996 4.904 4.885 

Table 6. Top 10 ρi and their corresponding instance indexes of DPC-MPC on Real-1.  

index(i) 128 155 11 30 32 56 315 8 12 33 

ρi 7 7 6 6 6 6 6 5 5 5 

Table 7. Comparison of the selected cluster center instances by different selection strategies. 

Algorithms Selection Strategy Indexes of the cluster centers 

CPM-IDPCFNR automatically generation 
128, 32, 56, 8, 319, 14, 162, 24, 104, 99, 40, 191, 211, 116, 138, 
13, 258 

DPC-MPC decision graph 128, 56, 315 

Table 7 compares the clusters generated by different selection strategies of the two algorithms. 
We can find that CPM-IDPCFNR gets more clusters than DPC-MPC with only three clusters, and 
the former case is more consistent with the characteristics of spatial instances gathering in a 
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relatively small range. Table 8 compares the times of each instance overlapping allocation by the two 
algorithms. In the DPC-MPC algorithm, each instance is assigned to all clusters, which has been 
proved in Section I that the mining results lack of accuracy. In the CPM-IDPCFNR algorithm, each 
instance is allocated to no more than 3 clusters, which is consistent with the basic characteristics of 
the spatial proximity of instances compared to that of DPC-MPC. 

Table 8. Comparison of the overlapping allocation times of instance. 

Algorithms Overlapping allocation times Number of instances 

CPM-IDPCFNR 

3 2 
2 39 
1 191 
0 87 

DPC-MPC 3 (equal to the number of clusters) 333 

Table 9. Size-2 prevalent co-location patterns on Real-1. 

Co-locations 
CPFNR CPM-IDPCFNR DPC-MPC 

FPI Rank VFPI Rank DFPI Rank 

{Fritillaria delavayi, ordyceps} 0.5871 1 0.5129 1 0.5741 106 

{Fritillaria delavayi, Megacarpaea delavayi Franch} 0.5702 2 0.4139 9 0.6807 16 

{Long bract fir, Fritillaria delavayi} 0.5605 3 0.4399 5 0.6807 16 

{taxus yunnanensis, cephalotaxus lanceolata} 0.5335 4 0.3705 16 0.4578 301 

{Long bract fir, Saussurea gossypiphora} 0.5078 5 0.5062 2 0.7572 4 

{Yunnan fish wood, taxus yunnanensis} 0.4874 6 0.3502 21 0.4578 301 

{Long bract fir,Trillium tschonoskii} 0.4749 7 0.4273 32 0.4064 407 

{taxus yunnanensis, Yunnan fish wood} 0.4727 8 0.4204 7 0.4931 191 

{Long bract fir, Megacarpaea delavayi Franch} 0.4611 9 0.4194 10 0.7572 4 

{Long bract fir, ordyceps} 0.4601 10 0.3564 6 0.5910 79 

Table 10. Size-3 prevalent co-location patterns on Real-1. 

Co-location 
CPFNR  CPM-IDPCFNR DPC-MPC 

FPI Rank VFPI Rank DFPI Rank 

{Long bract fir, Fritillaria delavayi, Megacarpaea delavayi Franch} 0.396 1 0.4194 1 0.6807 20 

{taxus yunnanensis, Yunnan fish wood, cephalotaxus lanceolata} 0.3729 2 0.3502 4 0.4578 2300 

{Fritillaria delavayi, Megacarpaea delavayi Franch, Cordyceps} 0.3719 3 0.3297 6 0.5741 455 

{Long bract fir, Fritillaria delavayi, Cordyceps} 0.3605 4 0.3297 6 0.5741 455 

{Long bract fir, Cordyceps,Saussurea gossypiphora} 0.3424 5 0.3911 63 0.4064 4064 

{Saussurea gossypiphora, Fritillaria delavayi, Megacarpaea delavayi 

Franch} 
0.3289 6 0.3126 16 0.6807 20 

{Long bract fir, Saussurea gossypiphora, Fritillaria delavayi} 0.3191 7 0.2997 14 0.6807 20 

{Long bract fir, Megacarpaea delavayi Franch, Cordyceps} 0.3174 8 0.3297 6 0.5741 455 

{Long bract fir, Saussurea gossypiphora, Megacarpaea delavayi 

Franch} 
0.3099 9 0.3126 14 0.7572 2 

{magnolia sieboldii, Fritillaria delavayi, Cordyceps} 0.2859 10 0.3804 3 0.5741 455 
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6.2.2. Evaluation of the validity of the mining results 

Tables 9 and 10 list the mining results of the size-2 and size-3 co-locations of the three 
algorithms on Real-1. The mining results of the size-2 and size-3 co-locations of the three algorithms  

on Real-2 are shown in Tables 11 and 12 respectively. It can be observed that 70% of the top 10 of 
the size-2 and size-3 co-locations mined by the CPM-IDPCFNR algorithm are in that of the CPFNR 
algorithm, which is more accurate than the classic Join-less algorithm [4]. But no more than 20% of 
the top 10 of the size-2 co-locations of the DPC-MPC algorithm are in that of the CPFNR algorithm, 
and for the size-3 co-locations, less than 10%. 

Table 11. Mining results of size-2 co-locations on Real-2.  

Co-locations 
CPFNR CPM-IDPCFNR DPC-MPC 

FPI Rank VFPI Rank DPI Rank 

{broad-leaf forest, Pinus yunnanensis} 0.9393 1 0.8752 1 0.7907 99 

{Alnus cremastogyne Burk, broad-leaf forest} 0.8586 2 0.8319 3 0.7907 99 

{Alnus cremastogyne Burk, Pinus yunnanensis} 0.8384 3 0.839 2 0.8223 80 

{Abies fabri , tsuga chinensis} 0.8228 4 0.6709 4 0.8825 47 

{broad-leaf forest, tsuga chinensis} 0.7449 5 0.6639 5 0.7907 99 

{Fargesia spathacea Franch, Abies fabri } 0.7138 6 0.4076 25 0.8825 47 

{tsuga chinensis, Miscellaneous fill} 0.6755 7 0.5996 10 0.8863 38 

{tsuga chinensis, Pinus yunnanensis} 0.6637 8 0.6128 9 0.8223 80 

{Fargesia spathacea Franch, Miscellaneous fill} 0.6443 9 0.3021 34 0.9188 21 

{Fargesia spathacea Franch, tsuga chinensis} 0.6056 10 0.4023 19 0.8863 38 

Table 12. Mining results of size-3 co-locations on Real-2. 

Co-locations 
CPFNR CPM-IDPCFNR DPC-MPC 

FPI Rank VFPI Rank DPI Rank 

{Alnus cremastogyne Burk, broad-leaf forest, Pinus yunnanensis} 0.8159 1 0.8251 1 0.7907 374 

{broad-leaf forest, tsuga chinensis, Pinus yunnanensis} 0.5847 2 0.5912 2 0.7907 374 

{Fargesia spathacea Franch, Abies fabri , tsuga chinensis} 0.572 3 0.3902 17 0.8825 121 

{Abies fabri, broad-leaf forest, tsuga chinensis} 0.5132 4 0.5226 4 0.7907 374 

{Abies fabri , tsuga chinensis, Miscellaneous fill} 0.473 5 0.4579 7 0.8825 121 

{Alnus cremastogyne Burk, tsuga chinensis, Pinus yunnanensis} 0.4159 6 0.4458 10 0.8223 287 

{Fargesia spathacea Franch, tsuga chinensis, Miscellaneous fill} 0.4099 7 0.2976 25 0.8863 85 

{Alnus cremastogyne Burk, broad-leaf forest, tsuga chinensis} 0.4018 8 0.4476 9 0.7907 374 

{Quercus, Alnus cremastogyne Burk, broad-leaf forest} 0.3689 9 0.5331 3 0.7907 374 

{tsuga chinensis, Pinus yunnanensis, Miscellaneous fill} 0.3665 10 0.4533 8 0.8223 287 

Tables 13 and 14 list the co-locations in the top 10 of size-2 and size-3 co-location patterns of 
CPM-IDPCFNR that do not appear in the top 10 of the size-2 and size-3 co-locations of the mining 
results of the CPFNR algorithm. Figures 3 and 4 are the distribution diagrams of these co-locations 
respectively. It can be observed that the instances of these co-locations frequently appear together, 
and the size-3 co-locations on Real-1 all contain the rare feature “Berneuxia thibetica”, the size-2 
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co-locations {Castanea mollissima, walnut} and {Quercus, Alnus cremastogyne Burk} on Real-2 are 
also composed of rare features. 

Table 13. Partial top-10 size-2 and size-3 co-locations of the mining results of 
CPM-IDPCFNR on Real-1. 

Size -2 co-locations VFPI Rank Size-3 co-location VFPI Rank 

{magnolia sieboldii, Cordyceps} 0.4781 3 
{Long bract fir, Berneuxia 
thibetica,Saussurea ssipiphora} 0.3812 2 

{Long bract fir, Fritillaria delavayi} 0.4487 4 
{Long bract fir, Berneuxia thibetica, 
Fritillaria delavayi} 0.3491 5 

{taxus yunnanensis, Fritillaria delavayi} 0.4195 8 
{Berneuxia thibetica, Saussurea 
ssipiphora,Fritillaria delavayi} 0.3282 10 

Table 14. Partial top-10 size-2 and size-3 co-locations of the mining results of 
CPM-IDPCFNR on Real-2. 

Size-2 co-location VFPI Rank Size-3 co-location VFPI Rank 

{Castanea mollissima, walnut} 0.6632 6 {Quercus, broad-leaf forest, Pinus yunnanensis} 0.5075 5 

{Quercus, Alnus cremastogyne 
Burk} 0.6567 7 

{Quercus, Alnus cremastogyne Burk, Pinus 
yunnanens} 0.5049 6 

{pinus densata, Birch} 0.6414 8    

      

(a){magnolia sieboldi(K), Cordyceps(c)}       (b){Cordyceps(K), Fritillaria delavayi(L)}      (c){taxus yunnanensis(B), Fritillaria delavayi(L)} 

     

(d) {Long bract fir(A), berneuxia thibetica 

decne(H), Saussurea gossypiphora(J)}  

(e){berneuxia thibetica decne(H), Saussurea 

gossypiphora(J), Fritillaria delavayi(L)} 

(f) {Long bract fir(A), davidia 

involucrata(H), Cordyceps(L)} 

Figure 3. The distribution diagram of instance of partial co-locations on Real-1. 
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(a) {Castanea mollissima(A), walnut(E)}    (b) {Quercus(C), Alnus cremastogyne Burk(H)}   (c) {Abies fabri (J), broad-leaf forest(O)} 

           

(d) {Quercus(K), broad-leaf forest(O), Pinus yunnanensis(V)}      (e) {Quercus(K),Alnus cremastogyne Burk(N),Pinus yunnanensis(V)} 

Figure 4. The distribution diagrams of instances of partial co-locations on Real-2. 

It can be seen from the above that the mining results of the CPM-IDPCFNR algorithm is more 
effective than the DPC-MPC algorithm and truly reflect the actual distribution of instances, and the 
co-locations with rare features are more likely to be mined. 

6.3. Performance evaluation of generating prevalent co-location patterns 

This section analyzes and compares the number of prevalent co-location patterns generated by 
the CPM-IDPCFNR algorithm, DPC-MPC algorithm, and CPFNR algorithm on Real-2 and the 
synthetic data set, as well as the running time and memory consumption during the phase of 
generating prevalent patterns to evaluate the performance of the CPM-IDPCFNR algorithm. 

6.3.1. Performance evaluation on real data sets 

The effect of the minimum (cluster) fuzzy participation index threshold. Figure 5 shows the 
number of prevalent co-locations, running time, and memory consumption generated by the three 
algorithms when the fuzzy participation index threshold takes different values on Real-2(the other 
parameter settings are shown in Table 4). It can be observed that the CPM-IDPCFNR algorithm 
produced more prevalent co-locations than the CPFNR algorithm, but the former consumes much 
less time than the latter. When the fuzzy participation index threshold is no less than 0.5, the 
DPC-MPC algorithm generates more prevalent co-locations than the CPFNR algorithm, but the 
former consumes significantly less time than the latter too. From the perspective of memory 
consumption, the memory cost of the CPM-IDPCFNR algorithm and the DPC-MPC algorithm is 



8239 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 8223-8244. 

much lower than that of the CPFNR algorithm, and the smaller the (cluster) fuzzy participation index 
threshold, the greater the difference in memory cost. Because the CPFNR algorithm must check the 
clique relationship of star instances when generating fuzzy row instances of candidate patterns, 
which is very time-consuming. The smaller the fuzzy participation index threshold, the more 
candidate co-locations generated, the more time the clique relationship test process consumes, then 
the more memory to store fuzzy row instances. The other two algorithms use clustering technology 
to materialize the spatial proximity relationship between the instances. The proximity relationship is 
simplified within the cluster. It does not require time and space to generate and store the cluster row 
instances of the candidate co-locations, saving a lot of time and space. It can also be observed that as 
the fuzzy participation index threshold decreases, the number of prevalent co-locations generated by 
the DPC-MPC algorithm grows rapidly. When the fuzzy participation index threshold is no less than 
0.5, the number of prevalent co-locations generated by the DPC-MPC algorithm is smaller than that 
of the other two. But when the fuzzy participation index threshold is less than 0.5, the number of 
prevalent co-locations it generates is much higher than that of the other two, resulting in a greatly 
increased time and memory consumption than that of the CPM-IDPCFNR algorithm. Because when 
the DPC-MPC algorithm assigns instances to clusters overlappingly, fuzzy clustering technology is 
used to force an instance to be assigned to each cluster with a certain membership, which leads to a 
much greater participation index of the co-locations than that of the other two, easily leading to the 
super co-location and its subsets have the same participation index. Therefore, when the fuzzy 
participation index threshold becomes smaller, the generation of high size co-locations will increase 
rapidly, and the time consumed will also increase sharply. However, the memory consumption 
increases relatively slowly, which is far lower than that of the CPFNR algorithm. 

 

(a) Number of prevalent co-locations 

 

(b) Running time 

 

(c) Memory consumption 

Figure 5. The effect of the minimum (cluster) fuzzy participation index threshold. 
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As can be seen from the above description, since the mining of co-location patterns based on 
clustering saves time and memory, the CPM-IDPCFNR algorithm shows good performance when 
generating prevalent co-locations. 

The effect of proximity function. The values of the experimental parameters are shown in Table 4. 
Figure 6 shows the number of prevalent co-locations, running time and memory consumption 
generated by the three algorithms when the proximity function parameter b (distance threshold) on 
Real-2 takes different values. Since there is no proximity function in the DPC-MPC algorithm, the 
number of generated prevalent co-locations, running time and memory consumption remain 
unchanged, while the DPC-MPC algorithm produced more prevalent co-locations than the other two 
algorithms. Since the time and memory consumed by the CPFNR algorithm increase with the 
increase of the parameter b. When b is less than 100, the running time of the DPC-MPC algorithm is 
higher than that of the CPFNR algorithm. When b is greater than 100, the former consumes less time 
and memory than the latter. The time and memory consumed by the CPM-IDPCFNR algorithm also 
increases slowly as b increases, and it is always significantly less than that of the CPFNR algorithm. 
The larger the b, the greater difference between the time and memory consumption of the two. But 
the number of prevalent co-locations generated by the CPM-IDPCFNR algorithm is always higher 
than that of the CPFNR algorithm during the whole process of b change. The above description once 
again illustrates that the clustering-based co-location pattern mining framework saves time and space 
when generating prevalent co-location patterns. 

 

(a) Number of prevalent co-locations 

     

(b) Running time                  (c) Memory consumption 

Figure 6. The effect of proximity function. 
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6.3.2. Performance evaluation on synthetic data sets 

The experimental parameter information on the synthetic data set is shown in Table 15.  

Table 15. The experimental parameter information on the synthetic data set. 

Parameters Means 
Default value 

CPM-IDPCFNR CPFNR DPC-MPC 

a parameter of proximity function 5 5 — 

b parameter of proximity function 20 20 — 

α/β/λ proximity(membership) threshold 0. 1(β) 0.01(α) 0.4(λ) 

dc cutoff distance 15 

N number of feature 10 

min_(v)fprev minimum (cluster) fuzzy participation threshold 0.4 

 

(a) Number of prevalent co-locations 

           

(b) Running time              (c) Memory consumption 

Figure 7. The effect of the number of instances. 
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CPM-IDPCFNR algorithm generates more prevalent co-locations than the CPFNR algorithm, but 
consumes less time and memory. When the number of instances is less than 80K, the DPC-MPC 
algorithm consumes less time than the other two because it generates fewer clusters than the 
CPM-IDPCFNR algorithm in the clustering process. When the number of instances is 80K and 90K 
respectively, the number of prevalent co-locations generated by the DPC-MPC algorithm is higher 
than that of the other two; thus it takes more time than the other two. However, when the number of 
instances is 100K, the DPC-MPC algorithm and the CPM-IDPCFNR algorithm produce the same 
number of co-locations, and the former consumes less time but more memory. When the number of 
instances is 70K, the DPC-MPC algorithm consumes more memory than the CPFNR algorithm (the 
former generates more prevalent co-locations). In other cases, the former consumes less memory 
than the latter. When the number of instances is not less than 70K, the memory consumption of the 
two cluster-based co-locations mining algorithms grows extremely slowly, showing that the 
cluster-based co-location mining framework has good stability in memory consumption. 

The effect of membership threshold. Figure 8 shows the time consumption of generating 
prevalent co-location patterns of the CPM-IDPCFNR algorithm on three synthetic datasets (60K, 
80K, 100k) as the membership threshold β varies (the other parameters are shown in Table 15). It 
can be seen that with the increase of β, the running time on each dataset decreases. Because the 
larger the β, the smaller the cluster size, the less prevalent co-locations generated, and thus the less 
time consumed. 

 

Figure 8. The effect of membership threshold. 

7. Conclusions 

This paper explores a co-location pattern mining framework based on clustering and studies the 
co-location pattern mining algorithm based on a combination of improved density peak clustering 
and fuzzy proximity relationships. Three improvement strategies are adopted for the classic density 
peak clustering, and a new prevalence measure of the co-location, cluster fuzzy participation index, 
is proposed. A co-location pattern mining algorithm based on the improved density peak clustering 
and the fuzzy neighbor relationships is given. Experiments show that the proposed algorithm is 
effective and greatly saves time and space during the generation of prevalent co-location patterns. 
For the future plan, we will employ fuzzy trigonometric function or other fuzzy methods for the 
co-location mining, and also mean to extend the co-location pattern mining based on the clustering 
framework to the other types of spatial data, e.g., uncertain data and spatial-temporal data. 
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