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Abstract: In the field of intensive aquaculture, the deterioration of water quality is one of the main
factors restricting the normal growth of aquatic products. Predicting water quality in real time constitutes
the theoretical basis for the evaluation, planning and intelligent regulation of the aquaculture environment.
Based on the design principles of decomposition, recombination and integration, this paper constructs a
multiscale aquaculture water quality prediction model. First, the complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN) method is used to decompose the different water
quality variables at different time scales step by step to generate a series of intrinsic mode function
(IMF) components with the same characteristic scale. Then, the sample entropy of each IMF component
is calculated, the components with similar sample entropies are combined, and the original data
are recombined into several subsequences through the above operations. In this paper, a prediction
model based on a long short-term memory (LSTM) neural network is constructed to predict each
recombination subsequence, and the Adam optimization algorithm is used to continuously update the
weight of neural network to train and optimize the prediction performance. Finally, the predicted value
of each subsequence is superimposed to predict the original water quality data. The dissolved oxygen
and pH data of an aquaculture base were collected for prediction experiments, the results of which show
that the proposed model has a high prediction accuracy and strong generalization performance.

Keywords: complete ensemble empirical mode decomposition with adaptive noise; long short-term
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1. Introduction

With the development of the Internet of Things, big data and artificial intelligence technology,
aquaculture is increasingly becoming more intensive, precise and intelligent. In the field of high-density
intensive aquaculture, predicting the development trend of water quality (that is, predicting the trends of
variables such as dissolved oxygen, pH, temperature, and turbidity) in real time is of great significance
for preventing the water quality from deteriorating and for avoiding the outbreak of disease.

Existing water quality prediction methods mainly include traditional statistical methods such as
regression analysis and time series methods and intelligent calculation methods such as neural networks
and support vector machines (SVMs). For instance, Rajaee and Jafari [1] proposed integrating the
discrete wavelet transform into artificial neural networks, gene expression planning, and decision trees
for the prediction of water quality indicators. Amir Hamzeh Haghiabi et al. [2] studied the application
of artificial neural networks (ANNs), the group method of data handling (GMDH) and SVMs to the
prediction of water quality. Rahman et al. [3] developed a set of step predictors, each of which predicts
a specific timestamp, thereby providing new insights for the long-term prediction of dissolved oxygen.
Barzegar et al. [4] studied the wavelet and extreme learning machine (WA-ELM) hybrid model for
multi-step-ahead prediction and adopted the boosting integration method. Jafari et al. [5] proposed a
water quality prediction model based on hybrid wavelet genetic programming method and Shannon
entropy. Rozario and Devarajan [6] employed the fuzzy C-means clustering method and constructed
a radial basis function (RBF) neural network to predict the change trend of dissolved oxygen. Kisi
et al. [7] proposed Bayesian model averaging (BMA) to estimate the hourly dissolved oxygen. Li et
al. [8] established three dissolved oxygen prediction models using a recurrent neural network (RNN)
model, a long short-term memory (LSTM) model, and a gated recurrent unit (GRU) model. Dabrowski
et al. [9] studied a method to forecast the quality of prawn pond water that introduces mean reversion
into multi-step-ahead forecasts of state-space models. Chen et al. [10] established a hybrid three-
dimensional dissolved oxygen content prediction model based on an RBF neural network with K-means
and subtractive clustering.

An RNN introduces the concept of time series into the network structure, making it more adaptable
in time series data prediction and analysis tasks. In contrast, an LSTM neural network [11] solves the
gradient disappearance problem and avoids the gradient explosion issue in RNN models. Moreover,
LSTM neural networks have a time loop structure that can effectively describe sequence data with
temporal and spatial correlations and can solve the problem of long-distance dependence [12]. LSTM
adjust the structure of the network on the basis of the simple recurrent neural network, adding a gating
mechanism to control the transmission of information in the neural network. As a variant of LSTM,
Gated Recurrent Unit (GRU) has made certain changes in the gating mechanism, and also mixed the
cell state and hidden state [13, 14]. GRU directly passes the hidden state to the next unit, while LSTM
uses memory cell to wrap the hidden state. The performance of GRU and LSTM is similar in many
tasks. The GRU structure is simpler and has fewer parameters, so it is easier to converge. In recent
years, LSTM and GRU have been considered as one of the effective methods to deal with time series
forecasting problems.

Michieletto et al. [15] studied the application of LSTM and phased LSTM (PLSTM) networks
to the prediction of dissolved oxygen. Li et al. [16] proposed a water quality prediction model
combining a sparse autoencoder with an LSTM network. Barzegar et al. [17] studied the application of
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a convolutional neural network (CNN)-LSTM hybrid deep learning model for short-term water quality
prediction. Zhou et al. [18] proposed a water quality prediction method based on the improved gray
relational analysis (IGRA) algorithm and an LSTM neural network. Zou et al. [19] proposed a water
quality prediction method based on a bidirectional LSTM network with multiple time scales.

Aquaculture water quality data are nonlinear and unstable. Hence, if the original data are directly
used for prediction, considerable problems such as the impact of noise and a low prediction accuracy
will arise. Empirical mode decomposition (EMD) [20], a fully adaptive nonlinear signal processing
algorithm, can resolve the nonstationarity of the input data and improve the model prediction accuracy.
Accordingly, Fijani et al. [21] proposed a hybrid water quality prediction model that combines complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and variational mode
decomposition (VMD) algorithms with an extreme learning machine (ELM) and a least-squares SVM
(LSSVM). Likewise, Huan et al. [22] studied a hybrid model involving integrated EEMD and an
LSSVM for the prediction of dissolved oxygen. Similarly, Eze and Ajmal [23] proposed a combined
dissolved oxygen prediction method based on integrated EEMD and an LSTM neural network. Liu et al.
[24] constructed a multiscale water temperature prediction model based on EMD and a back-propagation
neural network.

For data sets with dynamic and nonlinear characteristics, only relying on information decomposition
technology limits the accuracy and efficiency of prediction, and sequence reorganization using sample
entropy can decrease the workload and operate more handily. Wei Sun et al. [25] Proposed a hybrid
wind speed forecasting model, including fast ensemble empirical mode decomposition, sample entropy,
phase space reconstruction and back-propagation neural network with two hidden layers. Jujie Wang et
al. [26] proposed a hybrid model composed of complete ensemble empirical mode decomposition
(ceemdan), sample entropy (SE), long-term and short-term memory (LSTM) and random forest (RF) to
realize the accurate prediction of coal price. Qunli Wu et al. [27] proposed a hybrid air quality index
forecasting model using variational mode decomposition (VMD), sample entropy (SE) and long
short-term memory (LSTM) neural network. More and more researchers combine sample entropy with
decomposition technology. Sample entropy can be used to analyze the complexity of decomposition
sequence, reorganize sequence to reduce computational complexity, or determine the number of
decomposition layers.

The dissolved oxygen content and pH value are important factors that affect the quality of aquaculture
water. When the dissolved oxygen content in aquaculture water falls below 4 mg/L, the intake of food
by fish begins to decrease, and dissolved oxygen contents higher than 14.4 mg/L can cause gas bubble
disease. In addition, the pH range of aquaculture water suitable for fish is from 7.5 to 8.5; thus, pH
values less than 4 or greater than 10 can result in the death of a large number of fish. Dissolved oxygen
and pH are important indicators affecting the survival of aquatic organisms. By accurately predicting its
development trend, breeders can find abnormal water quality in advance. So as to avoid the death and
disease of aquatic organisms and ensure the high-quality development of aquaculture.

By combining the principles of decomposition and reconstruction with deep learning, this paper
constructs a water quality prediction model named CEEMDAN-SE-LSTM and conducts research on
the prediction of dissolved oxygen and pH to forecast aquaculture water quality. The proposed model
first applies CEEMDAN to decompose the dissolved oxygen and pH sequences at multiple scales,
thereby obtaining a series of intrinsic mode functions (IMFs) with different characteristic scales and a
remainder. Then, the IMF components with similar sample entropy (SE) are recombined to reduce the
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input complexity. Finally, the reconstructed sequences are applied to a trained LSTM neural network
for single-step prediction, the values of which are integrated to obtain the final prediction result.

The contributions of this paper are listed as follows:
(1) This paper uses CEEMDAN to decompose dissolved oxygen and pH data into subsequences with

different time scales. This process can fully determine the characteristics and trends of the water quality
series and transform complex single-scale characteristics into simple multiscale characteristics for the
ease of prediction.

(2) The SE of each IMF sequence is calculated, merged and recombined into sequences with similar
entropy values. Then, the LSTM prediction model is trained for each sequence after the reconstruction,
the model structure is optimized for single-step prediction, and finally, the prediction results are
integrated.

(3) In this paper, the autocorrelation coefficient is used to measure the degree of correlation between
different time points in the water quality series. The autocorrelation coefficient is used as the time step
parameter of the model prediction, thus avoiding the redundancy or insufficiency of input information
and increasing the efficiency of the constructed prediction model.

The remainder of this paper is structured as follows: the CEEMDAN algorithm, SE and LSTM neural
network are described in Section 2. The experimental process of the CEEMDAN-SE-LSTM model and
a comparative analysis with other models are discussed in Section 3. The paper is summarized and the
directions of future research on water quality prediction are discussed in Section 4.

2. Materials and method

2.1. Complete ensemble empirical mode decomposition with adaptive noise

EMD is based on the variation in the data and can be applied directly without preliminary analyses
or research. However, studies have shown that EMD has a limitation regarding mode mixing [28, 29].
To solve the mode mixing problem, an ensemble version of EMD called EEMD [30] was developed,
which added white noise on the basis of EMD decomposition, so that the decomposed IMF is a single
mode. Although EEMD greatly reduced the possibility of mode mixing, there raised a new problem: a
residue noise will be mixed into the original signal after reconstruction. Therefore, the Complementary
EEMD (CEEMD) [31] is proposed, which added the white noise to the original data in pairs, which
greatly alleviates the residual problem of noise after reconstruction . CEEMD still has some problems,
such as incompleteness and large amount of calculation [32]. In recent years, CEEMDAN [33] has been
proposed. The CEEMDAN adds a limited amount of adaptive white noise at each stage, which can
effectively suppress residuals, increase the reconstruction accuracy, and reduce the number of iterations;
moreover, CEEMDAN is more suitable for nonlinear signal analysis than other existing methods[34].

The steps for decomposing the original water quality time series in CEEMDAN are as follows:
(1) Add white noise following a normal distribution. The resulting water quality time series of the

i-th experiment is shown in Eq (2.1).

Xi(t) = X(t) + ε0vi(t) (2.1)

where vi(t) is the noise sequence added in the i-th experiment and ε0 is the noise amplitude.
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(2) Perform n-time EMD on the noise-added signal, and obtain the first IMF component through the
mean value calculation, as in Eq (2.2).

im f1t =
1
n

(
n∑

i=1

im f i
1t)) (2.2)

(3) Obtain the remainder from the original data and the first IMF component, as in Eq (2.3).

r1(t) = X(t) − im f1t (2.3)

(4) Add white noise to the remainder, and continue to implement decomposition to obtain the second
IMF component, as in Eq (2.4).

im f2(t) =
1
n

n∑
i=1

E1(r1(t) + ε1E1(vi(t))) (2.4)

where Ek(•) is the kth IMF component produced by the EMD method.
(5) According to the above steps, continue to perform multiple decompositions, and calculate Both

the remainder after the kth decomposition and the k+1th IMF component, as in Eqs (2.5) and (2.6).

rk(t) = rk−1(t) − im fk(t) (2.5)

im fk+1(t) =
1
n

n∑
i=1

E1(rk(t) + εkEk(vi(t))) (2.6)

(6) Repeat step 5 until the extremum points of the margin do not exceed two; the satisfaction of this
condition terminates the decomposition. Assuming that m IMFs are obtained, the final remainder R(t) is
described in Eq (2.7).

R(t) = X(t) −
m∑

i=1

im fi(t) (2.7)

After the above steps, the original data are finally decomposed into several IMF components and
a remainder. A better decomposition effect can be obtained by adjusting various parameters, such as
the noise standard deviation (Nstd), number of realizations (NR), and maximum number of iterations
(MaxIter).

2.2. Sample entropy

SE [35] can be used to quantify the regularity of time series fluctuations. If the SE difference between
two time series is small, the two series are highly similar.

The SE algorithm is expressed as follows:
(1) For an aquaculture water quality data sequence obtained by sampling at equal time intervals

{Xi (i = 1, 2 · · · n)}, using m as the time window length, divide the original sequence into n-m+1
subsequences, as in Eq (2.8).

Xi(t) = {xi(t), xi+1(t), · · · xi+m−1(t)} (2.8)
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(2) Define the distance d[Xm(i), Xm(i + 1)] between the vectors Xm(i) and Xm(i + 1) as the absolute
value of the maximum difference between the two corresponding elements, and calculate the distance
between each sequence, as in Eq (2.9).

d[Xm(i), Xm(i + 1)] = max |xi+k(t) − xi+1+k(t)| (k = 0, 1 · · ·m − 1) (2.9)

(3) Define the threshold F = r ∗ std, where std is the standard deviation of the original sequence
and r takes a value between 0.1 and 0.25 according to the application scenario. Count the ratio of the
number of distances greater than F to all sample values that do not include itself, denote the ratio as
Cm

i (t), and calculate the average value Φm(t) following Eq (2.10).

Φm(t) =
1

n − m

m∑
i=1

Cm
i (t) (2.10)

(4) Taking the length of the time window as m+1, repeat the above steps to obtain the SE of each
subsequence, as in Eq (2.11):

S ampEn(t) = ln(Φm(t) − Φm+1(t)) (2.11)

The SE calculation does not depend on the amount of data; moreover, the calculation speed is fast,
and the anti-interference ability is strong [36]. Additionally, the SE is very sensitive to time series
changes and thus has been widely used to measure the complexity of various time series.

2.3. Long short-term memory neural network

The cell state of an LSTM network is composed of two activation functions, which are composed of
three gating units: a forget gate, an input gate and an output gate [37]. Each gate in an LSTM model has
a unique function. The forget gate controls whether the previous cell state is forgotten with a certain
probability, while the input gate and output gate control the direction of data flow [38].

The structure of a single neuron in an LSTM network is illustrated in Figure 1, in which Xt and ht

denote the input and output of the neuron at time t, respectively, and Ct is the neuron cell state at time t.
In an LSTM model, the forget gate uses the sigmoid activation function to determine what information

can pass through the cell state. The output gate generates a value from 0 to 1 based on the output ht−1 at
the previous moment and the current input Xt to determine whether to completely or partially pass the
information Ct−1 learned at the previous moment. The output formula of the forget gate is shown in Eq
(2.12).

ft = σ(Wx f Xt + Wh f ht−1 + Wc f Ct−1 + b f ) (2.12)

where Wx f ,Wh f and Wc f are the relevant connection weights, b f is the bias matrix, and σ is the sigmoid
activation function, the mathematical formula of which is described in Eq (2.13).

σ(x) =
1

1 + e−x
(2.13)
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Figure 1. Diagram of the neuron structure in an LSTM network.

The input gate determines which new information needs to be received and consists of two parts. The
first part uses the sigmoid activation function to determine which values to update, and the second part
applies the tanh activation function to generate a new candidate value C̃t, as in Eqs (2.14) and (2.15).

it = σ(WiiXt + Whiht−1 + bi) (2.14)

C̃t = tanh(bc + WciXt + Wchht−1) (2.15)

In the above formulas, Wii,Wci and Whi,Wch are the corresponding weights, and bi and bc are bias
matrices.

The tanh function is a hyperbolic tangent function whose output range is between −1 and 1, and its
mathematical formula is shown in Eq (2.16).

tanh(x) =
(ex − e−x)
(ex + e−x)

(2.16)

The cell state Ct exists throughout the entire LSTM chain system and is updated through the input
and forget gates, as in Eq (2.17).

Ct = ft ∗Ct−1 + it ∗ C̃t (2.17)

In the above formula, the value of Ct is determined by the cell state of the previous neuron Ct−1 and
by the input gate it and output gate ft.

The output gate determines the output of the model. First, an initial output is obtained through the
sigmoid activation function, and then the value of Ct is scaled to between −1 and 1 using the tanh
activation function. Finally, the output obtained by Ct and the sigmoid activation function is multiplied
pairwise to obtain the output of the model, as in Eqs (2.18) and (2.19).

Ot = σ(WoxXt + Wohht−1 + bo) (2.18)
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Figure 2. Flow chart of the aquaculture water quality data prediction model.

ht = Ot ∗ tanh(Ct) (2.19)

where Wox and Woh are the relevant connection weights and bo is a bias matrix. LSTM can selectively
retain or forget information when this information flows in each neuron through the gate structure. This
structure can effectively solve the problem of long-distance dependence and is suitable for the prediction
of aquaculture water quality time series data.

2.4. CEEMDAN-SE-LSTM hybrid prediction model

Aquaculture water quality data (such as dissolved oxygen and pH) are nonlinear and nonstationary
and are easily affected by many factors, such as the water temperature, weather, and aquaculture density.
This paper proposes a hybrid prediction model named CEEMDAN-SE-LSTM. The model first uses
CEEMDAN to decompose the water quality sequence data and then uses the SE to reconstruct similar
sequences. Finally, an LSTM network is used for the single-step prediction of each sequence before
integrating to obtain the final prediction result. A flow chart of the prediction model is presented in
Figure 2.

The CEEMDAN-SE-LSTM prediction model proposed in this paper mainly consists of four parts.
(1) Decomposition of water quality data: The CEEMDAN method is used to decompose the original

water quality series into IMF function components with different frequencies, so as to reduce the
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influence of the non-stationarity of the original series on the prediction accuracy.
(2) Combination based on SE: Calculate the sample entropy value of each IMF separately, and

recombine the IMF with the approximate sample entropy value into a new sequence, which can
effectively reduce the amount of calculation and avoid inaccurate information extraction caused by
over-decomposition.

(3) Prediction of each sub-sequence: According to the data characteristics of each sub-sequence, the
hyperparameters of the LSTM neural network are optimized for individual prediction.

(4) Integration: The prediction results of each recombination sequence are added to obtain the
prediction results of the final water quality data.

3. Results

3.1. Sources of water quality data

This paper selected the Shandong Yantai aquaculture base as the experimental area. This aquaculture
base is equipped with modern fishery equipment such as dissolved oxygen sensors, pH sensors, aeration
pumps, and wireless monitoring systems. Dissolved oxygen data, which fluctuate considerably, are
collected every 10 minutes. During the 9 days from August 25 to September 2, 2019, after data
preprocessing, a total of 1024 valid data points were retained. The pH of the aquaculture water was
relatively stable and was measured once an hour, yielding a total of 634 valid data points. Eighty percent
of the data are selected to train the prediction model, and the remaining twenty percent of the data are
used for testing.

3.2. Multiscale decomposition of water quality data

The CEEMDAN algorithm is used to decompose the dissolved oxygen and pH data at the marine
aquaculture base in Laishan, Yantai, Shandong, and to identify and separate several IMF components
and one residual component step by step. The results are shown in Figure 3.

Through the CEEMDAN algorithm, the original dissolved oxygen sequence is decomposed into
seven IMF components with different characteristics and a residual signal. Likewise, the original pH
sequence is divided into six IMF components and a residual signal. The results demonstrate that the
features at different scales in the original data sequences are decomposed well.

3.3. Reconstruction of the IMF components based on the sample entropy

Considering the large number of IMF components obtained by CEEMDAN, direct prediction will
increase the computational cost. Therefore, this paper uses the SE to evaluate the complexity of each
IMF component and then reconstruct the decomposed components based on the differences in the SE
among the components.

An experimental verification suggests that, when calculating the SE of the data samples in this paper,
the time window length parameter m = 2 and the threshold parameter F = 0.2 * std(IMF(i)) can best
reflect the different complexity of each component. The SE of each IMF component decomposed from
the above dissolved oxygen and pH data sequences is plotted in Figure 4. Adjacent IMF components
whose SE difference is less than 0.1 are similar (that is, their complexity and regularity are similar), and
thus, these components can be recombined into a single new component. This recombination of IMF

Mathematical Biosciences and Engineering Volume 18, Issue 6, 7561–7579.



7570

Figure 3. Multiscale decomposition of dissolved oxygen (DO) and pH using CEEMDAN.
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Figure 5. Diagram of the decomposed and recombined dissolved oxygen and pH sequences.

components can reduce the computational complexity of the prediction model and prevent the extraction
of inaccurate information caused by overdecomposition. The IMF components of the dissolved oxygen
and pH data sequences in this paper can be recombined into several subsequences, as shown in Table 1.

Table 1. Recombination of IMF components based on the SE.

Water quality factors SE1 SE2 SE3 SE4
Dissolved oxygen IMF1 + IMF2 IMF3 + IMF4 IMF5 IMF6 + IMF7 + R(t)

PH IMF1 + IMF2 IMF3 + IMF4 IMF5 IMF6 + R(t)

According to the recombination scheme described in Table 1, the dissolved oxygen and pH data
sequences were recombined separately, and the experimental results as shown in Figure 5.

3.4. Construction of the CEEMDAN-SE-LSTM hybrid forecasting model

This paper uses the Keras deep learning library in Python based on the TensorFlow framework,
adopts a sequential model structure, and combines an LSTM network with the dense layer to build a
prediction model. To train the model, the mean square error (MSE) is selected as the loss function
[39], adaptive moment estimation (Adam) is used as the parameter optimizer [40], and the dropout [41]
method is used to prevent overfitting. This model is optimized and trained for the input time series
window length, learning rate and number of iterations and other parameters to improve the iteration
convergence speed and prediction accuracy.

This paper uses the autocorrelation coefficient to determine the length of the input time window.
The autocorrelation coefficient [42, 43] measures the correlation degree of the time series with itself at
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different time points. The mathematical formula of the autocorrelation coefficient is expressed in Eq (3.1).

Rk =

n−k∑
i=1

(xi − u)(xi+k − u)

n∑
i=1

(xi − u)2
(3.1)

where k is the lag order of the time series X = {x1, x2 · · · xn} and u is the sample mean of the series. The
value of Rk is usually between −1 and 1. When the absolute value of Rk is greater than 0.8, the k-th data
in the sequence are strongly correlated with the first (k-1) data.

The four subsequences formed by the decomposition and recombination of the abovementioned
dissolved oxygen sequences and their respective autocorrelation coefficients are shown in Figure 6.

Figure 6. Dissolved oxygen subsequence autocorrelation coefficients

Likewise, the autocorrelation coefficients of the four pH subsequences are shown in Figure 7.
Taking the second dissolved oxygen subsequence (SE2) as an example, the correlation values at the

first three lag orders are all greater than 0.8, indicating a strong correlation. Therefore, the length of the
input time window is selected as 3; that is, the value of every 3 time points in SE2 is used to predict the
value of the next time point. In the same way, the time window lengths of the other subsequences are
determined by their autocorrelation coefficients.

Eighty percent of the data are extracted from each sequence to train the model. After training and
verification, the settings of the parameters for each single-step prediction model, such as the learning
rate, number of iterations, and batch size, are optimized. Then, the data of each subsequence test sample
are input into the model for prediction; after the prediction result of each sequence is obtained, each
single-step prediction value is superimposed to obtain the final predicted values of dissolved oxygen
and pH.
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Figure 7. pH subsequence autocorrelation coefficients.

3.5. Model evaluation and comparative analysis

To verify the prediction performance of the CEEMDAN-SE-LSTM model proposed in this paper, a
variety of evaluation indicators [44, 45] are used to evaluate the prediction effect of the model.

(1) The mean absolute error (MAE), the average value of the absolute error, can better reflect the
actual situation of the error in the predicted value. The MAE is calculated using Eq (3.2).

MAE =
1
N

n∑
i=1

|yi − ŷi| (3.2)

(2) The root mean squared error (RMSE) is used to measure the deviation between the predicted
value and the true value following Eq (3.3).

RMS E =

√√
1
N

n∑
i=1

(yi − ŷi)2 (3.3)

(3) The mean absolute percentage error (MAPE) is inversely proportional to the accuracy: the smaller
the MAPE is, the more accurate the prediction. The MAPE is expressed in Eq (3.4).

MAPE =
1
N

N∑
i=1

|yi − ŷi|

yi
(3.4)

In the above formulas, yi represents the true value, ŷi represents the predicted value, and N is the
number of samples.
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Table 2. Forecast model accuracy comparison.

Prediction model
Dissolved oxygen PH

MAE RMSE MAPE MAE RMSE MAPE
RBF 0.2356 0.3136 0.0327 0.0478 0.0633 0.0065
RNN 0.2328 0.3011 0.0328 0.0450 0.0580 0.0062
GRU 0.2319 0.2783 0.0312 0.0329 0.0414 0.0042

LSTM 0.1719 0.2283 0.0289 0.0293 0.0307 0.0031
CEEMDAN-SE-RBF 0.2110 0.2854 0.0297 0.0447 0.0576 0.0062
CEEMDAN-SE-RNN 0.1970 0.2635 0.0289 0.0304 0.0225 0.0053
CEEMDAN-SE-GRU 0.1283 0.1899 0.0211 0.0237 0.0276 0.0031

CEEMDAN-SE-LSTM 0.1026 0.1210 0.0149 0.0189 0.0107 0.0012
VMD-LSTM 0.1415 0.2192 0.0218 0.0281 0.0195 0.0043
WT-LSTM 0.1498 0.2287 0.0232 0.0323 0.0414 0.0051

We implemented other three ( RBF, RNN and GRU) prediction models using python language
programming. We used CEEMDAN and SE to decompose and recombine the time series of dissolved
oxygen and pH in aquaculture water quality, and completed other three hybrid prediction models:
CEEMDAN-SE-RBF, CEEMDAN-SE-RNN and CEEMDAN-SE-GRU. With reference to related
literature, we simulated the hybrid prediction model of variational model decomposition and LSTM
(VMD-LSTM) [46] and the hybrid prediction model of wavelet transform and LSTM (WT-LSTM)
[47]. Using the same data samples, the above models are compared with the CEEMDAN-SE-LSTM
prediction model proposed in this paper. The prediction errors of each model for dissolved oxygen and
pH are shown in Table 2.

The experimental results confirm that an LSTM neural network has a long-term memory function,
allowing certain advantages in the prediction of water quality data time series, and the prediction
accuracy is higher than that of both the RBF, RNN and GRU. Compared with the single prediction
models, the hybrid prediction models based on the principles of decomposition and recombination
achieve better prediction effects. Compared with the other hybrid models, the CEEMDAN-SE-LSTM
prediction model proposed in this paper has the lowest prediction error and the best performance in the
prediction of the dissolved oxygen and pH of the aquaculture water quality. The prediction effect of
each model on pH is shown in Figure 8.

In order to test the predictive performance of the model on long-period data, we applied 14598
dissolved oxygen data for 111 days from June 2 to September 21, 2020 to conduct simulation
experiments. Eighty percent of the data (11679) are selected to train the prediction model, and the
remaining twenty percent of the data (2919) are used for testing. The prediction effect of each model on
dissolved oxygen is shown in Figure 9.

The results of this simulation experiment demonstrate that the prediction curve of the model
constructed in this paper is closer to the original water quality data curve than are those of the other
prediction models. The CEEMDAN-SE-LSTM model can quickly track changes in the mutating data,
and the agreement between the prediction curve and the original data curve is better than that of the
other two hybrid models. Therefore, the prediction error of this model is smaller, and the fitting effect is
better. Consequently, the proposed model is suitable for predicting aquaculture water quality data.
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Figure 8. Experimental comparison of the prediction effect on pH.

Figure 9. Experimental comparison of the prediction effect on dissolved oxygen.
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4. Conclusions

The quality of aquaculture water has a tremendous impact on the growth of aquatic organisms and
thus is a key factor that determines the intensive and intelligent development of aquaculture. Therefore,
accurately predicting water quality has always been a key issue to be resolved in the aquaculture field.
This paper focuses on this problem from two perspectives, namely, multiscale decomposition and LSTM
neural network optimization, and the CEEMDAN-SE-LSTM hybrid prediction model is proposed.

The CEEMDAN algorithm does not need to set the basis function in advance and can automatically
perform decomposition step by step according to the characteristics of the sequence. The individual
IMF components obtained after decomposition reflect the fluctuating characteristics of the time series
on different time scales. The original water quality factors are separately predicted after the sequences
are decomposed, and finally, the prediction results are integrated, which can improve the prediction
accuracy compared with the direct prediction of the original sequences. The LSTM neural network
solves the problem of short-term memory by adding gates on the basis of a cyclic neural network
model. Compared with other neural networks, LSTM has a better efficiency and higher accuracy in the
prediction of time series sequences.

The prediction model proposed in this paper provides a scientific basis for accurately predicting
aquaculture water quality and has important guiding significance both for the intelligent regulation
and management of water quality and for ensuring the stable and efficient operation of aquaculture.
However, the single-step prediction of each subsequence obtained by decomposition and recombination
has a certain prediction error. Hence, the simple superposition of the single-step prediction results will
increase the overall error. In the future, in-depth research will be conducted on an integrated stacking
method to perform single-step prediction and further improve the prediction accuracy of the model.
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44. Ü. B. Filik, T. Filik, Wind speed prediction using artificial neural networks based on multiple local
measurements in Eskisehir, Energy Procedia, 107 (2017), 264–269.

45. M. V. Shcherbakov, A. Brebels, A. Tyukov, A survey of forecast error measures, World Appl. Sci.
J., 24 (2013), 171–176.

46. H. Niu, K. Xu, W. Wang, A hybrid stock price index forecasting model based on variational mode
decomposition and LSTM network, Appl. Intell., 50 (2020), 4296–4309.

47. Z. Chang, Y. Zhang, W. Chen, Electricity price prediction based on hybrid model of adam optimized
LSTM neural network and wavelet transform, Energy, 187 (2019), 115804.

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 18, Issue 6, 7561–7579.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Materials and method
	Complete ensemble empirical mode decomposition with adaptive noise
	Sample entropy
	Long short-term memory neural network
	CEEMDAN-SE-LSTM hybrid prediction model

	Results
	Sources of water quality data
	Multiscale decomposition of water quality data
	Reconstruction of the IMF components based on the sample entropy
	Construction of the CEEMDAN-SE-LSTM hybrid forecasting model
	Model evaluation and comparative analysis

	Conclusions

