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Abstract: The development of new drugs is a time-consuming and labor-intensive process. Therefore, 

researchers use computational methods to explore other therapeutic effects of existing drugs, and drug-

disease association prediction is an important branch of it. The existing drug-disease association 

prediction method ignored the prior knowledge contained in the drug-disease association data, which 

provided a strong basis for the research. Moreover, the previous methods only paid attention to the 

high-level features in the network when extracting features, and directly fused or connected them in 

series, resulting in the loss of information. Therefore, we propose a novel deep learning model for 

drug-disease association prediction, called DCNN. The model introduces the Gaussian interaction 

profile kernel similarity for drugs and diseases, and combines them with the structural similarity of 

drugs and the semantic similarity of diseases to construct the feature space jointly. Then dense 

convolutional neural network (DenseCNN) is used to capture the feature information of drugs and 

diseases, and introduces a convolutional block attention module (CBAM) to weight features from the 

channel and space levels to achieve adaptive optimization of features. The ten-fold cross-validation 

results of the model DCNN and the experimental results of the case study show that it is superior to 

the existing drug-disease association predictors and effectively predicts the drug-disease associations.  

Keywords: drug-disease association prediction; Gaussian interaction profile kernel similarity; dense 

convolutional neural network; convolutional block attention module; random forest classifier 

 

1. Introduction  

The development of new drugs often goes through a long process including drug discovery, 

clinical trials, and drug marketing. It takes a lot of time and money to design complex biological 
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experiments. Newly-discovered drugs have low utilization rates in practice [1]. It is important to find 

suitable treatment drugs for diseases more efficiently, so researchers are adopting the research model 

of “new use of old drugs” to realize drug repositioning. They explore the therapeutic effects of 

marketed drugs on other diseases [2]. Drug-disease association prediction is an important branch in 

the direction of drug repositioning. It combines drug data and disease data and uses computational 

methods to find new indications for existing drugs, thereby providing certainty theoretical support for 

the treatment of diseases and the development of related drugs. In view of this, it is of great research 

significance to find an effective calculation method to realize drug-disease association prediction. 

Drug-disease association prediction has been studied by many researchers. Based on the 

assumption that similar drugs tended to treat similar diseases [3], the researchers used similarity data 

of drugs and similarity data of diseases as raw information to predict the drug-disease associations. 

Wang et al. [4] and Gottlieb et al. [5] used molecular data of drugs and diseases to build a drug’s 

similarity network and a disease’s similarity network, and they input this information into the classifier 

to predict the drug-disease relationship. Zeng et al. [6] fused 10 heterogeneous networks containing 

information of drugs and diseases, and developed a method based on deep learning to realize drug 

repositioning. Yang et al. [7] used the structural similarity data of drugs and the semantic similarity 

data of diseases to reconstruct the drug-disease association matrix and found the new indications for 

existing drugs. Dai et al. [8] introduced disease-related genetic information to further improve the 

accuracy of drug-disease association prediction. However, these methods only considered the 

information on the chemical level of the drugs and the information on the medical level of the diseases, 

and did not make full use of the existing drug-disease association data.  

In the field of silico prediction of interaction, Gaussian interaction profile kernel similarity has 

been widely used. You et al. [9] calculated the Gaussian interaction profile kernel similarity of diseases 

and the Gaussian interaction profile kernel similarity of miRNAs based on the miRNA-disease 

association data, and used them as input data, which effectively improved the prediction results of the 

model. Twan van Laarhoven et al. [10] predicted the drug-target interaction based on the Gaussian 

interaction profile kernel similarity of the drugs and the targets. Yan et al. [11] also introduced the  

Gaussian interaction profile kernel similarity of drugs in the study of drug-drug interactions and 

achieved better prediction results. Lan et al. [12] used the similarity of lncRNAs and diseases as the 

input of the model in lncRNA-disease association prediction, which included the Gaussian interaction 

profile kernel similarity. These studies show that the topology of interaction as a source of information 

for predicting interactions is important, and the use of Gaussian interaction profile kernel similarity to 

capture topological information in association data helps to improve the predictive ability of the model. 

At present, most drug-disease association prediction methods are based on traditional machine 

learning, network propagation, and matrix factorization or completion methods. Wang et al. [4] and 

Gottlieb et al. [5] used support vector machine and logistic regression methods to predict drug-disease 

associations respectively. Liu et al. [13] analyzed the relationship between entities in the drug-disease 

heterogeneous network, and performed a two-step restart random walk with drugs and diseases as the 

center to determine the drug-disease associations. Under the assumption of a low-rank matrix, Yang 

et al. [7,14] proposed a regularization method with unclear boundaries and an overlap matrix 

completion method, which complemented the missing values in the drug-disease association matrix. 

Dai et al. [8] proposed a matrix factorization method to predict drug-disease associations. These 

methods have achieved certain results in the research of drug-disease association prediction. But they 

researched directly on the original similarity data of drugs and diseases, and it was difficult to mine 

the deep feature representations of the data. 
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The deep learning methods can learn the distribution of the original datasets by training a deep 

neural network with multiple hidden layers to form abstract high-level features [15], and then achieve 

accurate prediction and classification. It has been successfully applied to object detection [16,17], 

protein sites prediction [18], drug repositioning [6,19] and other fields [20,21]. In the study of drug-

disease association prediction, Liu et al. [22] proposed the Hnet-DNN model, which used a deep neural 

network to extract features on the drug-disease heterogeneous network, and then a DNN classifier was 

trained to predict new drug-disease associations. Wang et al. [23] proposed the HNRD model, which 

used a deep neural network method to aggregate neighborhood information to learn the node 

embedding representations of drugs and diseases, and used it for drug-disease association prediction. 

Han et al. [24,25] proposed the calculation models of SAEROF and GIPAE, respectively using sparse 

auto-encoders and fully connected network to extract high-level feature representations of drug 

similarity data and disease similarity data, and input them into the classifier to predict drug-disease 

associations. These studies used deep learning technology to extract the deep abstract information of 

drug and disease data. They have achieved good predictive performance in the research of drug-disease 

association prediction. However, these methods only focused on the high-level network in the process 

of feature extraction. The interaction between high-level information and low-level information was 

neglected. They may have lost some information related to the prediction of drug-disease associations.  

 

 

Figure 1. The Flowchart of our work: (a) constructs the drug-disease heterogeneous 

network; (b) dense convolutional attention network extracts high-level features of drugs 

and diseases; (c) random forest classifier predicts drug-disease associations. 

Based on the above problems, we introduce dense convolutional neural network (DenseCNN) [17] 

and convolutional block attention module (CBAM) [26], and propose a deep learning model DCNN 

based on dense convolutional attention network to predict drug-disease associations. The flowchart is 

shown in Figure 1. First, we introduce the Gaussian kernel function to calculate the Gaussian 

interaction profile kernel similarity of the drugs and the Gaussian interaction profile kernel similarity 
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of the diseases based on the drug-disease association data. We merge the Gaussian interaction profile 

kernel similarity and the structural similarity of drugs, and combine the Gaussian interaction profile 

kernel similarity and semantic similarity of diseases to construct the feature space of drugs and diseases 

together. Next, the dense convolutional neural network is introduced to be a feature extractor to focus 

on different levels of drug information and disease information in the network at the same time, 

improving the effectiveness of feature representations. Then, the convolutional block attention module 

is added to the weight feature maps and score the importance of drug information and disease 

information in the feature extraction process. Finally, a random forest classifier (RF) is used to predict 

drug-disease associations. The experimental results of ten-fold cross-validation show that the DCNN 

model is superior to existing methods, effectively learning the information representations of drugs 

and diseases, and improving the predictive performance of drug-disease associations. 

2. Materials and methods 

2.1. Dataset 

At present, most drug-disease association predictions are studied on datasets F, C and DN [7,14,22–

25], the specific information of these datasets is shown in Table 1. Datasets F, C and DN all contain 

structural similarity data of drugs, semantic similarity data of diseases and drug-disease association data. 

Among them, the structural information of drugs comes from the DrugBank database, a comprehensive 

database containing extensive information about drugs (https://go.drugbank.com) [28]. The semantic 

information of diseases is from the Online Mendelian Inheritance in Man (OMIM) database, which focuses 

on human genes and diseases (https://www.ncbi.nlm.nih.gov/omim/) [29]. The drug-disease association 

data can be verified in the Comparative Toxicogenomics Database (CTD) (http://ctdbase.org/) [30]. 

For the structural similarity of drugs which ranges in [0, 1], we first download the chemical 

structure information of the drugs in Canonical Simplified Molecular-Input Line-Entry System 

(SMILES) format from the Drug Bank database [32]. Then the binary fingerprint of the chemical 

structure of each drug is obtained by the tool of Chemical Development Kit [31]. Finally, the similarity 

of the drug structure is calculated based on the obtained binary fingerprint. 

Table 1. The information of datasets。 

Dataset F C DN 

Number of drugs 593 663 1490 

Number of diseases 313 409 4516 

The structural similarity of drugs 593×593 663×663 1490×1490 

The semantic similarity of diseases 313×313 409×409 4516×4516 

Drug-disease associations data 593×313 663×409 1490×4516 

Number of positive samples 1933 2532 1008 

Number of negative samples 183676 268635 6727832 

Total number of samples 185609 271167 6728840 

Number of train samples 3479 4557 1814 

Number of validation samples 387 507 202 
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For the semantic similarity of diseases, we download the medical description of each disease from 

the Online Mendelian Inheritance in Man (OMIM) database. Then according to the number of 

occurrences of the Medical Subject Headings vocabulary (MeSH) in the medical description, the 

semantic similarity of each pair of diseases is calculated, which is in the range of [0, 1] [33,34]. 

2.2. Construct the drug-disease heterogeneous network 

2.2.1. Calculation of gaussian interaction profile kernel similarity of drugs and gaussian interaction 

profile kernel similarity of diseases 

For making full use of the drug-disease association data to improve the accuracy of drug-disease 

association prediction, we use Gaussian kernel function to calculate the Gaussian interaction profile 

kernel similarity between any two drugs and any two diseases, and capture topological information in 

drug-disease association data. Gaussian interaction profile kernel similarity measures the distance of 

the binary vector of two drugs (diseases) and its ranges in [0, 1]. The greater the similarity value 

between the two drugs (diseases), the more similar the two drugs (diseases) are. The calculation process 

of Gaussian interaction profile kernel similarity between drugs and diseases is shown in formulas (2.1) 

and (2.2). 

𝐺𝑑𝑟𝑢𝑔 = 𝑒𝑥𝑝 (
‖𝑋𝑖 − 𝑋𝑗‖

2

−2𝜃2
) (2.1) 

𝐺𝑑𝑖𝑠𝑒𝑎𝑠𝑒 = 𝑒𝑥𝑝 (
‖𝑌𝑖 − 𝑌𝑗‖

2

−2𝜃2
) (2.2) 

Among them, 𝐺𝑑𝑟𝑢𝑔  and 𝐺𝑑𝑖𝑠𝑒𝑎𝑠𝑒  represent the Gaussian interaction profile kernel similarity 

values of drugs and diseases, 𝑋𝑖 and 𝑋𝑗 represent the binary vectors corresponding to drugs i and 𝑗, 

and 𝑌𝑖 and 𝑌𝑗 represent the binary vectors corresponding to diseases 𝑖 and 𝑗. The parameter θ  is 

used to control the local scope of the Gaussian kernel function. In formula (2.1), we set θ  to 

be√
∑ ‖𝑋𝑖‖2𝑟_𝑛

𝑖=1

𝑟_𝑛
, 𝑟_𝑛 is the number of drugs. In formula (2.2), we set θ to be√

∑ ‖𝑌𝑖‖2𝑑_𝑛
𝑖=1

𝑑_𝑛
, 𝑑_𝑛 is the 

number of diseases. 

2.2.2. Fusion of similarity data  

In order to simultaneously consider the information in drug structural similarity, disease semantic 

similarity, and drug-disease association data, and improve the predictive ability of the model, we have 

merged drug similarity data and disease similarity data from different perspectives to construct the 

feature space of drugs and diseases jointly. In the drug-disease association datasets, when the 

association of drug-disease is unknown, the corresponding Gaussian interaction profile kernel is 0 [24]. 

We fill the Gaussian interaction profile kernel similarity matrix of the drugs with the structural 

information of the drugs, and fill the Gaussian interaction profile kernel similarity matrix of diseases 

with the semantic information of the diseases [24,25]. The fusion process of the drug mixture similarity 

matrix and the disease mixture similarity matrix is shown in formulas (2.3) and (2.4).  
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𝐷𝑟𝑢𝑔𝑠𝑖𝑚 = {
𝐺𝑑𝑟𝑢𝑔(𝑖, 𝑗), 𝑖𝑓 ∃ 𝐺𝑑𝑟𝑢𝑔(𝑖, 𝑗)

𝑆𝑑𝑟𝑢𝑔(𝑖, 𝑗), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.3) 

𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑠𝑖𝑚 = {
𝐺𝑑𝑖𝑠𝑒𝑎𝑠𝑒(𝑖, 𝑗), 𝑖𝑓 ∃ 𝐺𝑑𝑖𝑠𝑒𝑎𝑠𝑒(𝑖, 𝑗)

𝑆𝑑𝑖𝑠𝑒𝑎𝑠𝑒(𝑖, 𝑗), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.4) 

Among them, 𝐷𝑟𝑢𝑔𝑠𝑖𝑚  refers to the drug similarity after mixing. 𝐺𝑑𝑟𝑢𝑔(𝑖, 𝑗) represents the 

Gaussian interaction profile kernel similarity of the drugs.  𝑆𝑑𝑟𝑢𝑔(𝑖, 𝑗)  represents the structural 

similarity of the drugs. 𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑠𝑖𝑚 refers to the similarity of the diseases after mixing.  𝐺𝑑𝑖𝑠𝑒𝑎𝑠𝑒(𝑖, 𝑗) 

represents the Gaussian interaction profile kernel similarity of the diseases. 𝑆𝑑𝑖𝑠𝑒𝑎𝑠𝑒(𝑖, 𝑗) represents 

the semantic similarity of the diseases. 

2.2.3. Construction of drug-disease heterogeneous network 

The drug-disease heterogeneous network is composed of three parts: the mixed similarity data of 

drugs and the mixed similarity data of diseases, the drug-disease association matrix, and the 

construction process is shown in Figure 2. We define drug-disease association data as a 𝑀 × 𝑁 matrix 

𝐴. When 𝐴𝑖𝑗 is equals to 1, it means that there is a known association between the drug and the disease, 

and when 𝐴𝑖𝑗 is equals to 0, it means that the association between the drug and the disease is unknown. 

The mixed similarity of drugs is the 𝑀 × 𝑀 matrix 𝐷𝑟𝑢𝑔𝑠𝑖𝑚, the mixed similarity of diseases is the 

𝑁 × 𝑁 matrix 𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑠𝑖𝑚, the more similar of two drugs or diseases are, the more likely the drugs or 

the diseases are to act on similar functions. In this paper, the known associations in the drug-disease 

association data are regarded as positive samples, which are represented by solid lines in the drug-

disease heterogeneous network, and the same number of unknown associations are randomly selected 

as negative samples, which are represented by dashed lines in the heterogeneous network.  

 

 

Figure 2. Construction process of drug-disease heterogeneous network. 
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2.3. Feature learning of drugs and diseases 

2.3.1. Dense convolutional neural network 

In order to extract high-quality feature representations of drugs and diseases and reduce the loss 

of information in the feature extraction process, we use dense convolutional neural network to learn 

in-depth information about drugs and diseases automatically. Each layer of DenseCNN obtains 

additional input from all preceding layers and passes on its own feature-maps to all subsequent 

layers [17]. At the same time, it pays attention to the low-level and high-level information of the 

network, and realizes the information complementarity between different levels. The structure of the 

dense convolutional neural network is shown in Figure 3. 

  

Figure 3. Diagram of dense convolutional neural network structure。  

The implementation process of dense convolutional neural network is as follows. 

First, we input the data containing drug and disease information into one-dimensional convolution 

to generate the low-level feature maps of drug and disease information, as shown in formula (2.5). 

𝑋0 = 𝜎(𝐼 × 𝑊 + 𝑏) (2.5) 

Among them, 𝐼 refer to the similarity data after stitching. The data length is 𝐿 (𝐿 = 𝑀 + 𝑁, 𝑀 

and 𝑁 are the number of drugs and diseases respectively). 𝑊 refers to the weight matrix and 𝑏 is 

the bias term. 𝜎 is ReLU (Rectified Linear Unit) [35] activation function. 𝑋0 is the output of the one-

dimensional convolutional layer.  

Next, the low-dimensional feature maps obtained by one-dimensional convolution are used as the 

input of the dense convolution block to further extract the high-level feature representations of drug 

and disease information. The dense convolution process is shown in formula (2.6). 

𝑋𝑆 = 𝐻([𝑋0, 𝑋1, … , 𝑋𝑆−1]) (2.6) 

We define H(. )  as a composite function [36] of three consecutive operations: batch 

normalization (BN) [37], followed by a rectified linear unit (ReLU) [35] and a convolution (Conv). 

𝑋𝑆 represent the feature maps generated by the Sth convolutional layer in the dense convolution block, 

and [. ] represents the concatenation along the feature dimension. The output of the dense convolution 

block is the concatenation of the feature dimension of the low-level feature maps 𝑋0 and the feature 

maps  [𝑋1, 𝑋2, … , 𝑋𝑆]  generated by each convolutional layer in the dense convolution block, 

namely  [𝑋0, 𝑋1, 𝑋2, … , 𝑋𝑆] . The structure of a dense convolution block is shown in Figure 4. 

𝑋1, 𝑋2, 𝑋3, 𝑋4, are the 4 convolutional layers in a dense convolution block. 
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Figure 4. Diagram of the structure of a dense convolution block.  

Then the transition layer is used to replace the down-sampling layer in the traditional 

convolutional neural network to complete the convolution and activation operations. The purpose is to 

reduce the dimensionality of the feature maps and reduce the risk of model overfitting. The transition 

layer consists of a convolutional layer and an average pooling layer. 

Finally, 3 identical dense convolution blocks are connected in series to form stacked dense 

convolution blocks to extract high-level features of drug similarity information and disease similarity 

information. The parameters selection experiment can be seen in Table S1 of the supplementary 

materials. 

2.3.2. Convolutional block attention module  

Considering the importance of information contained in different channels and different spaces 

of dense convolutional neural network, we introduce a convolutional block attention module (CBAM) 

to weight the proposed features to achieve the importance of drug and disease information, thereby 

improving the network’s ability to predict drug-disease associations. The convolutional block attention 

module is a lightweight attention module that can be integrated into any convolutional neural network 

without increasing memory and time overhead. Its structure is shown in Figure 5. Given the feature 

maps of the drugs and diseases, CBAM will infer the attention map in turn along the two independent 

dimensions of the channel and space, and then multiply the attention map with the feature maps of 

drugs and diseases to achieve adaptive optimization of the features [26]. 

 

 

Figure 5. Diagram of the structure of a dense convolution block.  

The implementation process of the convolutional block attention module is as follows. 
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For the input drug and disease feature matrix 𝑋, the channel attention map 𝑀𝐶 is first generated 

through the channel attention module, and then the 𝑀𝐶 and the original feature matrix 𝑋 are dotted 

to obtain 𝑋′. The calculation process is shown in formula (2.7). 

𝑋′ = 𝑀𝐶(𝑋)⨂𝑋 (2.7) 

The channel attention module aggregates the information of the drug and disease feature matrix 

through average pooling and maximum pooling, and generates the average pooling feature 𝑋𝐴𝑣𝑔
𝐶  and 

the maximum pooling feature 𝑋𝑀𝑎𝑥
𝐶  respectively, and then generates the channel attention map 𝑀𝐶 ∈

𝑅𝐶×1×1 through the shared network. The schematic diagram of channel attention is shown in Figure 6a, 

and the specific calculation process is shown in formula (2.8).  

 

 𝑀𝐶((𝑋)) = 𝜎 (𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑋)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑋)))  

= 𝜎 (𝑊1 (𝑊0(𝑋𝐴𝑣𝑔
𝐶 )) + 𝑊1(𝑊0(𝑋𝑀𝑎𝑥

𝐶 ))) 
(2.8) 

 

The output 𝑋′ of the channel attention module generates a spatial attention map 𝑀𝑆 through the 

spatial attention module. The spatial attention map 𝑀𝑆 performs a dot multiplication with 𝑋′ to obtain 

the weighted feature 𝑋′′ of drugs and diseases. The calculation process is shown in formula (2.9). 

𝑋′′ = 𝑀𝑆(𝑋′)⨂𝑋′ (2.9) 

 

The spatial attention module generates the average pooling feature 𝑋𝐴𝑣𝑔
𝑆 ∈ 𝑅1×𝐻×𝑊  and the 

maximum pooling feature 𝑋𝑀𝑎𝑥
𝑆 ∈ 𝑅1×𝐻×𝑊  of drug and disease information through the average 

pooling layer and the maximum pooling layer respectively, and then a spatial attention map 𝑀𝑆 ∈
𝑅𝐻×𝑊  is generated through convolution operation. The schematic diagram of spatial attention is 

shown in Figure 6 (b), and the calculation process is shown in formula (2.10). 

𝑀𝑆(𝑋′) = 𝜎(𝑓7×7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑋′); 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑋′)])) = 𝜎 (𝑓7×7([𝑋𝐴𝑣𝑔
𝑆 ; 𝑋𝑀𝑎𝑥

𝑆 ])) (2.10) 

 

 

Figure 6. CBAM channel module and spatial module structure diagram (a) channel 

attention module (b) spatial attention module.  
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2.4. Random forest classifier predicts drug-disease associations 

In the classification stage, we train a random forest classifier based on the feature information of 

drugs and diseases to realize the prediction of drug-disease associations. The random forest classifier 

uses a highly parallelized algorithm to detect the interaction between the high-level features of drugs 

and diseases during the training process, and efficiently calculates the importance of each feature to 

the output result, which is significant in the training and classification of samples. The random forest 

has strong generalization ability and high classification accuracy and there is no need to adjust too 

many parameters in the process of random forest training. In the training process of the random forest 

classifier, we focus on adjusting three parameters, namely: “n_estimators” = 100, “max_depth” = 50, 

“max_features” = “auto”. The randomness of random forests is reflected in two aspects that the 

bootstrap technology is used to generate the sample of the decision tree randomly and when the tree is 

split, a feature subset is randomly selected from all the feature values of the samples to obtain the best 

classification method. These two random processes in the random forest avoid the occurrence of 

overfitting effectively. 

3. Results 

3.1. Evaluate prediction performance of DCNN 

In this paper, the area under the receiver operating characteristic (ROC) curve (AUC), accuracy, 

recall, precision and F1-score are applied to evaluate the performance of DCNN model. AUC is the 

area under the ROC curve with False Positive Rate (FPR) as the abscissa and True Positive Rate (TPR) 

as the ordinate. Accuracy represents the proportion of the correct samples predicted by the model to 

the total samples, and recall represents the proportion of all positive samples predicted by the classifier. 

Precision is the proportion of correct predictions in the positive samples predicted by the classifier. F1-

score is also known as the balanced F score which is the weighted harmonic mean of recall and 

precision. The higher the values of these indicators mean that the model realizes better performance. 

The calculation process of each indicator is shown in formulas (3.1–3.6). 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.1) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (3.2) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.3) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.4) 

       𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3.5) 

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (3.6) 
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To evaluate the predictive ability of the model DCNN in this paper on drug-disease associations, 

we performed ten-fold cross-validation on the three datasets of F, C, and DN. Ten-fold cross-validation 

is to divide all data into 10 equal parts randomly. Each fold verification experiment takes turns using 

9 pieces of data as the training set to train the model, and 1 piece as the validation set to evaluate the 

model. Then the average of the results of each fold is the final result of this ten-fold cross-validation. 

In order to get a more stable result, we carried out 10-fold cross-validation for ten times, and took the 

average value as the final result. The results are shown in Table 2. 

Table 2. Experimental results of the ten-fold cross-validation yielded by DCNN on datasets 

of F, C and DN. 

Dataset accuracy(%) precision(%) recall(%) F1-score(%) 

F 95.16 94.46 96.16 95.19 

C 95.51 95.62 95.42 95.51 

DN 94.59 94.52 94.64 94.88 

 

It can be seen from Table 2 that the average accuracy of the ten-fold cross-validation of the model 

DCNN in this paper is 95.16%, the average accuracy is 94.46%, the average recall rate is 96.16%, and 

the average F1 score is 95.19% on the F dataset. Our model still obtains a high precision value even 

with good recall values and F1 scores. This shows that our model can not only predict the drug-disease 

associations better, but also can identify more real positive samples. The higher accuracy value 

indicates that the DCNN model can accurately identify the currently known and unknown drug-disease 

association pairs. Similarly, the model DCNN in this paper has achieved good performance on datasets 

C and DN. These results show that the deep learning model based on dense convolutional attention 

network can effectively mine the in-depth feature information of drug similarity data and disease 

similarity data to predict the drug-disease associations accurately. 

In order to more intuitively describe the predictive ability of the dense convolutional attention 

network for drug-disease associations, we draw the ROC curve of the model DCNN on three datasets 

with ten-fold cross-validation, as shown in Figure 7 where the blue line represents the average AUC 

of the ten-fold cross-validation, and the curves in other colors are the result of each fold cross-

validation. 

 

Figure 7. (a), (b), and (c) are the ROC curves of the DCNN model in datasets of F, C and 

DN, respectively. 
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As shown in Figure 7 that the average AUC values of the DCNN model on the three datasets of 

F, C, and DN are 0.9877, 0.9904, and 0.9807, respectively. The higher AUC value, the stronger model's 

ability to predict drug-disease associations. In the ten-fold cross-validation, the model in this paper 

achieved a higher AUC value, indicating that the drug-disease potential association scores predicted 

by the DCNN model had a high degree of credibility to provide a certain theoretical basis for the 

development of biological experiments. In addition, in order to verify the stability of the DCNN model, 

we calculated the standard deviation of the AUC on the three datasets to indicate the dispersion degree 

of verification results on each fold in the ten-fold cross-validation. The standard deviation of the AUC 

are 0.0042, 0.0047, and 0.0094, in the datasets F, C and DN respectively. The smaller standard 

deviation shows that the verification results of each fold of the model in this paper do not fluctuate 

greatly due to the inconsistency of the initial parameters, which further shows that our model has stable 

predictive performance. Besides, we performed ten times of ten-fold cross-validation on the three 

datasets to further verify the robustness of the DCNN performance. The relevant experimental results 

are shown in Table S2 and Figure S1 of supplementary materials. According to Figure S1, we can get 

that the AUC values of ten times of ten-fold cross-validation on the three datasets do not appear outliers, 

and the gap between the results of each validation is small. The small deviation among the results of 

these experiments indicates that the proposed model in this paper shows stable predictive performance 

in the prediction of drug-disease associations and that our computational model is robust. 

3.2. Comparison with existing methods  

In order to further assess the proposed DCNN model's prediction performance, on datasets F, C 

and DN, we have selected three types of comparative experiments including deep learning methods, 

traditional machine learning algorithms and matrix-based methods. Methods based on deep learning 

include: Gaussian interaction profile and Kernel-Based Autoencoder (GIPAE), Rotation Forest and 

Sparse Autoencoder deep neural network (SAEROF), Deep Neural Network Based on Heterogeneous 

Network Features (Hnet-DNN) and Neighborhood Information Aggregation in Neural Networks 

(HNRD). Methods based on traditional machine learning algorithms include: Random Forest (RF) and 

Support Vector Machine (SVM). Matrix-based methods include: Multi-view Multichannel Attention 

Graph Convolutional Network (MMGCN) and Additional Neural Matrix Factorization model 

(ANMF) [39,40].  

In order to ensure the fairness of the experiment, the comparative experiments were all based on 

the F, C and DN datasets, and the ten-fold cross-validation method was used to evaluate all comparative 

experiments. We calculated the AUC value of the comparative methods and the DCNN model, and 

drew the ROC curve, as shown in Figure 8. 

From figure 8, it can be concluded that the AUC values of our model, DCNN, are better than the 

results of the comparative experiment, in the ten-fold cross-validation on the datasets F, C and DN. 

The performance of two traditional machine learning methods namely RF and SVM are poorer than 

other methods in the comparative experiment, because traditional machine learning methods cannot 

extract deeper information representations when learning the characteristics of the input information. 

The matrix-based methods MMGCN and ANMF use the similarity information of drugs and the 

similarity information of diseases to complete or reconstruct the drug-disease associations matrix to 

supplement the missing values. Although this matrix-based method can directly obtain drug-disease 

associations scores, their prediction performance is generally lower than deep learning methods. 

Moreover, due to the sparsity of the DN dataset, we cannot evaluate the prediction performance of the 
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ANMF model on DN datasets. For the C dataset, compared with the four methods based on deep 

learning in the comparative experiment, the AUC values of the methods GIPAE, Hnet-DNN, SAEROF 

and HNRD are 0.9722, 0.9599, 0.9281, 0.9101, In particular, DCNN outperforms GIPAE by 1.82%, 

Hnet-DNN by 3.05%, SAEROF by 6.23% and HNRD by 8.03%, respectively. Similarly, on the F 

dataset and the DN dataset, the model DCNN also achieved good results, which showed that the 

proposed method can more effectively predict the drug-disease associations. In the feature extraction 

stage, the model DCNN in this paper used a combination of dense convolutional neural network and 

convolutional block attention module, fully considering the information interaction between different 

levels in the network, and scoring the importance of features. So the quality of drug information and 

disease information extracted by DCNN was higher than others, thereby it improved the prediction 

accuracy of drug-disease associations. The GIPAE, Hnet-DNN, SAEROF, and HNRD methods only 

paid attention to high-level information in the process of extracting features of drugs and diseases, and 

these four methods directly merged or connected the features, reducing the quality of the features and 

losing some information of drugs and diseases. The deep learning model based on the dense 

convolutional attention network proposed in this paper has achieved a greater improvement compared 

with the AUC value of the comparative experiment, indicating that the model DCNN has a better 

ability to rank drug candidates of some diseases. Therefore, the model predicts among all drug 

candidates with high rankings can be considered first in chemical and medical experiments. Thereby, 

the DCNN model can provide better theoretical guidance for the realization of drug repositioning. 

 

Figure 8. (a), (b), and (c) are the ROC curves of the proposed DCNN and four competitive 

methods on datasets F, C and DN. 

Based on the results of the comparative experiments, we performed a one-way analysis of 

variance to evaluate whether the performance of the DCNN model proposed in this article significantly 

improved compared with the existing methods. The analysis results are shown in Table 3. As can be 

seen from Table 3, DCNN outperforms the other baseline methods and the statistical results indicate 

that DCNN yields significantly better performance under the p-value threshold of 0.05 in terms of 

AUCs on datasets of F, C and DN. 
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Table 3. The statistical results of one-way analysis of variance on the AUCs comparing 

DCNN and all of eight other methods. 

p-Value between DCNN 

and Another Methods 

F C DN 

GIPAE 2.88×10−5 2.93×10−5 3.77×10−4 

SAEROF 4.65×10−13 4.46×10−18 3.07×10−12 

Hnet-DNN 5.99×10−15 6.86×10−13 2.93×10−7 

HNRD 6.85×10−20 8.90×10−15 5.06×10−16 

RF 3.36×10−19 5.88×10−17 5.07×10−19 

SVM 7.73×10−27 2.91×10−35 3.27×10−23 

MMGCN 2.94×10−22 1.82×10−30 2.51×10−14 

ANMF 5.46×10−15 1.16×10−26 - 

3.3. Ablation experiments  

To verify the effectiveness of Gaussian interaction profile kernel similarity, we conducted the 

ablation experiments. First, we directly input the structural similarity data of the drugs and the semantic 

similarity data of the diseases into the DCNN model to predict the drug-disease associations. The 

results are shown in the second row of Table 4. Then, we fused the drug structural similarity (disease 

semantic similarity) with the drug Gaussian interaction profile kernel similarity (disease Gaussian 

interaction profile kernel similarity), and input both the fused drug similarity and fused disease 

similarity into the DCNN model to predict the drug-disease associations. The results are shown in the 

third row of Table 4. 

Table 4. The ten-fold cross-validation performance of ablation experiments of Gaussian 

interaction profile kernel similarity. Similarity R_ str means the structural similarity of 

drugs. Similarity R_ Gau means the Gaussian interaction profile kernel similarity of drugs. 

Similarity D_ sem means the semantic similarity of diseases. Similarity D_ Gau means the 

Gaussian interaction profile kernel similarity of diseases. 

Similarity Dataset Accuracy 

(%) 

Precision 

(%) 

Recall 

(%)  

F1-score 

(%) 

AUC 

R_ str; 

D_ sem; 

F 87.79 87.84 87.80 87.81 92.69 

C 89.41 89.44 89.42 89.42 94.26 

DN 87.75 87.83 87.76 87.75 92.38 

R_ str + R_Gau; 

D_ sem + D_Gau; 

F 95.16 94.46 96.16 95.19 98.77 

C 95.51 95.62 95.42 95.51 99.04 

DN 94.59 94.52 94.64 94.88 98.07 

 

It can be seen from Table 4 that when the input of the model only contains drug structural 

similarity and disease semantic similarity, the prediction results are poor in all indicators. After adding 

Gaussian interaction profile kernel similarity, all the indicators have been improved. Among them, the 

AUC values have increased by more than 5% on the F, C, and DN datasets. This shows that the 

Gaussian interaction profile kernel similarity matrix effectively extracts the topological information in 

the drug-disease association data. In this way, the topological similarity and biological similarity of 
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drugs (diseases) are considered meanwhile, which provide a wealth of input information for the model, 

thereby improving the prediction accuracy of drug-disease associations and providing a certain basis 

for drug development. 

In addition, we have conducted comparative experiments between other kernel functions and 

Gaussian kernel function. We used Jaccard similarity coefficient and mutual information to extract the 

topological information of drugs and diseases, respectively [22,38]. We fused the Jaccard similarity 

(mutual information) of the drugs with the structural similarity of them and fused the Jaccard similarity 

(mutual information) of the diseases with the semantic similarity of them. Then the fused information 

is input into the model DCNN for ten-fold cross-validation, and the results are shown in Table S3 of 

the supplementary materials. Comparing rows 2, 3, and 4 in Table S3, we can see that when capturing 

the topological information in the drug-disease association data, the results of using Jaccard similarity 

and mutual information are lower than that of using Gaussian interaction profile kernel similarity. This 

indicates that Gaussian kernel function is more effective in capturing topological information in the 

drug-disease association data. 

To verify the effectiveness of the data fusion operation, we input the single similarity information 

and the fused similarity information into the DCNN model, and performed ten-fold cross-validation 

separately. The results are shown in Table S4. It can be seen from Table S4 that when the fused 

similarity is used as the input of the DCNN model, the performance is higher than that when a single 

similarity information is used. This result shows that the fusion of topological similarity information 

and biological similarity information of drugs (diseases) from the information level is conducive to 

improving the accuracy of drug-disease association prediction. Therefore, the data fusion operation is 

meaningful. 

In order to verify the important role of the use of various components in the model of this article 

in the prediction of drug-disease associations, we used ten-fold cross-validation method to conduct 

ablation experiments on the datasets of F, C and DN, including: the introduction of dense convolutional 

neural network and the use of different attention modules, the verification results are shown in Table5. 

The baseline model used the traditional convolutional neural network to extract the deep features of 

drug similarity information and disease similarity information, and input the features to random forest 

classifier to predict drug-disease associations. 

Table 5. Ablation experiments of DCNN based on datasets of F, C and DN. The largest 

AUC value for each dataset is highlighted in bold. 

CNN √    

Dense CNN  √ √ √ 

+SE layer   √         

+CBAM layer    √ 

F 97.79 98.63 98.69 98.77 

C 98.10 98.84 98.86 99.04 

DN 95.84 97.85 97.82 98.07 

 

From the second and third columns of Table 5, it can be seen that the introduction of dense 

convolutional neural network has made the AUC values improved to a certain extent, and the AUC 

values on the datasets F, C and DN have been increased by 0.84%, 0.74% and 2.01%, respectively. 

The improvement of these indicators shows that in the process of information extraction, compared 

with the traditional convolutional neural network, dense convolutional neural network pays attention 
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to both high-level and low-level features of drugs and diseases which can increase the drug and disease 

information flow in the network and realize the complementation of information between different 

levels, thereby obtaining higher-quality abstract representations. Our method solves the problem of the 

traditional convolutional networks that only pay attention to high-level information. 

On the basis of the dense convolutional neural network, we respectively verified the effect of 

using the squeeze-excitation module (SE module) and the convolutional block attention module 

(CBAM module) to weight the features [27,27]. The verification results are shown in the fourth and 

fifth columns of Table 5. The SE module can score the importance of different channel features by 

weighting each feature map, and the CBAM module can learn the weights of different features from 

both spatial and channel levels. It can be seen from Table 5 that the introduction of the CBAM module 

has increased the AUC values of the model on the three datasets of F, C and DN by about 0.2%, while 

the SE module has a small impact on the model results. This is because dense convolutional neural 

network constructs channel information features and spatial information features on the local domain 

of each layer of the network, and merges them in the process of feature extraction. The addition of the 

convolutional block attention module is not only concerned with the importance of different features 

at the channel level, and the characteristics of drugs and diseases at the spatial level have been 

optimized, so that the model can better focus on important information about drugs and diseases to 

further improve the quality of the features. However, the squeeze-excitation module only distinguishes 

the information of different channels in the convolutional network, so it performs generally in the 

process of feature adaptive optimization. 

 

Figure 9. Performance comparison results of different classifiers. 

3.4. Comparison among different classifiers 

To evaluate the performance of the random forest classifier (RF) used by the DCNN model in the 

classification task, we used six other classifiers to conduct self-comparison experiments, based on the 

same feature extraction method, including: Adaboost classifier (AB), Bagging classifier (Bag), 

Decisiontree classifier (DT), Kneighbors classifier (KNN), Support vector machine (SVM) and 

Rotationforest classifier (ROF). The ten-fold cross-validation results of different classifiers are shown 

in Figure 9. It can be seen from Figure 9 that when DT, KNN and SVM are used as classifiers, the 

AUC values of the model are significantly lower than the AUC values obtained when RF is used as 
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the classifier. The reason for the worst performance of the decision tree is that the decision tree does 

not use an integrated algorithm and it is an extremely unstable model. A small deviation in the data 

will lead to a completely different decision tree. The classifiers AB, Bag and ROF show the same 

performance as RF basically, while the training time of these classifiers is much longer than the random 

forest classifier. In contrast, when the random forest classifier is trained, parallel computing is used so 

that the training speed is fast and the implementation process is simple. In addition, RF achieves high 

prediction accuracy, so we choose the random forest classifier to predict drug-disease associations.  

3.5. Case study 

In order to further verify the performance of the DCNN model in practical applications, we 

predicted and verified drugs that are potentially associated with obesity and stomach cancer. In the 

course of the case study, it is worth noting that when predicting the candidate drugs of a particular 

disease, all associations between the particular disease and all the drugs should be removed from the 

training set. First, we retrained the model using data that does not include obesity and stomach cancer, 

and then used the trained dense convolutional attention network to make predictions to obtain the 

correlation scores of candidate drugs for obesity and stomach cancer, respectively. The candidate drugs 

for these two diseases were ranked according to the correlation score, and the top 20 drugs were 

verified in the Comparative Toxicogenomics Database(CTD).  

Obesity is an important factor that causes diabetes and cardiovascular disease in patients. At 

present, there are still difficulties in the treatment of obesity. This paper uses the DCNN model to 

predict the top 20 drug candidates that are potentially associated with obesity. The verification results 

in the CTD database are shown in Table 6. The first and third columns of Table 6 are the names of 

drugs that are potentially associated with obesity, and the second and fourth columns are the results of 

verification in the database. Therapeutic indicates that the drug is clinically used to treat the disease. 

Marker states that the drug is marked in the CTD database and proved to be related to the studied 

disease through genetic inference and other methods. Not confirmed means that there is no direct 

evidence in the CTD database to prove that the drug is related to a specific disease in our case study. 

From Table 6, we can see that in the case study of obesity, among the top 20 drug candidates predicted 

by the DCNN model, 17 drugs are considered for the treatment of obesity, among which one of the 

drugs is known in the drug-disease association data. This further illustrates that the results of our model 

are reliable to some extent. 

Table 6. Top 20 drug candidates for the treatment of obesity. 

Drug name Evidence Drug name Evidence 

Phenytoin Marker Diclofenac Marker 

Palmitic Acid Marker Triamcinolone Marker 

Esmolol Marker Warfarin Marker 

Pyridostigmine Marker Tretinoin Marker 

Phentermine Therapeutic Saquinavir Marker 

Pilocarpine Marker Methyclothiazide Not confirmed 

Metipranolol Marker Lidocaine Marker 

Gemfibrozil Marker Vinorelbine Marker 

Imipramine Marker Dipivefrin Not confirmed 

Pentostatin Not confirmed Cisplatin Marker 
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Stomach cancer is a high-incidence cancer in the population, and the mortality rate is high. At 

present, the drug treatment of stomach cancer still needs further research. In this paper, the verification 

results of the top 20 candidate drugs for stomach cancer predicted by the DCNN model in the CTD 

database are shown in Table 7. It can be seen from Table 7 that 16 drugs were verified in the CTD 

database, which may have a certain effect on the treatment of stomach cancer. That means the model 

we proposed can predict the potentially related drug candidates for a specific disease, providing a 

theoretical guidance for the treatment of disease. 

Table 7. Top 20 drug candidates for the treatment of stomach cancer. 

Drug name Evidence Drug name    Evidence 

Omeprazole Marker Ranitidine Marker 

Allopurinol Marker Dinoprostone Marker 

Benazepril Marker Phenoxybenzamine Marker 

Fondaparinux Not confirmed MethylAminolevulinate Not confirmed 

Nitroglycerin Marker Azathioprine Marker 

Mometasone Marker Docetaxel Therapeutic 

Tirofiban Not confirmed Busulfan Marker 

Meloxicam Marker Atazanavir Marker 

Trifluoperazine Marker Atorvastatin Marker 

Pseudoephedrine Not confirmed Fluvastatin Marker 

 

To further prove the generalization of the DCNN model, we added other two case studies (breast 

cancer and Alzheimer disease) with the same way of obesity and stomach cancer. The results are shown 

in Table S5 and Table S6 of the supplementary materials. It can be seen from Table S5 that among the 

top 20 drugs predicted by the DCNN model, 17 drugs are proven to be related to the treatment of breast 

cancer, and among these 17 kinds of drugs, 3 of them are used in clinical treatment. From Table S6 we 

know that 16 of the top 20 drugs are related to Alzheimer disease predicted by the DCNN model and 

among these 16 kinds of drugs, 2 of them are used for actual treatment. This further illustrates that the 

results of our model can provide theoretical support in practical applications to some extent. 

4. Conclusions 

This paper proposes a deep learning model DCNN for predicting drug-disease associations. The 

DCNN model introduces Gaussian interaction profile kernel similarity for diseases and drugs on the 

basis of drug structural similarity and disease semantic similarity, and jointly constructs the feature 

space of drugs and diseases. In the feature extraction stage, the dense convolutional neural network 

pays attention to the importance of information interaction between layers in the network, which 

increases the information flow of drugs and diseases, and solves the problem of information loss caused 

by only focusing on high-level features in existing methods. The use of the convolutional block 

attention module further enhances the abstraction ability of the model. It optimizes the features of 

drugs and diseases from the two levels of space and channel, which is conducive to the improvement 

of model prediction performance. In the ten-fold cross-validation experiment, the DCNN model 

achieved better AUC values on the three datasets than the comparison experiments, indicating that the 

DCNN model can more accurately predict the drug-disease associations. Furthermore, in the case 
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studies of obesity and stomach cancer, among the top 20 drug candidates predicted by the DCNN 

model, 17 and 16 drug candidates are verified in the CTD database respectively, proving that the 

method proposed in this article is in practical application reliability. In future work, we will explore 

more efficient calculation methods to further improve the model's ability to predict drug-disease 

associations. 
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