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Abstract: The posterior distribution (PD) of random parameters in a distributed parameter-based
population model for biosensor measured transdermal alcohol is estimated. The output of the model
is transdermal alcohol concentration (TAC), which, via linear semigroup theory can be expressed as
the convolution of blood or breath alcohol concentration (BAC or BrAC) with a filter that depends on
the individual participant or subject, the biosensor hardware itself, and environmental conditions, all of
which can be considered to be random under the presented framework. The distribution of the input to
the model, the BAC or BrAC, is also sequentially estimated. A Bayesian approach is used to estimate
the PD of the parameters conditioned on the population sample’s measured BrAC and TAC. We then
use the PD for the parameters together with a weak form of the forward random diffusion model to
deconvolve an individual subject’s BrAC conditioned on their measured TAC. Priors for the model are
obtained from simultaneous temporal population observations of BrAC and TAC via deterministic or
statistical methods. The requisite computations require finite dimensional approximation of the under-
lying state equation, which is achieved through standard finite element (i.e., Galerkin) techniques. The
posteriors yield credible regions, which remove the need to calibrate the model to every individual,
every sensor, and various environmental conditions. Consistency of the Bayesian estimators and con-
vergence in distribution of the PDs computed based on the finite element model to those based on the
underlying infinite dimensional model are established. Results of human subject data-based numerical
studies demonstrating the efficacy of the approach are presented and discussed.
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1. Introduction

Historically, researchers and clinicians interested in tracking alcohol consumption and metabolism
in the field would require data from either a drinker’s self-report or from having them use a breath
alcohol analyzer. Because both methods require active participation by the subject, the data they pro-
duce are often plagued by inaccuracies. Self-report often leads to misrepresentation as (1) subjects
may deviate from naturalistic behaviors due to the reporting requirement seeming unnatural, and (2)
alcohol directly impairs subjects’ ability to be an active participant [1]. Using a breath alcohol analyzer
correctly requires specialized training and can produce erroneous measurements due to mouth alcohol
and/or a reading based on a shallow breath by the subject. Dating back to the 1930’s, ethanol, the type
of alcohol in alcoholic beverages, has been known to be excreted from the human body through the
skin [2–5]. This is due to the fact that water and ethanol are highly miscible [6] and the ethanol finds its
way into all of the water in the body. More recently, this observation paved the way for the development
of a device to measure the amount of alcohol excreted transdermally through the skin [7–9]. The bene-
fits derived from such a device include the availability of near continuous measurements and the ability
to collect them passively (i.e., without the active participation of the subject). This gives researchers
and clinicians the potential to continuously observe naturalistic drinking behavior and patterns. There
is also the possibility of making these devices available on the consumer market (e.g., wearable body
system monitoring technology like Fitbits, Apple watches, etc.). In addition, the ideas we discuss here
may also be applicable to the monitoring of other substances once the appropriate sensor hardware has
been developed.

The challenge in using transdermal alcohol sensors is that they provide transdermal alcohol con-
centration (TAC), whereas alcohol researchers and clinicians have always based their studies and
treatments on measurements of breath alcohol concentration (BrAC) and blood alcohol concentra-
tion (BAC). Thus, a means to reliably and accurately convert TAC to BrAC or BAC would be desir-
able. At levels up to approximately 0.08 (see, for example, [10, 11]) BrAC correlates well with BAC
via a simple linear relationship based on an empirical relationship known as Henry’s law [12, 13]:
BAC = ρB/Br ×BrAC, where the constant ρB/Br is known as the partition coefficient of ethanol in blood
and breath.

More generally, according to Henry’s law, when a liquid is in contact with a gas, the concentrations,
CL and CG, of a compound present in both the liquid and the gas will come to equilibrium according
to the linear relationship CL = ρL/GCG, where the empirical determined constant ρL/G is known as
the partition coefficient for the that compound in that liquid and gas. Not surprisingly, the partition
coefficient, ρL/G, is temperature dependent and of course its actual value will vary depending on the
choice of units for CL and CG. It has been shown (see, for example, [14]) that at 34◦C, the partition
coefficient for ethanol in blood and air is ρB/A = 2157 ± 9.6 for men and ρB/A = 2195 ± 10.9 for
women, at 37◦C, the partition coefficient for ethanol in blood and air is ρB/A = 1783 ± 8.1 for men and
ρB/A = 1830 ± 7.8 for women. Using a regression model, Jones [14] found that at 37◦C the partition
coefficient for ethanol in water and air is ρW/A = 2133, in blood and air is ρB/A = 1756, and between
plasma (all of the components of blood with the exception of the oxygen carrying red blood cells) and
air is ρP/A = 2022. All of these values are for the case when the concentration of ethanol in air is given
in units of grams per liter, and in water, blood, or plasma in units of grams per deciliter. We note that it
is generally accepted that a BrAC reading of 0.08 percent alcohol corresponds to .008 grams of ethanol
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per 210 liters of breath and a BAC of 0.08 grams of ethanol per 100 milliliters (equal to 1 deciliter (dL)
or 0.1 liters (L)) of blood.

Unfortunately, however, the correlation between TAC and BrAC/BAC, on the other hand, can vary
due to a number of confounding factors. These factors include, but are not limited to, stable fea-
tures of the skin like its thickness, tortuosity, and porosity, particularly as they apply to the epidermal
layer of the skin, which does not have an active blood supply. Environmental factors such as ambient
temperature and humidity can also affect both perspiration and vasodilation, and can thus alter skin
conductance, blood flow, the amount of alcohol passing below the skin in the blood, and the amount
and rate of alcohol diffusing through the skin. One would also expect there to be manufacturing and
operational variations among different TAC sensors.

Earlier attempts to investigate the relationship between TAC and BrAC/BAC have used determinis-
tic models [15–21]. Some utilized regression-based models [16], whereas others utilized first principles
physics-based models that on occasion included modeling the transport of alcohol all the way from in-
gestion to excretion through the skin [22,23]. In our group’s initial efforts, we modeled the transport of
alcohol from the blood in the dermal layer through the epidermal layer and its eventual measurement
by the sensor using a one-dimensional diffusion equation [15, 21]. The parameters in the diffusion
equation model then had to be fit or tuned (i.e., calibrated) to each individual subject, the environmen-
tal conditions, and the device through the use of simultaneous BrAC/TAC training data collected in
the laboratory or clinic through a procedure known as an alcohol challenge. Once the model was fit, it
could then be used to deconvolve BrAC from TAC collected in the field. This two-pass approach and
the related studies were relatively successful [15, 19–21, 24, 25]. However, this calibration procedure
is quite burdensome to researchers, clinicians, subjects and patients, and because the models were fit
to a single uni-modal drinking episode, unaccounted for variation and uncertainty in the relationship
between BrAC and TAC frequently arose, making it difficult to accurately convert TAC collected in the
field to BrAC [26, 27].

More recently, to eliminate the need for calibration, deconvolution of BrAC from TAC was ef-
fected using population models fit to BrAC/TAC training data from drinking episodes across a cohort
of subjects, devices, and environmental conditions [24,25,28]. These population models took the form
of the deterministic transport models but now the parameters appearing in the model equations were
considered to be random. Then in fitting the models, instead of estimating the actual values of these
parameters, it was their joint distributions that were estimated. Once the models were fit, they could be
used to deconvolve an estimate of the BrAC input, and by making use of the distribution of the popu-
lation parameters, conservative error bands could also be generated which quantified the uncertainty in
the estimated BrAC [24, 25]. The results in these studies were based on a naive pooled data statistical
model and a non-linear least squares estimator.

In this paper, we seek to build on the approach described in the previous paragraph by now using a
Bayesian approach to account for the underlying uncertainty and variation in the alcohol diffusion and
measurement process. We obtain posterior distributions for the transport model parameters conditioned
on the training BrAC/TAC data and regularized by prior distributions based on deterministic fits. Being
Bayesian based, our approach yields credible sets for the estimated parameters and what we shall refer
to as conservative credible or error bands for the deconvolved estimated BrAC. What is meant by the
term conservative credible band will be made precise later.

An outline of the remainder of the paper is as follows. In the next section of the paper we provide a
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description of our method including a derivation of a new abstract parabolic hybrid PDE/ODE model
for the transdermal transport of alcohol through he epidermal layer of the skin and its capture in the va-
por collection bay of the sensor. Then using linear semigroup theory we obtain an input/output model
in the form of a discrete time convolution. A discussion of finite dimensional approximation and con-
vergence issues related to the use of our model to carry out the requisite computations is also included.
Then in the results section of the paper we first construct our Bayesian estimator and present two the-
oretical results related to it: convergence of the finite dimensional approximation and consistency. We
then show how our population model based on Bayesian estimates for the random parameters can be
used as part of a deconvolution scheme that yields estimated BrAC curves and conservative credible
or error bands from a biosensor provided TAC signal. In this section we also present and discuss a
sample of our numerical findings demonstrating the efficacy of our approach. Our numerical studies
were based on human subject data collected in the Luczak laboratory in the Department of Psychology
at USC. A final section contains some discussion of our theoretical and numerical results along with a
few concluding remarks and avenues for possible future research.

2. Methods

2.1. A distributed parameter model for the transdermal transport of alcohol

As in [21] and [24], and making use of an idea recently introduced in [28], we model the alcohol
biosensor problem described in Section 1 using a one dimensional diffusion equation to describe al-
cohol transport through the epidermal layer of the skin coupled with an inflow/outflow compartment
model to describe the perspiration vapor collection chamber of the TAC biosensor.

The epidermal layer of the skin sits atop the dermal layer. The dermal layer has an active blood
supply while the epidermal layer does not. The latter consists of both dead (the stratum corneum
layer which is closest to the surface) and living (the deeper layers closer to the dermal layer) cells
surrounded by interstitial fluid. Not having an active blood supply, the cells in the epidermal layer
obtain nourishment primarily from O2 that diffuses in from the environment beyond the skin.

The SCRAM TAC biosensor (see 1 in section 3.4 below) has a perspiration vapor collection chamber
on the bottom of the sensor that sits atop, and is in direct contact with, the stratum corneum layer of
the skin’s epidermal layer. Perspiration in vapor form collects in the chamber. A small pump extracts a
sample of the vapor from the collection chamber approximately once every 30 minutes. This sample is
then electro-chemically analyzed based on an oxidation-reduction (redox) reaction in much the same
way that a fuel cell produces a current (and heat and water) from hydrogen and oxygen. In the TAC
sensor, ethanol molecules in the sample are oxidized producing electrons in the form of an electrical
current. This current is converted into the TAC measurement based on an a priori bench calibration.

To make this more precise, we let Λ denote the thickness of the epidermal layer (units: cm) of
the skin at the location of the sensor and let η denote the depth in the epidermal layer (units: cm),
0 ≤ η ≤ Λ, η = 0 denoting the skin surface and η = Λ denoting the boundary between the epidermal
and dermal layers. Let t denote time (units: hrs) and let x(t, η) denote the concentration of ethanol
at time t and depth η in the epidermal layer (units: grams per milliliter of interstitial fluid). Let w̃(t)
denote the concentration of ethanol in the TAC sensor collection chamber at time t (units: grams per
milliliter of air), and let u(t) denote the BrAC at time t (units: grams per milliliter of air). Let y(t)
denote the TAC at time t (units: grams per milliliter of air), and let w̃0 (units: grams per milliliter of
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air) and φ0 (units: grams per milliliter of interstitial fluid) denote the initial conditions for w̃ and x,
respectively. We will assume that there is no ethanol in either the epidermal layer or the TAC biosensor
collection chamber at time t = 0 so w̃0 = 0 and φ0 = 0. Let T denote the duration of the drinking
episode (units: hrs). Then, With these definitions, our model takes the form

∂x
∂t

(t, η) = α
∂2x
∂η2 (t, η), 0 < η < Λ, 0 < t < T,

dw̃
dt

(t) =
γα

ρP/A

∂x
∂η

(t, 0) − δw̃(t), 0 < t < T,

x(t, 0) = ρP/Aw̃(t), 0 < t < T

α
∂x
∂η

(t,Λ) = βρP/Au(t), 0 < t < T,

w̃(0) = w̃0, x(0, η) = φ0(η), 0 < η < Λ,
y(t) = θw̃(t), 0 < t < T,

(2.1)

where α > 0 denotes the effective diffusivity of ethanol in the interstitial fluid in the epidermal layer
(units: cm2/hr), β > 0 denotes the effective linear flow rate at which capillary blood plasma from the
dermal layer replenishes the interstitial fluid in the epidermal layer (units: cm/hr), and ρP/A denotes the
partition coefficient for ethanol in plasma and air with respect to the concentration units of grams per
milliliter of plasma and grams per milliliter of air at 37◦C (normal body temperature).

In modeling the TAC collection chamber, we assume that the inflow of ethanol is proportional to
the flux out of (i.e., from right to left) the epidermal layer at the surface of the skin (i.e., at η = 0),

α
∂x
∂η

(t, 0), with constant of proportionality γ (units: cm−1), and the outflow is simply proportional to

the concentration of ethanol in the collection chamber (i.e., a simple linear model) with constant of
proportionality δ (units: hr−1. Finally, the output gain, θ, represents the bench calibration factor for
the TAC sensor that converts the concentration or ethanol in the collection chamber into a TAC (units:
dimensionless).

Since the thickness of the epidermal layer, Λ, is in general difficult to measure and can be mathe-
matically difficult to estimate computationally due to it determining the spatial domain of the diffusion
equation, it is desirable to transform the system eq. (2.1) to a domain of fixed length, Λ = 1. We
make the standard change of variable η 7→ η

Λ
thus rendering η dimensionless. For t ≥ 0, We also

set w(t) = ρP/Aw̃(t). Then, recalling our assumption of zero initial conditions, the following hybrid
ordinary-partial differential equation input/output system results

∂x
∂t

(t, η) = q1
∂2x
∂η2 (t, η), 0 < η < 1, t > 0,

dw
dt

(t) = q3
∂x
∂η

(t, 0) − q4w(t), t > 0,

x(t, 0) = w(t), t > 0

q1
∂x
∂η

(t, 1) = q2u(t), t > 0,

w(0) = 0, x(0, η) = 0, 0 < η < 1,
y(t) = w(t), t ≥ 0,

(2.2)
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where q1 =
α
Λ2 , q2 =

θβρP/A

Λ
, q3 =

γα

Λ
, and q4 = δ. We note that since the only observable and observed

quantities are BrAC, u, and TAC, y, the physiological interpretations of the variables and parameters
in between that define our model in the form of an input/output map from BrAC to TAC are of little
interest to us. Although we have relied on first principles modeling to derive the system of equations
given in eq. (2.2), our motivation was not to gain a deeper understanding of the transdermal transport
of ethanol. Rather, it was to be able to keep the dimension of the space of unknown parameters as
low as possible by capturing the underlying physics and physiology of the transport process, albeit in
a greatly simplified form. Indeed, our primary objective here is to first fit the parameters (or, more
precisely, their distributions) in the model to observed input/output BrAC/TAC training pairs and to
then use the resulting population model to obtain an estimate for the BrAC and associated error bars
corresponding to a given TAC signal collected in the field from a member of the cohort or population
that provided the data which was used to train the model.

Let q = [q1, q2]T denote the unknown, un-measurable, and, in general, subject-dependent physio-
logical parameters. The parameters q3 and q4 are device (i.e., hardware) dependent parameters and as
such, we consider them to be bench-measurable empirically in the lab. We do note however, with sim-
ple changes of variable, the theory and methods we develop below apply, and their distributions could
also be estimated along with those of q1 and q2 with the same techniques we use here to estimate the
distributions of q1 and q2. In addition, q3 and q4 could also be estimated using a deterministic scheme
such as a regularized nonlinear least squares approach. For clarity and ease of exposition, we will focus
our attention here on the development of a population model for a cohort of subjects by estimating the
distribution of the un-measurable physiological parameters q1 and q2.

We consider this system on a finite-time horizon, 0 ≤ T < ∞, and we assume zero-order hold input,
u(t) = uk, t ∈ [kτ, (k + 1)τ), k = 0, 1, 2, ..., where τ denotes the sampling time of the biosensor. We set
xk = xk(η) = x(kτ, η), wk = w(kτ), and yk = y(kτ), k = 0, 1, . . . ,K, where we assume T = Kτ. For
k = 0, 1, 2, ... we consider the system eq. (2.2) on the interval [kτ, (k + 1)τ] and make the change of
variable: v(t, η) = x(t, η) − ξ(η)uk where ξ(η) = q2

q1
η. It is then easily verified that w and v satisfy the

following hybrid system

∂v
∂t

(t, η) = q1
∂2v
∂η2 (t, η), 0 < η < 1, kτ < t < (k + 1)τ,

dw
dt

(t) = q3
∂v
∂η

(t, 0) − q4w(t) +
q3q2

q1
uk, kτ < t < (k + 1)τ,

v(t, 0) = w(t), kτ < t < (k + 1)τ,

q1
∂v
∂η

(t, 1) = 0, kτ < t < (k + 1)τ,

(2.3)

with initial conditions v(kτ, ·) = x(kτ, ·) − ξ(·)uk = xk − ξuk and w(kτ) = wk on [0, 1].
We then use linear semigroup theory to rewrite the system eq. (2.3) in state space form in an ap-

propriately chosen Hilbert space and subsequently obtain a discrete time evolution system for (wk, xk),
k = 0, 1, 2, ....K which is equivalent to eq. (2.2). Let Q denote a compact subset of the positive orthant
of R4, and for q = [q1, q2, q3, q4]T ∈ Q we define the Hilbert spaces

Hq = R × L2(0, 1) and V = {(θ, ψ) ∈ Hq : ψ ∈ H1(0, 1), θ = ψ(0)} (2.4)
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with respective corresponding inner products ⟨(θ1, ψ1), (θ2, ψ2)⟩q = (q1/q3)θ1θ2 +
∫ 1

0
ψ1(η)ψ2(η)dη and

⟨(ψ1(0), ψ1), (ψ2(0), ψ2)⟩V = ψ1(0)ψ2(0)+
∫ 1

0
ψ′1(η)ψ′2(η)dη, and respective norms |·|q, and ∥·∥V . Note that

the Sobolev Embedding Theorem [29] yields that the norm induced by the V inner product is equivalent
to the standard H1 norm on V . It is not difficult to show that V is densely and continuously embedded
in Hq and that we have the Gelfand triple of dense and continuous embeddings V ↪→ Hq ↪→ V∗.

Then based on the weak formulation of the system eq. (2.3), for each q ∈ Q define the bilinear
form a(q, ·, ·) : V × V → R by a(q, φ̂, ψ̂) = (q1q4/q3)φ(0)ψ(0) + q1

∫ 1

0
φ′(η)ψ′(η)dη for φ̂, ψ̂ ∈ V , where

φ̂ = (φ(0), φ), ψ̂ = (ψ(0), ψ), and q = [q1, q2, q3, q4]T ∈ Q. Standard arguments can be used to argue
that the form a(q, ·, ·) satisfies the following three properties.

1. Boundedness There exists a constant α0 > 0 such that |a(q, ψ̂1, ψ̂2)| ≤ α0∥ψ̂1∥V∥ψ̂2∥V , ψ̂1, ψ̂2 ∈ V ,
2. Coercivity There exists constants λ0 ∈ R and µ0 > 0 such that a(q, ψ̂, ψ̂)+λ0|ψ̂|

2
q ≥ µ0∥ψ̂∥

2
V , ψ̂ ∈

V .
3. Continuity For all ψ̂1, ψ̂2 ∈ V , we have that q 7→ a(q, ψ̂1, ψ̂2) is a continuous mapping from Q

into R.

Note that in (1)–(3) above, Q compact implies that the constants α0, λ0, and µ0 may all be chosen
independent of q ∈ Q. Furthermore, properties (1)–(3) immediately yield that the form a(q, ·, ·)
defines a bounded, elliptic (i.e., λ0 = 0) operator A(q) ∈ L(V,V∗) given by ⟨A(q)φ̂, ψ̂⟩ =
⟨A(q)(φ(0), φ), (ψ(0), ψ)⟩ = −a(q, φ, ψ) for φ̂ = (φ(0), φ), ψ̂ = (ψ(0), ψ) ∈ V . If we define the set
D = {φ̂ ∈ V : A(q)φ̂ ∈ Hq} = {(φ(0), φ) ∈ V : φ ∈ H2(0, 1), φ′(1) = 0} which is indepen-
dent of q for q ∈ Q, we obtain the closed, densely defined linear operator A(q) : D ⊂ Hq → Hq

given by A(q)φ̂ = A(q)(φ(0), φ) = (q3φ
′(0) − q4φ(0), q1φ

′′), φ̂ = (φ(0), φ) ∈ D. The opera-
tor A(q) : D ⊂ Hq → Hq is regularly dissipative and (see, for example, [30]) is the infinitesimal
generator of a holomorphic semigroup of bounded linear operators {eA(q)t : t ≥ 0} on Hq and V∗.
Moreover, the system eq. (2.3) then has a state space form where dv̂

dt (t) = A(q)v̂(t) + (q3q2
q1
, 0)uk and

v̂(kτ) = (wk, xk − ξuk) for kτ < t < (k + 1)τ. Then for time step τ > 0 and k = 0, 1, . . . ,K, letting
x̂k = (wk, xk), Â(q) = eA(q)τ ∈ L(Hq,Hq), and B̂(q) = (I − Â(q))

{
(0, ξ) − A(q)−1(

q3q2

q1
, 0)

}
∈ L(R,Hq),

it follows that
x̂k+1 = (wk+1, xk+1) = (w((k + 1)τ), x((k + 1)τ, ·)) = v̂((k + 1)τ) + (0, ξ)uk

= eA(q)τ(wk, xk − ξuk) +

τ∫
0

eA(q)s(
q3q2

q1
, 0)dsuk + (0, ξ)uk

= Â(q)x̂k + (I − Â(q))(0, ξ)uk + A(q)−1(Â(q) − I)(
q3q2

q1
, 0)uk

= Â(q)x̂k + B̂(q)uk

(2.5)

where for B̂(q) we have used the fact that the operator A(q)−1 commutes with the semigroup generated
by A(q). Note that the operator B̂(q) is in fact an element in Hq and that (0, ξ) ∈ V , but that (

q3q2

q1
, 0) is

only an element in Hq. From eq. (2.5) the state space form of our discrete time model is

x̂k+1 = Â(q)x̂k + B̂(q)uk, k = 0, 1, 2, . . . ,
x̂0 = (w0, φ0),
yk = Ĉ x̂k, k = 0, 1, 2, . . . ,

(2.6)
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where x̂k = (wk, xk), k = 0, 1, 2, . . . and the operator Ĉ ∈ L(Hq,R) is given by Ĉ(θ, ψ) = θ, where
(θ, ψ) ∈ Hq. Note that the ellipticity of A(q) guarantees the existence of A(q)−1.

From eq. (2.6) it is immediately clear that if we assume zero initial conditions, x̂ = (w0, φ0) = (0, 0),
the output y can be written as a discrete time convolution of the input, u, with a filter, h(q), as

yk =

k−1∑
j=0

ĈÂ(q)k− j−1B̂(q)u j =

k−1∑
j=0

hk− j−1(q)u j, k = 0, 1, 2, . . . , (2.7)

where for q ∈ Q, hi(q) = ĈÂ(q)iB̂(q), i = 0, 1, 2, . . .. Using the Trotter-Kato semigroup approximation
theorem (see, for example, [31]), the following result can be shown (see, for proof, [32]).

Lemma 2.1. For Q a compact subset of the positive orthant or R4, K = Kτ for constant time step
τ > 0, and hi as defined in eq. (2.7), we have that the mapping q 7→ hi(q) from Q into R is continuous,
uniformly in q and i, for q ∈ Q and i ∈ {0, 1, 2, . . . ,K}.

Now although the input/output model given in eq. (2.7) is a standard convolution in R, the filter,
{hk(q)} involves the semigroup {eA(q)t : t ≥ 0} which is defined on the infinite dimensional Hilbert
space Hq. Consequently, finite dimensional approximation is required. For n = 1, 2, . . . let {φn

i (η)}ni=0
denote the standard linear B-splines on the interval [0, 1] defined with respect to the uniform mesh
{0, 1

n ,
2
n , . . . ,

n−1
n , 1}, φ

n
i (η) = (nη − i + 1)1[ i−1

n , i
n ] + (1 − nη + i)1[ i

n ,
i+1
n ]. Set

Vn = span{φ̂n
i } = span{(φn

i (0), φn
i )}ni (2.8)

and let Pn
q : Hq → Vn denote the orthogonal projection of Hq on to Vn along (Vn)⊥. Standard

arguments from the theory of splines (see, for example, [33]) can be used to argue that |Pn
q(θ, ψ) −

(θ, ψ)|q → 0, as n→ ∞, for all (θ, ψ) ∈ Hq, and that ∥Pn
qφ̂− φ̂∥V → 0, as n→ ∞, for all φ̂ ∈ V with the

convergence uniform in q for q ∈ Q.

For n = 1, 2, ... and k = 0, 1, 2, ... we set x̂n
k(η) =

n∑
i=0

Xn,k
i φ̂n

i (η), and we approximate the operator A(q)

using a Galerkin approach. That is, we define the operator An(q) ∈ L(Vn,Vn) by restricting the form
a(q, ·, ·) to Vn × Vn. We then set

Ân(q) = eAn(q)τ, and

B̂n(q) = (In − Ân(q))
{
(0, ξ) − An(q)−1Pn

q(
q3q2

q1
, 0)

}
,

(2.9)

where B̂n(q) ∈ L(R,Vn) = Vn. The matrix representations for these operators with respect to the
basis {φ̂n

i }
n
i=0 are then given by [An(q)] = −[Mn(q)]−1Kn(q), [Ân(q)] = e−[Mn(q)]−1Kn(q)τ, and [B̂n(q)] =

(I − [Ân(q)])
{
Ξn− [An(q)]−1[Mn(q)]−1[q2, 0, 0, . . . , 0]T } = (I − [Ân(q)])

{
Ξn+ [Kn(q)]−1[q2, 0, 0, . . . , 0]T },

where [M]n
i, j=0 = ⟨(φ

n
i (0), φn

i ), (φn
j(0), φn

j)⟩q, [K]n
i, j=0 =

a(q, φn
i (0), φn

i ), (φn
j(0), φn

j)), and Ξn =
q2
q1

[0, 1
n ,

2
n , . . . ,

n−1
n , 1]T . Letting [Ĉn] = [1, 0, 0, . . . , 0] ∈ R1×(n+1),

we consider the discrete time dynamical system in Vn given by

x̂n
k+1 = Ân(q)x̂n

k + B̂n(q)uk, k = 0, 1, 2, . . . ,K − 1
yn

k = Ĉ x̂n
k , k = 0, 1, 2, . . . ,K,

x̂n
0 = (0, 0) ∈ Vn

(2.10)
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or equivalently in Rn+1 given by the system where Xn,k+1 = [Ân(q)]Xn,k + [B̂n(q)]uk, yn
k = [Ĉn]Xn,k, and

Xn,0 = [0, 0, . . . , 0]T ∈ Rn+1, we obtain that

yn
k =

k−1∑
j=0

ĈnÂn(q)k− j−1B̂n(q)u j

=

k−1∑
j=0

[Ĉn][Ân(q)]k− j−1[B̂n(q)]u j

=

k−1∑
j=0

hn
k− j−1(q)u j,

(2.11)

for k = 0, 1, 2, . . . ,K where hn
i (q) = [Ĉn][Ân(q)]i[B̂n(q)] ∈ R, i = 0, 1, 2, . . . ,K − 1.

Using linear semigroup theory (see, for example, [21, 34, 35]) and in particular the Trotter-Kato
semigroup approximation theorem (see, for example, [36] and [31]) the following results can be estab-
lished (for proof, see [32]).

Theorem 2.1. For Q a compact subset of the positive orthant of R4, n = 1, 2, . . ., {φn
i (η)}ni=0 the standard

linear B-splines on the interval [0, 1] defined with respect to the uniform mesh {0, 1
n ,

2
n , . . . ,

n−1
n , 1},

Vn = span{(φn
i (0), φn

i )}ni , Pn
q : Hq → Vn the orthogonal projection of Hq on to Vn along (Vn)⊥, and

Ân(q) and B̂n(q) defined as in eq. (2.9), we have that |Ân(q)Pn
q(θ, ψ) − Â(q)(θ, ψ)|q → 0, as n→ ∞, for

all (θ, ψ) ∈ Hq, that ∥Ân(q)Pn
qφ̂− Â(q)φ̂∥V → 0, as n→ ∞, for all φ̂ ∈ V, and that ∥B̂n(q)− B̂(q)∥V → 0,

as n→ ∞, with the convergence in all cases uniform in q for q ∈ Q.

Theorem 2.2. Under the same hypotheses as Theorem 2.1, we have that ∥x̂n
k(q) − x̂k(q)∥V → 0, that

|x̂n
k(q) − x̂k(q)|q → 0, that |yn

k − yk| → 0, and that |hn
k(q) − hk(q)| → 0 as n → ∞ uniformly in k for

k ∈ {0, 1, 2, ...,K} and uniformly in q for q ∈ Q.

Finally, we will assume that we have training data,
{
{ui

k}
K
k=0, {y

i
k}

K
k=0

}R
i=1, from R participants or sub-

jects where without loss of generality (i.e., by padding with zeros) we have assumed that all training
input/output datasets have the same number, K, of observations. In this case, for i = 1, . . . ,R we have,

yi
k =

k−1∑
j=0

hk− j−1(q)ui
j, and

yn,i
k =

k−1∑
j=0

hn
k− j−1(q)ui

j, k = 0, 1, . . . ,K,

(2.12)

where h j(q) = ĈÂ(q) jB̂(q) ∈ R and hn
j(q) = [Ĉn][Ân(q)] j[B̂n(q)] ∈ R, for j = 0, 1, . . . ,K − 1. This

formulation facilitates the estimation of the population parameters q. If one wishes to find the param-
eters q for a specific individual, the methods outlined in Section 2.2 can still be applied by letting the
indices i = 1, . . . ,R refer to different measured BrAC/TAC events each with k = 0, . . . ,K denoting the
measurement times for the desired individual subject.

2.2. Bayesian estimation of dynamical system parameters

In this section we develop a Bayesian framework to estimate the unknown parameters q = [q1, q2]T

in the system eq. (2.2). To illustrate our approach, for simplicity but without loss of generality, we have
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assumed that the sensor parameters q3 and q4 have been bench-measured and are therefore known and
concentrate our effort on estimating the physiological subject-dependent parameters q1 and q2. All of
what follows below can easily be extended to estimating all four of the parameters in the model. Our
underlying statistical model incorporating noise is based on the observation of {yi

j} as in eq. (2.12) and
is given by

V i
j = yi

j + ε
i
j =

j−1∑
ℓ=0

h j−ℓ−1ui
ℓ + ε

i
j (2.13)

where V i
j are our measured TAC values, and εi

j are the i.i.d. noise terms corresponding to person i at
time jτ with σ > 0, τ > 0. Commonly, as we will assume in Section 3.2 and beyond, εi

j ∼ N(0, σ2).
In order to be able to carry out the requisite computations, we consider the approximating statistical
model based on eq. (2.12)

V i
j = yn,i

j + ε
i
j =

j−1∑
ℓ=0

hn
j−ℓ−1ui

ℓ + ε
i
j, (2.14)

where once again the V i
j’s are assumed to be the measured TAC values. We consider q to be a random

vector on some probability space {Ω,Σ, P} with support Q and assume that the prior distribution of q
is given by the push forward measure π0. That is for A ⊂ Q, P({q ∈ A}) = P(q−1(A)) =

∫
q−1(A)

dP =∫
A

dπ0(q).
We assume independence across both i (individuals) and j (sampling times for each individual), for

each i and j we have V i
j − yi

j = ε
i
j (commonly distributed N(0, σ2)) and similarly, V i

j − yn,i
j = ε

i
j (again

commonly distributed N(0, σ2)). Letting φ denote the density of εi
j’s, for q ∈ Q the likelihood and the

approximating likelihood functions are given respectively by (see, for example, [37–40])

L(q|{V i
j}) =

R∏
i=1

K∏
j=1

φ(V i
j − yi

j), and

Ln(q|{V i
j}) =

R∏
i=1

K∏
j=1

φ(V i
j − yn,i

j ).

An application of Bayes’ Theorem (see, for example, Theorem 1.31 in [41]) yields that the posterior
distribution of q or the conditional distribution of q conditioned on the data, {V i

j}, is a push forward
measure π = π(·|{V i

j}) that is absolutely continuous with respect to π0 and whose Radon-Nikodym
derivative, or density, for q ∈ Q is given by

dπ
dπ0

(q|{V i
j}) =

L(q|{V i
j})∫

Q
L(q|{V i

j})dπ0(q)
=

1
Z

R∏
i=1

K∏
j=1

φ(V i
j − yi

j(q)), where (2.15)

Z =
∫
Q

L(q|{V i
j})dπ0(q) =

∫
Q

R∏
i=1

K∏
j=1

φ(V i
j − yi

j(q))dπ0(q). (2.16)
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In this way, for A ⊂ Q, we have P(q ∈ A|{V i
j}) =

∫
A

dπ(q) =
∫

A
dπ(q|{V i

j}). If, in addition, we have

π0 ≪ λ with density
dπ0

dλ
= f0 where λ denotes Lebesgue measure on Q, then π ≪ λ with conditional

density f given by

f (q) =
dπ
dλ

(q|{V i
j}) =

L(q|{V i
j}) f0(q)∫

Q
L(q|{V i

j}) f0(q)dλ(q)
=

1
Z

R∏
i=1

K∏
j=1

φ(V i
j − yi

j(q)) f0(q), (2.17)

Z =
∫
Q

L(q|{V i
j}) f0(q)dλ(q) =

∫
Q

R∏
i=1

K∏
j=1

φ(V i
j − yi

j(q)) f0(q)dλ(q), and (2.18)

P({q ∈ A}|{V i
j}) =

∫
A

f (q)dλ(q) =
∫

A
f (q|{V i

j})dλ(q). (2.19)

Analogously, in the case of the approximating likelihood eq. (2.15), eq. (2.16), eq. (2.17), eq. (2.18),
and eq. (2.19) respectively become

dπn

dπ0
(q|{V i

j}) =
Ln(q|{V i

j})∫
Q

Ln(q|{V i
j})dπ0(q)

=
1
Z

R∏
i=1

K∏
j=1

φ(V i
j − yn,i

j (q)), (2.20)

Zn =

∫
Q

Ln(q|{V i
j})dπ0(q) =

∫
Q

R∏
i=1

K∏
j=1

φ(V i
j − yn,i

j (q))dπ0(q), (2.21)

f n(q) =
Ln(q|{V i

j}) f0(q)∫
Q

Ln(q|{V i
j}) f0(q)dλ(q)

=
1
Zn

R∏
i=1

K∏
j=1

φ(V i
j − yn,i

j (q)) f0(q), (2.22)

Zn =
∫
Q

Ln(q|{V i
j}) f0(q)dλ(q) =

∫
Q

R∏
i=1

K∏
j=1
φ(V i

j−yn,i
j (q)) f0(q)dλ(q), and P(q ∈ A|{V i

j}) =
∫

A
f n(q)dλ(q) =∫

A
f n(q|{V i

j})dλ(q).

3. Results

3.1. Convergence in distribution

Consider the random variable q with posterior distribution described by the measure π given in
eq. (2.15) and eq. (2.16), and let qn denote the random variable q but with posterior distribution πn

given by eq. (2.20) and eq. (2.21). In this section we establish that qn Dist
−−→ q as n → ∞; that is

that qn converges in distribution to q. Recall that due to the physical constraints based on our model
for the alcohol biosensor problem, eq. (2.2), we require that the parameters q lie in the interior of the
positive orthant of R2.

Theorem 3.1. For Q a compact set in the interior of the positive orthant of R2, a prior π0 with compact
support Q and a density that is continuous on Q, and a noise distribution with bounded density function
φ and support on R, qn, the random variable with posterior distribution πn given by eq. (2.20) and
eq. (2.21) converges in distribution to the random variable q with posterior distribution π given by
eq. (2.15) and eq. (2.16).
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Proof. For S a subset Q, the triangle inequality yields

|P(qn ∈ S |{V i
j}) − P(q ∈ S |{V i

j})| =

∣∣∣∣∣∣∣∣ 1
Zn

∫
S

Ln(q|{V i
j})dπ0(q) −

1
Z

∫
S

L(q|{V i
j})dπ0(q)

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣ 1Z − 1
Zn

∣∣∣∣∣

∫
S

L(q|{V i
j})dπ0(q)

 +
(

1
Zn

) ∫
S

∣∣∣L(q|{V i
j}) − Ln(q|{V i

j})
∣∣∣ dπ0(q),

(3.1)

where φ is the normal density describing the distribution of the noise term in eq. (2.13), and Z and Zn

are as in eq. (2.16) and eq. (2.21), respectively.
Focusing first on the limit of |1/Z − 1/Zn| as n → ∞, by Lemma 2.1 we have that the y j

i (q) are
continuous in q for q ∈ Q, i ∈ {0, 1, . . . ,R}, and j ∈ {0, 1, . . . ,K}. Since Q is compact, the {yi

j(q)} are
bounded and thus 0 < Z < ∞. By Theorem 2.2, since yn,i

j (q) → yi
j(q) uniformly in q for q ∈ Q as

n → ∞, 0 < Zn < ∞ for n large enough. Again by Theorem 2.2 it follows from eq. (2.16), eq. (2.21),
and the Bounded Convergence Theorem that Zn → Z as n → ∞ and therefore that |1/Z − 1/Zn| → 0
as n→ ∞. Then, essentially the same arguments yield that

∫
S
|L(q|{V i

j}) − Ln(q|{V i
j})|dπ0(q)→ 0, from

which it then immediately follows that
(

1
Zn

) ∫
S
|L(q|{V i

j}) − Ln(q|{V i
j})|dπ0(q) → 0, and therefore from

eq. (3.1) that qn Dist
−−→ q as n→ ∞ and the theorem has been proved. □

For the push forward measures π and πn from eq. (2.15) and eq. (2.20), respectively, we are com-
monly interested in their respective expected values and the convergences there within. Since Q is
compact, a direct invocation of the Portmanteau theorem (see, [41]) establishes the following corollary
which guarantees the convergence of all moments described by πn to those of π.

Corollary 3.1. Under the hypotheses of Theorem 3.1, and for any continuous function g : Q → R we
have that Eπn[g(q)] =

∫
Q

g(q)dπn(q)→
∫
Q

g(q)dπ(q) = Eπ[g(q)] as n→ ∞.

3.2. Consistency

In this section we demonstrate the strong consistency of the posterior distribution with respect to the
parameters, q, by imposing stronger assumptions on the distribution of the noise terms εi

j in eq. (2.13)
and on the prior, π0, by restricting Q to a rectangle in the positive orthant of R2, and by applying the
framework summarized in [42].

As in [42], we show consistency of the posterior distribution π as in eq. (2.17), rather than con-
sistency of a point estimator based on the posterior distribution. As such, for prior π0 over Q, pos-
terior π(·|{V i

j}) as in eq. (2.15), and i.i.d. noise εi
j ∼ N(0, σ2) for σ > 0, we also consider that for

q ∈ Q assumed known we have random variables Vi
j ∼ N(yi

j(q), σ2) as determined by eq. (2.13) for
i = 1, 2, . . . ,R and j = 1, 2, . . . ,K. Further, we have that {Vi

j }i, j are independent in i and j, but are
non-identically distributed (i.n.i.d).

For clarity and brevity we consider the random vector Vi = (Vi
0 ,V

i
1 , . . . ,V

i
K)T with values in

RK+1 and independent entries derived from the matrix equivalent to eq. (2.13) and eq. (2.14), namely
Vi = yi+εi = Hui+εi and Vi = yn,i+εi = Hnui+εi, with noise vectors εi = (εi

0, ε
i
1, . . . , ε

i
K)T , observed

TAC vectors Vi = (V i
0,V

i
1, . . . ,V

i
K)T , theoretical TAC vectors yi = (yi

0, ji
1, . . . , y

i
K)T and analogous
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yn,i, BrAC data vectors ui = (ui
0, u

i
1, . . . , u

i
K)T and analogous un,i, and kernel matrices H and Hn with

entries [H]i, j = hi− j1 j≤i and [Hn]i, j = hn
i− j1 j≤i, respectively. In this way, for every i ∈ {1, 2, . . . ,R},

by independence in j we have the family of joint distributions, { fi,q(·) =
∏K

j=0 φ(· j − yi
j(q)) : q ∈ Q},

representing the possible densities of Vi for φ the noise density and yi
j as in eq. (2.12). We are

interested in the scenario where the number of subjects R→ ∞.
With our reframing, for A ⊂ Q by independence in i we may rewrite eq. (2.15) as

π(A|{Vi}) =

∫
A

R∏
i=1

fi,q(Vi)dπ0(q)

∫
Q

R∏
i=1

fi,q(Vi)dπ0(q)
=

∫
A

L(q|{Vi})dπ0(q)∫
Q

L(q|{V i})dπ0(q)
=

∫
A

L(q|{Vi})
L(q0 |{Vi})

dπ0(q)∫
Q

L(q|{Vi})
L(q0 |{Vi})

dπ0(q)
=

JA({Vi})
J({Vi})

, (3.2)

where for all i we have data vectors Vi, and for our purposes we will be interested in the equivalent
form on the right-hand side of the equation above where q0 ∈ Q is the true value of our parameters
[q1, q2]T .

We first formalize the results discussed in Section 7 of [42] that handle the i.n.i.d case of posterior
consistency. As such, we say that our posterior distributions {π(·|{Vi})} as in eq. (3.2) are strongly
consistent at q0 if {π(U |{Vi})} → 1 a.s P∞q0

for every neighborhood U of q0 as R → ∞, where P∞q0
=∏∞

i=1 Pi,q0
with Pi,q0

the probability distribution generated by fi,q0
with data samples {Vi}.

For this we show that for sets A ⊂ Q with q0 < A, JA({Vk}) → 0 and J({Vi}) → ∞ as R → ∞ in
some appropriate manner to be made precise below. For JA({Vi}) → 0 we take the same approach as
expressed in [42] and thus state the following definition below without motivation, where we note that
for any two densities f , g on some space X their affinity, denoted Aff( f , g), is given by Aff( f , g) =∫
X

√
f (x)g(x)dx.

Definition 3.1. Let A ⊂ Q and δ > 0. The set A and q0 are strongly δ separated if for every
probability measure ν on A, Aff( f1,q0

,v1
ν) < δ where f1,q0

(x) =
∏K

j=0 φ(x j − y1
j(q0)) for x ∈ RK+1 as

in the work surrounding eq. (3.2), and vR
ν is the marginal density of {Vi

}Ri=1 given by vR
ν ({Vi}Ri=1) =∫

A
L(q|{Vi}Ri=1)dν(q) for any R = 1, 2, . . .. We will say that A and q0 are strongly separated if they are

strongly δ separated for some δ > 0.

From these definitions we provide the following theorem without proof. For proof see Sections 3
and 7 of [42] (or, for examples, [43])

Theorem 3.2. Let π0 be a prior over parameter space Q, {Vi}∞i=1 be independent but not identically
distributed data with distribution generated by fi,q for q ∈ Q, q0 ∈ Q the true value of the parameters
[q1, q2]T , and A ⊂ Q with q0 < A. If A =

⋃
i≥1

Ai such that

1. For some δ > 0, all Ai’s are strongly δ separated from q0 for the model q 7→ fi,q, and
2.

∑
i≥1

√
π0(Ai) < ∞,

then for some β0 > 0, eRβ0 JA({Vi}Ri=1)→ 0 a.s. P∞q0
as R→ ∞ for JA({Vi}) as in eq. (3.2).

To show J({Vi}) → ∞ as R → ∞ we utilize the approach as outlined in the proof Theorem 1 of
Appendix A.2 in [44] (specifically the proof of (8) in Appendix A.2). For a direct proof see [32]. For
a similar approach see [45].
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Theorem 3.3. Let π0 be a prior over parameter space Q, {Vi}∞i=1 be independent but not identically
distributed data with distribution generated by fi,q for q ∈ Q, and q0 ∈ Q the true value of the

parameters [q1, q2]T . For q ∈ Q define Λi(q0, q) = log
fi,q0

(Vi)

fi,q(Vi)
, Ki(q0, q) = Eq0

[Λi(q0, q)], and

S i(q0, q) = Varq0
[Λi(q0, q)]. If there exists a set B ⊆ Q with π0(B) > 0 such that

1.
∑
i≥1

S i(q0, q)
i2 < ∞ ∀q ∈ B, and

2. For every ε > 0, π0(B ∩ {q : Ki(q0, q) < ε ∀i}) > 0.

Then ∀β > 0,eRβJ({Vi}Ri=1)→ ∞ a.s. P∞q0
as R→ ∞ for J({Vi}) as in eq. (3.2).

Before moving on to our main theorem we apply the following theorem and subsequent corollary
to prove a lemma that will be of use to us later. For proof of the following see Theorem 5.3 of [46].

Theorem 3.4. For parameters q ∈ Q a subset of the positive orthant of Rn, and q-dependent semigroup
{T (·; q) : t > 0} with infinitesimal generator A(q) defined in terms of a q-dependent sesquilinear form
σ(q) : V × V → C on a Hilbert space V satisfying items 1 and 2 in Section 2.1, assume

1. (Affine) The map q 7→ σ(q) is affine, in the sense that for any u, v ∈ V, σ(q, u, v) = σ0(u, v) +
σ1(q, u, v) where σ0 is independent of q and the map q 7→ σ1(q, ·, ·) is linear, and

2. (Continuous) For any q, q̄ ∈ Q with metric dQ(·, ·) we have the bound |σ(q, u, v) − σ(q̄, u, v)| ≤
dQ(q, q̄)∥u∥V∥v∥V , for all u, v ∈ V.

Then, the semigroup T (·; q) is (Fréchet) differentiable in q in the interior of Q, where for t > 0, q̄ ∈ Q,
and acting on δq ∈ Q the derivative is given by

Tq(t, q̄)δq =
1

2πi

∫
∂Σγ

eλtR(λ, q)A(δq)R(λ, q)dλ (3.3)

for R(λ, q) = (A(q) − λI)−1 the resolvent of A(q), and the obtuse sector Σγ = {λ ∈ C : arg(λ − λ0) ≤
π
2 + arctan((1 + α0µ0)(1 − γ))} with γ ∈ (0, 1), α0 as in item 1, and λ0, µ0 as in item 2.

The following corollary is an immediate consequence of the work in [6]. Specifically that the map
q 7→ R(λ, q) is analytic as a map from Q to L (V∗,V), and from eq. (3.3) the map q̄ 7→ Tq(t, q̄) depends
continuously on R(λ, q̄). Note that Σγ is independent of q as the constants α0 and λ0, µ0 from items 1
and 2, respectively, of Section 2.1 are independent of q.

Corollary 3.2. Under the same hypotheses as Theorem 3.4, we have that the map q̄ 7→ Tq(t, q̄) is
continuous in the operator norm on L (Q,L (V∗,V)) for q̄ in the interior of Q.

Lemma 3.1. For Q a rectangle in the positive orthant of R2, Hilbert spaces Hq and V as in eq. (2.4),
bilinear form a(q, ·, ·) : V × V → R as in Section 2.1 with q3 and q4 assumed known, and induced
infinitesimal generator A(q) as in Section 2.1, then the generated holomorphic semigroup of bounded
linear operators {eA(q)t : t ≥ 0} on Hq and V∗ is (Fréchet) differentiable and Lipschitz in q in the
interior of Q. Further, for i = 1, . . . ,R and j = 1, . . . ,K, yi

j and yn,i
j as in eq. (2.12) and eq. (2.12) are

(Fréchet) differentiable and Lipschitz in q with Lipschitz constants independent of i and j.

Mathematical Biosciences and Engineering Volume 18, Issue 5, 6739–6770.



6753

Proof. First, by item 3 of Section 2.1 we have that for q ∈ Q, q 7→ a(q, ·, ·) is continuous in q.
Second, notice that for ψ̂, φ̂ ∈ V with ψ̂ = (ψ(0), ψ) and φ̂ = (φ(0), φ), we have a(q, ψ̂, φ̂) =
q1q4

q3
ψ(0)φ(0)+q1

1∫
0
ψ′(x)φ′(x)dx = a0(q, ψ, φ)+a1(q, ψ, φ), where q 7→ a0(q, ψ, φ) and q 7→ a1(q, ψ, φ)

are clearly linear in q for q ∈ Q. Hence the bilinear form a(q, ·, ·) is affine and continuous in q Thus,
by Theorem 3.4, we have that the semigroup generated by a(q, ·, ·), {eA(q)t : t ≥ 0} = {T (t, q) : t ≥ 0}, is
(Fréchet) differentiable in q for q ∈ Q. Denote the derivative in q and q̄ acting on δq ∈ Q by Tq(t, q̄)δq.

Moreover for t ∈ (0,T ] we have for q1, q2 ∈ Q and line segment S = {sq1 + (1 − s)q2 : 0 ≤ s ≤ 1},

∥T (t, q1) − T (t, q2)∥L (V∗,V) ≤ ∥q1 − q2∥1 sup
x∈Q
∥Tq(t, x)∥L (Q,L (V∗,V)) ≤ C̃∥q1 − q2∥1 (3.4)

with ∥·∥L (V∗,V) the operator norm, where the first inequality follows from the Mean Value Theorem on
Banach spaces (see Theorem 4 of Section 3.2 in [47]), and the second and third inequalities follow from
the compactness of Q, Corollary 3.2, and the continuity of the map Tq(t, q̄)) 7→ ∥Tq(t, q̄))∥L (Q,L (V∗,V)).

Further, under zero-order hold the differentiability and Lipschitz properties of Â(q) = eA(q)τ =

T (τ, q) remain. Considering B̂(q) from Section 2.1, B̂(q) = (I − Â(q))
{
(0, ξ) − A(q)−1(

q3q2

q1
, 0)

}
, we

find that it is a sum and product of q-differentiable and q-Lipschitz terms and thus is differentiable
and Lipschitz in q. Since h and y as in eq. (2.12) are a composition and sum of q-differentiable terms
they remain differentiable. Further, using eq. (3.4) we have the following Lipschitz bound for all
j ∈ {0, 1, . . . ,K} and q, q̄ in the interior of Q,

|h j(q) − h j(q̄)| ≤ ∥Ĉ∥L (Hq,R)

[
∥Â(q) j − Â(q̄) j∥L (Hq)∥B̂(q)∥L (R,Hq)+

∥Â(q̄) j∥L (Hq)∥B̂(q) − B̂(q̄)∥L (R,Hq)

]
≤ C1

[
∥Â(q) j − Â(q̄) j∥L (Hq) + ∥B̂(q) − B̂(q̄)∥L (R,Hq)

]
≤ C1(C̃Â + C̃B̂)∥q1 − q2∥1

(3.5)

for C1 the max of the operator norms for Â(q), B̂(q), Ĉ over Q, and C̃Â, B̃Â the max Lipschitz constants
of Â(q) and B̂(q) over all k and Q. The final inequality above follows from eq. (3.4) by noticing that for
all φ̂ ∈ Hq, ∥Â(q)φ̂− Â(q̄)φ̂∥Hq ≤ CV∥Â(q)φ̂− Â(q̄)φ̂∥V and that by identification the supremum over V∗

is larger than that over Hq. For Ân(q) and B̂n(q) as in eq. (2.9) by a repetition of the above arguments
we maintain differentiability in q, and thus hn and yn as in eq. (2.12) are differentiable and Lipschitz in
q.

Lastly, for all i = 1, . . . ,R, j = 1, . . . ,K we have that for q, q̄ ∈ Q

|yi
j(q) − yi

j(q̄)| ≤
j−1∑
ℓ=0

|h j−ℓ−1(q) − h j−ℓ−1(q̄)|ui
j ≤ M̃(K+1)(K + 1)∥q − q̄∥1 (3.6)

where {ui
j} are BrAC values bounded by definition to be in [0, 1], M̃ is the Lipschitz constant from

eq. (3.5), and K + 1 is the fixed upper bound on the number of temporal observations, j. Hence, the
Lipschitz constant for yi

j is independent of (i, j). By noticing that the previous statement holds for yi,n
j

with a repetition of the work leading to eq. (3.6), our lemma has been proved. □
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A direct consequence of Lemma 3.1 is that for all i = 1, 2, . . . ,R with Ki(q̄, q) and Λi(q̄, q) as in the
statement of Theorem 3.3, we have

|Ki(q̄, q)| =
∣∣∣Eq̄

[
Λi(q̄, q)

]∣∣∣ ≤ K∑
j=0

∣∣∣∣∣ 1
2σ2

[
yi

j(q̄)2 − yi
j(q) + 2yi

j(q̄)(yi
j(q) − yi

j(q̄))
]∣∣∣∣∣

=
1

2σ2

K∑
j=0

∣∣∣(yi
j(q̄) − yi

j(q))2
∣∣∣ ≤ KM̄2

2σ2 ∥q̄ − q∥1 = ℓ̃∥q̄ − q∥1

(3.7)

where σ > 0 is the standard deviation of the N(0, σ2) noise density, and M̄ is the Lipschitz constant
from eq. (3.6) that is independent of i (and j). Thus, for any δ∗ > 0, i ∈ {1, . . . ,R}, and q̄, q ∈ {q ∈ Q :
∥q0− q∥1 < δ∗}, we have that ∥ fi,q̄− fi,q∥L1 ≤ (2|Ki(q̄, q)|)

1
2 ≤ (2ℓ̃∥q̄− q∥1)

1
2 < 2(ℓ̃δ∗)

1
2 by the relationship

between total variation and Kullback-Leibler distances, for ℓ̃ as in eq. (3.7). If we let q∗ ∈ Q be such
that ∥ fi,q0

− fi,q∗∥L1 > δ∗ and consider the set G = {q ∈ Q : ∥q∗ − q∥1 < (δ∗)2/(16ℓ̃)}, then G is strongly
separated from q0 (see Definition 3.1). This follows from the relationship between Affinity and total
variation distance (via the Hellinger distance) as well as by noticing that for any density ν on G, the
marginal density of V1 satisfies ∥ fi,q∗ − vi

ν(V
i)∥L1 ≤ δ∗/2 (for full example, see [32] or Example 3.5

in [42]). If this holds for all i then G and q0 are strongly δ̄ separated with δ̄ independent of i.
With this example in mind we note that items 1 and 2 of Theorem 3.2 are satisfied if the following

special condition is met:

1. For every δ∗ > 0, there exist sets A1, A2, . . . with L1 diameter less than δ∗, diam(Ai) < δ∗,
⋃
i≥1

Ai =

Q, and
∑
i≥1

√
π0(Ai) < ∞ for the mappings q 7→ fi,q

where π0 is the prior over Q. This follows from the fact that if special item 1 holds then we may take an
ε∗-neighborhood of q0, U = {q ∈ Q : ∥ fi,q0

− fi,q∥L1 < ε
∗ ∀i}. As discussed above, since ∥ fi,q̄ − fi,q∥L1

is independent of i, U is non-empty and contains the set {q ∈ Q : ∥q0 − q∥1 < (ε∗)2/(4ℓ̃)}. Now set
δ∗ = (ε∗)2/(16ℓ̃), and by compactness cover Q with a finite number of disjoint sets Ai determined by
the balls {q ∈ Q : ∥q̄i − q∥1 < δ∗} with model q 7→ fi,q, where {q̄i}

γ
i=1 represents a finite set of points in

Q chosen so that
⋃
i≥1

Ai = Q. From these Ai’s we have that the finite subset that intersect with Uc must

cover Uc. This finite subset of Ai’s subsequently satisfies the assumptions of Theorem 3.2. Specifically,
the strong separation condition is satisfied as per the discussion leading up to special item 1 by noticing
that on each Ai we have ∥ fi,q0

− fi,q̄i
∥1 > ε∗, and the convergent sum condition is satisfied by the fact

that the Ai’s can be considered (made) mutually exclusive with union contained in Q. We now state
and prove our main theorem.

Theorem 3.5. For Q a rectangle in the interior of the positive orthant of R2, a prior π0 with com-
pact support Q and a density that is continuous on Q, i.i.d noise distributed as N(0, σ2) for σ > 0,
data {Vi}Ri=1 drawn from independent but not identically distributed distributions generated by fi,q as
in eq. (3.2), Hilbert spaces Hq and V as in eq. (2.4), bilinear form a(q, ·, ·) : V × V → R as in Sec-
tion 2.1 with q3 and q4 assumed known, induced infinitesimal generator A(q) as in Section 2.1, and true
parameter q0 ∈ Q, we have that our posterior π(·|{Vi}) as in eq. (3.2) is consistent for q0 as R→ ∞.

Proof. For any set A ⊂ Q with q0 < A we will use the form of π(A|{Vi}) as in eq. (3.2) and handle the
numerator, JA and denominator, J separately.
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First, as Q is compact, for any δ > 0 we may cover Q by a finite number of sets Ai, i = 1, 2, . . . , γ
where each Ai is a subset of an L1 ball in Q. That is, for every i and q, q̄ ∈ Ai we have that ∥q− q̄∥1 < δ.
For R large enough, if on each Ai we consider the model q 7→ fi,q for i ∈ {1, . . . ,R} and fi,q the density
of the random variable Vi with q assumed known, then special item 1 is satisfied for prior π0. Hence,
by Theorem 3.2 we have that for some β0 > 0, eRβ0 JA({Vi})→ 0 a.s. P∞q0

as R→ ∞.
Now for Λi, Ki, and S i as in the statement of Theorem 3.3, for i = 1, 2, . . . ,R and q ∈ Q, we have

|Ki(q0, q)| ≤ ℓ̃∥q0 − q∥1 and

S i(q0, q) =
K∑

j=0

Varq0

[
1

2σ2

(
yi

j(q0)2 − yi
j(q)2 + 2Vk(yi

j(q0) − yi
j(q))

)]

=

K∑
j=0

1
4σ4 Varq0

[
2Vi

j (yi
j(q0) − yi

j(q))
]
=

K∑
j=0

4σ2

4σ4 (yi
j(q) − yi

j(q0))2

≤
ℓ̃2

4
∥q0 − q∥21

for ℓ̃ as determined by eq. (3.7).

Thus, for q0, q ∈ Q we find that
∑
i≥1

S i(q0, q)
i2 ≤

(
ℓ̃2

4
∥q0 − q∥21

) ∑
i≥1

1
i2 < ∞. Further, by the bounds

above we have that for every ε > 0 and i, {q : |Ki(q0, q)| < ε} is non-empty and our choice in such q
does not depend on i. Hence the set {q : |Ki(q0, q)| < ε ∀i} is non-empty. Thus, for B = Q we satisfy
the assumptions of Theorem 3.3 and therefore find that ∀β > 0, eRβJ({Vi})→ ∞ a.s. P∞q0

as k → ∞.
So for any set A ⊂ Q with q0 < A, from eq. (3.2) we have that π(A|{Vi})→ 0 a.s. P∞q0

as R→ ∞ and
thus the theorem has been proved. □

From Lemma 3.1 we find that we maintain the differentiability and Lipschitz properties of the finite-
dimensional semigroup as in eq. (2.9) and respective kernel as in eq. (2.12). Thus, with a straightfor-
ward rewriting of eq. (3.2) and eq. (3.2) in terms of the finite-dimensional posterior eq. (2.20), and
repetition of the work following Lemma 3.1 through the proof of Theorem 3.5 we have the following
corollary.

Corollary 3.3. Under the same hypotheses as Theorem 3.5, for fixed positive integer n we have that
our finite-dimensional posterior πn(·|{Vi}) as in eq. (2.20) is consistent at q0 as R→ ∞.

3.3. Deconvolution of BrAC from TAC

In this section we consider the problem of using the biosensor measured TAC signal to estimate
BrAC. We do this by deconvolving it; to wit we invert the convolution given in eq. (2.12) subject to a
positivity constraint and regularization to mitigate the inherent ill-posedness of the inversion. Recall
that the convolution given in eq. (2.12) was found by solving the finite-dimensional discrete time
system eq. (2.10) derived from eq. (2.2). We employ the method originally described in [25], wherein
the problem is formulated as a constrained, regularized, optimization problem (see, for example, [48]).

We first briefly summarize the treatment in [25] and then follow by showing how our work is able to
make direct use of this theory. Let Ṽ and H̃ be Hilbert spaces forming a Gelfand Triple, Ṽ ↪→ H̃ ↪→ Ṽ∗.
For an admissible set Q, a compact subset of the positive orthant of R2, with q ∈ Q, let A(q) be an
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abstract parabolic operator defined by a sesquilinear form a(q, ·, ·) : V × V → R (i.e., one that satisfies
items 1 to 3 in Section 2.1) that when restricted to {φ ∈ Ṽ : A(q)φ ∈ H̃} generates a holomorphic
semigroup on H̃, {eA(q)t : t ≥ 0}. For bounded operators B(q) ∈ L (R, H̃) and C(q) ∈ L (H̃,R) consider
the input/output system where ẋ(t) = A(q)x(t) + B(q)u(t), x(0) = x0 ∈ H̃, and y(t) = C(q)x(t) where on
the interval [0,T ], u ∈ L2(0,T ) is the input, y the output, and x is the state variable.

For sampling interval τ > 0 and zero-order hold input u(t) = u j, t ∈ [ jτ, ( j + 1)τ), j = 0, 1, 2, ... the
corresponding sampled-time system is given by

x j+1 = Â(q)x j + B̂(q)u j x0 ∈ H̃,

y j = Ĉ(q)x j
(3.8)

where Â(q) = eA(q)τ ∈ L (H̃, H̃), B̂(q) =
∫ τ

0
eA(q)sB(q)ds ∈ L (R, H̃), and Ĉ(q) = C(q) ∈ L (H̃,R),

x j = x( jτ) ∈ H̃, y j = y( jτ) ∈ R j = 0, 1, 2, . . ., and for all j, {u j} ⊂ R are zero-order hold input values.
Now let q be a random variable with support the parameter space Q. For π̃ the probability measure

of q, define the Bochner spaces V = L2
π̃(Q; Ṽ), H = L2

π̃(Q; H̃), and U = L2
π̃(Q;R). It is easily shown

that the spaces V and H form a Gelfand triple V ↪→ H ↪→ V ∗. Define a(·, ·) : V × V → R by
a(φ, ψ) = Eπ̃[a(q, φ(q), ψ(q))] =

∫
Q

a(q, φ(q), ψ(q))dπ̃(q) for φ, ψ ∈ V . Then, as in Section 2.1,
the form −a(·, ·) satisfies items 1 to 3 and therefore defines a linear map A that when restricted to
{φ ∈ V : Aφ ∈ H}, generates an analytic semigroup on H, {eAt : t ≥ 0}.

Assume further that the map q 7→ B(q) is in L∞(Q,L (R, H̃)) and that the map q 7→ C(q) is in
L2(Q,L (H̃,R)) with respect to the measure π̃. (Note that since the domain space in L (R, H̃) and the
co-domain space in L (H̃,R) are both R, it follows that in fact the mapping q 7→ B(q) ∈ L∞(Q, H̃),
and by the Riesz Representation Theorem, that effectively the mapping q 7→ C(q) ∈ L2(Q, H̃) =
H). Then define bounded linear operators B ∈ L (U ,H) and C ∈ L (H,R) by ⟨Bu, ψ⟩H =
Eπ̃[⟨B(q)u(q), ψ(q)⟩H̃] =

∫
Q
⟨B(q)u(q), ψ(q)⟩H̃dπ̃(q) and Cψ = Eπ̃[C(q)ψ(q)] =

∫
Q

C(q)ψ(q)dπ̃(q),
respectively, for u ∈ U and ψ ∈ H. It can then be shown [49,50] that for u ∈ L2([0,T ],U ) the solution
to the input/output system from above with u(t) = u(t, q) = u(t) agrees with the solution to the system
where ẋ(t) = Ax(t)+Bu(t), x(0) = x0 ∈ H, and y(t) = Cx(t) for π̃−almost every q ∈ Q. Then with
sampling interval τ > 0 as in eq. (3.8), and zero-order hold input u(t) = u j, t ∈ [ jτ, ( j + 1)τ), u j ∈ U ,
j = 0, 1, 2, ..., this system becomes

x j+1 = Âx j + B̂u j x0 ∈ H
y j = Ĉx j

(3.9)

for j = 0, 1, 2, . . . where Â = eAτ ∈ L (H,H), B̂ =
∫ τ

0
eAsBds ∈ L (U ,H), and Ĉ ∈ L (H,R).

Now, with eq. (3.9), note that {u j} ⊂ U is obtained by zero-order hold sampling a continuous time
signal. That is, the input to eq. (3.9) is u( jτ) = u j ∈ U with u at least continuous on [0,T ]. We
seek an estimate for the input based on this model, wherein the input estimate u is a function of both
time and the random parameters q. For optimization purposes (more precisely, to be able to include
regularization) we require additional regularity. Given the time interval [0,T ], let u ∈ S (0,T ) =
H1(0,T ;U ) and let U be a compact subset of S (0,T ).

The input estimation or deconvolution problem is then given by

u∗ = arg min
U

J(u) = arg min
U

K∑
k=1

|yk(u) − ŷk|
2 + ∥u∥2S (0,T ) (3.10)
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where ∥·∥2S (0,T ) is a norm on S (0,T ) that will be defined below, {ŷk} are measured output values, the term

∥u∥2S (0,T ) serves as regularization, and yk(u) =
k−1∑
j=0
⟨hk− j−1,u j⟩U , for k = 1, 2, . . . ,K with u j = u( jτ)

for j = 1, 2, . . . ,K the zero-order hold input to the discrete time system eq. (3.9), and convolution filter
hℓ = ĈÂℓ−1B̂ ∈ L (U ,R) = U ∗ (which is equal to U , by the Riesz Representation Theorem) where
Ĉ ∈ L (H,R), Â ∈ L (H,H), and B̂ =

∫
Q

eAsBds ∈ L (U ,H).
Solving eq. (3.10) requires finite dimensional approximations. For index M, let UM define an

approximating family of closed subsets of U, where each subset is contained within a corresponding
finite dimensional subspace, SM of S (0,T ). Further we require that for each u ∈ U there exists a
sequence {uM} with uM ∈ UM such that uM → u in S (0,T ) as M → ∞. For index N, let VN be
an element of an approximating family of finite-dimensional subspaces of V , and let PN

H : H → VN

be the orthogonal projection of H onto VN . We also require of the spaces VN that for each v ∈ V ,
PN

Hv → v in V as N → ∞.
We next specify finite-dimensional operators ÂN ∈ L (VN ,VN), B̂N ∈ L (U ,VN), and ĈN ∈

L (VN ,R) that define the finite-dimensional system analogous to eq. (3.9). That is, let AN : VN → VN

be given by ⟨ANφN , ψN⟩H = −a(φN , ψN) for φN , ψN ∈ VN , ÂN = eA
Nτ, BN = PN

HB, B̂N =∫ τ

0
eA

N sBNds, and ĈN = C. In this way we obtain a doubly-indexed sequence of approximating finite-
dimensional optimization or deconvolution problems given by

u∗L = arg min
UM

JL(u) = arg min
UM

K∑
k=1

|yN
k (u) − ŷk|

2 + ∥u∥2S (0,T ) (3.11)

where L = (M,N), hN
ℓ = ĈN(ÂN)ℓB̂N ∈ U , and

yN
k (u) =

k−1∑
j=0

⟨hN
k− j−1,u j⟩U , k = 1, 2, . . . ,K. (3.12)

Using the approximation properties of the subspaces VN and UM (that is, that for each u ∈ UM there
exists a sequence {uM} with uM ∈ UM and ∥uM − u∥S (0,T ) → 0 as M → ∞, and that for each v ∈ V ,
∥PN

Hv − v∥V → 0 as N → ∞), and the corresponding operators ÂN ∈ L (VN ,VN), B̂N ∈ L (U ,VN),
and ĈN ∈ L (VN ,R), it can be shown that 1) for each multi-index L, eq. (3.11) admits a solution u∗L,
and 2) there exists a subsequence of {u∗L}, {u

∗
Lk
} ⊂ {u∗L} with u∗Lk

→ u∗ strongly as k → ∞ with u∗ a
solution of eq. (3.10). Further, if in addition U is assumed to be a closed and convex subset of S (0,T ),
for each M, UM is a closed and convex subset of U, and the optimization problem given in eq. (3.10)
admits a unique (with respect to sampling) solution, then the sequence of solutions to eq. (3.11), {u∗L}
converges strongly, or in S (0,T ) to the unique solution of eq. (3.10), u∗. For the proofs of these results
see Section 5 of [25]

To numerically carry out the requisite computations to actually determine u∗L for given values of M,
N and L = (M,N), we continue to apply the results in [25] while also connecting them to our treatment
in Sections 2.1 and 2.2 above. We assume that the feasible parameter set Q is a compact rectangle in
the positive orthant of R2, we set H̃ = Hq and Ṽ = V as in eq. (2.4), and we identify the operators
in eq. (3.8) with those in eq. (2.6). Our distribution over q, π̃, is the finite-dimensional posterior
πn(·|{V i

j}) for fixed n as in eq. (2.20) and we proceed with the Bochner spaces V = L2
πn(·|{V i

j})
(Q; V) and

H = L2
πn(·|{V i

j})
(Q; Hq) to achieve eq. (3.9).
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For the state variables x j(η, q) we have that η ∈ [0, 1] and q ∈ Q = [a1, b1]× [a2, b2] for 0 < ai < bi,
i = 1, 2. Further, for the inputs u(t, q) we have that t ∈ [0,T ] and q ∈ Q. Let n be as in eq. (2.8)
and m a positive integer, and we discretize [0, 1] and [0,T ] using the sets of linear B-splines, {ψn

j}
n
j=0

and {ζm
j }

m
j=0, respectively, on the uniform meshes, { j

n }
n
j=0 and { iTm }

m
j=0, respectively. Further, for positive

integers m1 and m2, we discretize Q with the 0th-order B-splines {χmi
i, j}

mi
j=1, i = 1, 2 defined with respect

to the uniform grids {ai −
(bi−ai) j

mi
}
mi
j=0, on [ai, bi], i = 1, 2.

Then for multi-indices N = (n,m1,m2) and M = (m,m1,m2) we define the approximating
subspaces VN and SM as follows using tensor products. That is, let VN = span{ψ̂N

i }
N

i=1 =

span{(ψn
j(0)χm1

1, j1
χm2

2, j2
, ψn

jχ
m1
1, j1
χm2

2, j2
)}n,m1,m2

j=0, j1=1, j2=1 and SM = span{(ζm
j χ

m1
1, j1
χm2

2, j2
}
m,m1,m2
j=0, j1=1, j2=1 = span{ζ̂M

i }
M
i=1,

where N = (n + 1)m1m2 and M = (m + 1)m1m2. Standard approximation theoretic arguments
(see, for example, [33]) can be used to argue that the subspaces defined in above satisfy the re-
quired approximation assumptions on VN and SM. Then xN ∈ VN and uM ∈ SM, can be written as

xN(η; q) =
n,m1,m2∑

i=0,i1=1,i2=1
xN

i,i1,i2
ψn

i (η)χm1
1,i1

(q1)χm2
2,i2

(q2) and uM(t; q) =
m,m1,m2∑

i=0,i1=1,i2=1
uM

i,i1,i2ζ
m
i (t)χm1

1,i1
(q1)χm2

2,i2
(q2),

respectively.
Then with the bases for VN and SM as chosen above, it is an elementary exercise to determine the

matrix representations for the operators AN , BN , CN , ÂN , B̂N , and ĈN . It then follows that eq. (3.9)
takes a matrix system where for k = 1, 2, . . . ,K, MNXN

k+1 = KNXN
k + BLUN

k and yL
k = CNXN

k with
XN

k ∈ RN the coefficients of the basis elements {ψ̂N
i }, U

N
k ∈ RM the coefficients of the basis elements

{ζ̂M
i } as in the previously mentioned approximating subspaces, MN ∈ RN×N a matrix with entries

[MN]i, j = ⟨ψ̂i, ψ̂ j⟩H, KN ∈ RN×N a matrix with entries [KN]i, j = ⟨ANψ̂N
i , ψ̂

N
j ⟩H, BL ∈ RN×M a matrix

with entries ⟨BN ζ̂M
i , ψ̂

N
j ⟩H, and CN ∈ R1×M given by [1, 0, . . . , 0]. From here the matrix representation

of hL
k (with L = (M,N) in place of N due to the joint dependence on the multi-indices M and N) can be

found using this matrix system.
We note that the optimization problem eq. (3.11) is a constrained problem, in that UN

k of the pre-
viously stated matrix system are to be non-negative. With a proper placement of {hL

k } into the block
matrix HL, the approximating deconvolution problem eq. (3.11) is now given by u∗L = arg min

U M
JL(u)

where we have that

JL(u; r1, r2) =

∥∥∥∥∥∥∥
 HL(

r1Q
M
1 + r2Q

M
2

) 1
2

UM − Y
M

∥∥∥∥∥∥∥
∣∣∣∣∣∣∣
2

RK+KM

, (3.13)

where UM is the KM dimensional column vector of the coefficients of u ∈ U M, and Y M is the K+KM

column vector of measured output values {ŷk} followed by KM zeros. Further, QM
i for i = 1, 2 are

matrices with entries given by the U inner products of the basis elements for the subspaces SM as
determined by the regularization term ∥u∥2S (0,T ) below. Note that the regularization term ∥u∥2S (0,T ) is
derived from a weighted inner product on S [0,T ] and thus corresponds to a squared norm on S (0,T )
given by ∥u∥2S (0,T ) = r1

∫ T

0
∥u(t)∥2Udt + r2

∫ T

0
∥u̇(t)∥2Udt.

The values of the regularization weights used in eq. (3.13), ri = r∗i > 0 for i = 1, 2 are chosen
optimally. Indeed, in order to find (r∗1, r

∗
2), BrAC-TAC input-output training data pairs, {(ui

j,V
i
j)}

P,K
i=0, j=0

are used to optimize (r1, r2) via the following scheme:(
r∗1, r

∗
2
)
= arg min

(r1,r2)∈R+×R+

R∑
i=1

K∑
j=1

(∣∣∣∣ūi,∗
L; j−1 − ui

j−1

∣∣∣∣2 + ∣∣∣∣ỹi,∗
L; j − V i

j

∣∣∣∣2) (3.14)
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Figure 1. SCRAM Systems transdermal continuous alcohol monitoring device.

where ūi,∗
L; j = Eπ̃(θ∗)[ũi,∗

L; j], ũi,∗
L; j are the predicted BrAC values found by finding the minimum of

JL( · ; r1, r2) given by eq. (3.13) with r1 and r2 candidate values for the regularization weights from
a specified feasible set in the positive orthant of R2, R+ × R+, and ỹi,∗

L; j are the TAC values found by
using ũi,∗

L; j as input to eq. (3.12).

3.4. Numerical results

All of the data used in the studies detailed below, unless otherwise specifically stated (e.g., as in
Section 3.4.2), were collected in USC IRB approved human subject experiments designed and run by
researchers in the laboratory of one of the authors (S. E. L.) as part of a National Institutes of Health
(NIH) funded investigation (see, [51]). These experiments were carried out in controlled environments
wherein 40 participants completed one to four drinking episodes, with viable data recorded in 146
drinking episodes. BrAC was obtained using Alco-sensor IV breath analyzer devices from Intoxime-
ters, Inc, St. Louis, MO, and participants each wore two SCRAM (Secure Continuous Remote Alcohol
Monitoring) devices manufactured by Alcohol Monitoring Systems (AMS) in Littleton, Colorado (see
Figure 1) simultaneously placed on the participants’ left and right arms for TAC. For each separate
SCRAM device, participants started their readings with a TAC and BrAC of 0.000, consumed alcohol
(equivalent across all sessions per participant) in one of three different drinking patterns (single: over
15 minutes; dual: over two 15-min periods spaced 30-minutes apart; or steady: over 60 minutes), and
then ended their session when their TAC and BrAC had returned to 0.000. We note that the placement
of the two sensors challenges the independence assumption from Section 2.2, but for experimental
purposes we will include all of the data as independently measured drinking episodes with this caveat
in mind. In addition, we did not focus on any specific drinking pattern as including all possible pat-
terns is in line with real-world, varying drinking patterns and may improve the generalizability of our
model. In the calculations of Sections 3.4.1 and 3.4.2, as in eq. (2.5), time is discretized by a constant
sampling time τ of 5 minutes and is subject to our zero-order hold assumption. While this challenges
the implications of our zero order hold assumption, namely that τ = .0833 hours implies that subjects’
BAC is constant for 5 minutes, this restriction is needed as computational complexity becomes unsta-
ble as τ decreases. In order to achieve this sampling time, we first linearly interpolate all of the data
(both BrAC and TAC), and then re-sample at our desired rate of τ = 5. For Section 3.4.3, a τ will be
discussed. Further, in all sections we assume a truncated multivariate normal (tMVN) prior π0 (as in
eq. (2.20)) on q with mean µ and covariance matrix Σ which varies from example to example.
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Table 1. 90% credible circles for MCMC sampled posteriors with noise distribution
N(0, 0.0052).

n Dimension 1 2 3 25
Mean (q1, q2) (0.7185, 0.8512) (0.6829, 0.8651) (0.6776, 0.8686) (0.6719, 0.8716)

Credible Circle Radius 0.1173 0.1097 0.1029 0.1289

Unfortunately, the USC IRB approved experiments for collecting human subject data were not de-
signed around the problem of estimating the sensor collection chamber inflow and outflow parameters,
q3 and q4 as in eq. (2.3), nor do the authors have the laboratory facilities or expertise to determine
them experimentally. Moreover, since the approach developed in sections 2.1 and 2.2, and in particular
our underlying hybrid PDE/ODE model given in 2.3, are relatively novel, no values for q3 and q4 are
available from either the manufacturers of the sensors or the current literature. Consequently, for the
purposes of this study we have chosen values for q3 and q4 arbitrarily as q3 = q4 = 1. However, we
note that the precise values chosen for q3 and q4 had no perceptible qualitative effect on the results to
be presented below. Finally we note that all computational work was done in Python 3.7.2 and includes
ported MATLAB code from the work of [15,21,24,25], in particular with respect to the creation of the
finite-dimensional, discrete-time kernel as in eq. (2.12). Ported code was verified against the original
code through the use of unit tests.

3.4.1. Convergence in distribution

We used surface plots as well as Metropolis Hastings (MH) Markov Chain Monte Carlo (MCMC)
methods to validate our convergence in distribution results. Throughout the results described here we
have that from eq. (2.14) for all sample times the i.i.d. noise ε is distributed as N(0, 0.0052), and prior
π0 as in eq. (2.20) is distributed as the optimal distribution found in Section 6 of [25]. Specifically, the
prior is a tMVN random variable with mean, µ =

( 0.6318
1.0295

)
and covariance matrix, Σ =

( 0.0259 0.0077
0.0077 0.1232

)
with

the feasible parameter set, Q, taken to be Q = [0.01, 2.2877] × [0.01, 2.1410] for q = [q1, q2]T . The
choice of 0.005 for the standard deviation of ε was made to limit the role of noise in our subsequent
sampling algorithms so that we may focus on the role of the dimension of our approximating system
in the resulting posterior distribution. In addition, when comparing this choice in standard deviation
to the peak TAC values of our training dataset, we had a typical peak TAC to noise ratio of 20. For
computational reasons, we limit ourselves to measurements from a random subgroup of R = 3 subject
drinking episode measurements. Figure 2 contains the resulting surface plots for n values of 1, 3, and
25. Further, Table 1 contains the means and credible regions for n values of 1, 2, 3, and 25 as determined
by respective 1000 sample (1100 draws with a 100 draw burn-in period) MH MCMC sampling runs.
The MCMC sample size chosen here was due to computational complexities and runtimes. Figure 3
displays deconvolution results for a randomly chosen, non-training drinking episode for different values
for the dimension of the approximating system, n. This figure used the method from Section 3.3 along
with the resulting posteriors as shown in Figure 2 and Table 1.
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(a) n = 1, R = 3, σnoise = 0.005 (b) n = 3, R = 3, σnoise = 0.005 (c) n = 25, R = 3, σnoise = 0.005

Figure 2. Posterior distribution surface plots for varying finite dimensional approximations
of the kernel from eq. (2.12).

(a) BT323 - Left arm - Single
n = 1 - R = 3

(b) BT323 - Left arm - Single
n = 3 - R = 3

(c) BT323 - Left arm - Single
n = 25 - R = 3

Figure 3. Deconvolutions for differing approximating dimension values, n, associated with
posteriors from Figure 2 and Table 1.

3.4.2. Consistency

We again used surface plots as well as MH MCMC sampling methods to verify our consistency
results. For these studies we have assumed that the noise ε is now distributed as N(0, 0.0252) while
our prior π0 from eq. (2.20) is still the optimal distribution found in Section 6 of [25]. That is, π0 is
a tMVN with µ =

( 0.6318
1.0295

)
and covariance matrix, Σ =

( 0.0259 0.0077
0.0077 0.1232

)
with bounds [0.01, 2.2877] and

[0.01, 2.1410] for q1 and q2, respectively. The choice for a distribution for the random noise is meant
to simulate a more realistic situation where little is assumed known about any external effects that
play a role in perturbing the sensor measurements. Consequently the data is assumed noisy. When
comparing this choice for the standard deviation of the noise process to the peak TAC values of our
training dataset, we had a typical peak TAC to noise ratio of 8.

To test Theorem 3.5, we generated 276 TAC values using subject-measured BrAC values via
eq. (2.14) with a predetermined q0 value of [1, 1], n = 24, and noise variance of 0.0252. Table 2
displays the calculated means and 90% credible circle radii for the posterior distribution eq. (2.22) for
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Table 2. 90% credible circles for MCMC sampled posteriors from idealized TAC data with
noise distributed N(0, 0.0252) and prior as determined in Section 3.4.2.

R 1 11 26 101 276
Mean (q1, q2) (0.683, 1.023) (0.734, 1.031) (0.776, 1.025) (0.877, 1.011) (0.942, 1.003)

Cred. Circle Radius 0.2854 0.1963 0.1677 0.1590 0.0787

Table 3. 90% credible circles for MCMC sampled posteriors with noise distributed
N(0, 0.0252) and prior distribution equivalent to the one in Section 6 of [24], namely a tMVN
with µ =

( 0.6318
1.0295

)
, Σ =

( 0.0259 0.0077
0.0077 0.1232

)
, and q bounds [0.01, 2.2877] and [0.01, 2.1410].

R 1 11 26 101
Mean (q1, q2) (0.913, 1.251) (1.426, 1.629) (1.900, 1.551) (2.183, 1.231)

Credible Circle Radius 0.2824 0.1497 0.1560 0.1254

increasing amounts of idealized (BrAC, TAC) data pairs (R) all generated using the “true” q0 value
previously stated. To calculate these values, MH MCMC samples were drawn with a sample of size
1400 (1500 data points with a 100 sample burn-in phase) where the MCMC sample size was increased
from that of Section 3.4.1 due to the increase in noise variance.

We now investigate the results of Section 3.2 with respect to the field-measured (BrAC, TAC) data
pairs. Note that we no longer are able to know the true value of the parameters, q0. Surface plots for
increasing amounts of subject drinking episode measurements, R = 1, 26, 76, and 101 are contained
within Figure 4. Table 3 displays the calculated means and 90% credible circle radii for increasing
numbers of subjects, and thus data (corresponding to R as in Section 3.2) included in determination of
the prior. To calculate these values, for each R, we again used 1400 MH MCMC samples (1500 draws
with a 100 sample burn-in phase) generated according to our chosen prior.

3.4.3. Deconvolution

As in Section 3.3, we rely on the treatment in [25] for deconvolving BrAC from TAC using a
distribution for q over Q. The chosen distribution was the posterior eq. (2.22) with n = 3. To
determine the posterior we elected to investigate the case where a non-informative, or what is more
aptly described as an uneducated, prior was used. Thus we chose a prior of a tMVN random variable
with bounds [0.01, 10] × [0.01, 10], and parameters µ =

( 5
5
)

and Σ =
( 0.7 0.1

0.1 0.55
)
. The noise used was

distributed as N(0, 0.0252). Note that this choice in prior also highlights the effects of data on the
posterior by not providing any initial information to the posterior. When comparing this choice in
noise standard deviation to the peak TAC values of our training dataset, we had a typical peak TAC to
noise ratio of 8. Further, for the subspaces from Section 3.3 we set our discretization to be n = 3, time
discretization as m = 1300, and discretized Q with m1 = m2 = 20. As with Section 3.4.2, the noise
distribution is meant to simulate a situation where little is known about external effects that play a role
in determining noise, and so the data is assumed noisy.

In all of the numerical results presented and discussed in this section, the test dataset used con-
sisted of five drinking episodes from four different participants. These drinking episodes were chosen
heuristically so that the test dataset had two drinking episodes with peak BrAC greater than peak TAC,
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(a) R = 1, n = 5 (b) R = 11, n = 5

(c) R = 26, n = 5 (d) R = 101, n = 5

Figure 4. Posterior distribution surface plots for varying amounts of collected data, m. All
images use noise and prior distributions as stated in Section 3.4.2.

two drinking episodes with peak BrAC less than peak TAC, and one drinking episode with peak BrAC
within 0.015 of peak TAC (deemed, “close”). The remaining drinking episodes were used as training
data with the added restriction that whenever the desired number of training sets to be used was not too
large, BrAC/TAC pairs from any participant who had a dataset included in the selected test data, would
be excluded from being among the data used for determining the posterior. The primary exception to
this restriction being Figure 6c, wherein we allowed all data that wasn’t the current test data point to
be included in the training set.

By linearly interpolating the BrAC and TAC data for each subject in all test and training datasets,
we are able to re-sample our data with sampling interval τ = 45 seconds, and the time discretization
m = 1300 previously mentioned. The associated participant IDs, TAC device placement (left vs. right
arm), type of drinking pattern used (single, dual, or steady), and number of subjects used in posterior
distribution determination (R) are labeled in Figures 5 and 6. As in eq. (3.14), we utilized all available
non-test subject drinking episode measurements (R = 136) to determine population parameters (r∗1, r

∗
2)

to be (4.7733, 1.7020).
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(a) BT322 - Right arm - Dual (b) BT335 - Right arm - Single (c) BT319 - Right arm - Dual

Figure 5. BrAC deconvolution given TAC and predicted q values for varying test data par-
ticipants’ right arm data with conservative credible regions shaded in gray. Across sub-
figures, all training data remained constant with R = 25. Prior used was tMVN with bounds
[0.01, 10] × [0.01, 10], µ =

( 5
5
)
, and Σ =

( 0.7 0.1
0.1 0.55

)
.

Table 4. Data associated with posterior determination and deconvolution used in Figure 6.

Arm R q mean 90.0% Credible q1 range q2 range
Circle Radius

Right 25 [4.512, 1.346] 1.431 [3.082, 5.943] [0.01, 2.777]
Right 75 [3.450, 1.215] 1.490 [2.006, 4.986] [0.01, 2.705]
Right 145 [2.824, 1.000] 1.066 [1.758, 3.890] [0.01, 2.066]

Figure 5, shows varying deconvolution attempts for three test data participants, whereas Figure 6
shows deconvolution attempts for the same test data participant reading (BT333), with varying amounts
of training subject data within the posterior eq. (2.22), R = 25, 75, 145. In both Figures 5 and 6, gray
bands represent 90% error regions that are determined by sampling respective parameter posterior
distributions and utilizing these samples with (3.13) to determine estimated BrAC values. It follows
that these error regions contain the 90% credible regions for the pointwise BrAC values as functions of
the population parameters appearing in the model. This is the basis for our referring to them in what
follows as conservative credible bands.

4. Discussion

4.1. Bayesian estimation of model parameters

Figure 2 illustrates rapid convergence in dimensionality of our spatial dimensions as n grows, thus
bolstering the results of Theorem 3.1. Within two steps (n = 3), we have a graph that visually differs
from that of n = 25 in ways barely perceptible. Paired with the credible circles in Table 1, these provide
evidence that after n = 3 the mean and radius of the q credible circles stay consistent. Thus one can
choose a computationally efficient n value that minimizes data lost when projecting eq. (2.6) into finite
dimensions, eq. (2.11).

For the consistency results, Table 2 exemplifies the theoretical prediction in Theorem 3.5 that as the
amount of subject data R grows, the posterior distribution better predicts the true q value by localiz-
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(a) BT333 – Right arm – Single –
R = 25

(b) BT333 – Right arm – Single –
R = 75

(c) BT333 – Right arm – Single –
R = 145

Figure 6. BrAC deconvolution given TAC and predicted q values for a single test data drink-
ing episode derived using varying amounts of training data, R, with conservative credible
regions shaded in gray. All sub-figures use the same test TAC data from a single right arm
session from BT333. Prior used was tMVN with bounds [0.01, 10]× [0.01, 10], µ =

( 5
5
)
, and

Σ =
( 0.7 0.1

0.1 0.55
)
. Associated data are contained in Table 4.

ing the true parameter q0 in mean with higher confidence (smaller credible circles). This increasing
confidence is backed by the decreasing variance results shown in Figure 4. Notice that although the
variance decreases, the mean is allowed to shift as more data are incorporated, as evident from com-
paring Figure 4c to Figure 4d. This shifting mean is permitted by the theoretical results and is likely
due to the incorporation of 70 extra data points. Table 3 displays the shifting of the mean as more data
are incorporated while quantitatively displaying a decreasing 90% credible circle radius, as expected.

As a final note, recall that TAC data were collected simultaneously from both the right and left arms
of participants. For an investigation into this see [32].

4.2. Deconvolution of BrAC from TAC

In Figure 5a, the deconvolved mean BrAC curve more closely resembles the overall curve of the
measured TAC values rather than the desired BrAC, with its increased values towards the latter part of
the curve. This is to be expected as the measured TAC plays a role in the Bayesian step, but notice
that the severity of the increase in the mean value curve is attenuated when compared to that of the
TAC curve (red vs. yellow curves at the five hour mark). A similar phenomenon also appears in
Figure 6a. For Figures 6a to 6c, as the number of subject drinking episodes R increases, we find that
the mean curve grows towards the actual BrAC curve, an expected convergence phenomenon given the
theoretical consistency results from Section 3.2.

Lastly, the 90% conservative credible bands about the deconvolved BrAC curves appear to always
have a lower bound of zero. For the upper bound, the extreme case is shown in Figure 5c. These wide
ranges in BrAC values allow us to capture the true BrAC value with high probability, but also leave us
capturing far more area under the curve than needed. Thus, there are times when our two-step method
would falsely signal that the TAC device wearer is far more inebriated than they actually are. This
incorrect signaling might be due in part to the quantitative inaccurate readings in Figure 5c, wherein
the TAC curve is greater than the BrAC curve. If our (training) data are mainly composed of the other
cases (TAC following BrAC at an attenuated rate), then the algorithm will learn to “guess up” when
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turning the TAC back into BrAC. Lastly, this phenomenon may be due to the use of an uninformed
prior as the credible regions in Table 3 do not approach zero. Hence, in the future use of an informed
prior may be preferable.

4.3. Conclusions

We believe that the i.n.i.d. assumption from Section 2.2 (specifically Section 3.2) may not reflect the
realities of the data collection method wherein two sensors are worn simultaneously on participants’
left and right arms. We are currently investigating the elimination of this i.n.i.d assumption. However,
the results from Section 3.4 are quite reasonable and are extremely useful when seeking to use this
approach computationally in practice. Further investigation is needed regarding the traveling mean
exhibited in the numerical results and how it is related to the non-inclusion of other covariate data
(age, height, weight, etc.). This investigation may also be aided by attempting to combine the results
of Sections 3.1 and 3.2 and let both the approximating dimension of the kernel, as well as the amount
of training data, go to infinity simultaneously.

We also believe that the packaging of all error sources into a single random variable in Section 2.2
may yield larger uncertainties than formulations where many additive errors are considered. Namely,
mixed-effects formulations may be utilized in order to separate errors and might lower overall uncer-
tainty. However, the results from Section 3.4 are again quite reasonable, and the usage of mixed-effects
formulations can be left as a design choice when considering the main goals and implementations of
the PDE model from Section 2.1.

When our approach and results are optimized for use in actual practice, some care will have to be
taken in regard to the sampling methods used in Sections 3.4.1 and 3.4.2. If Markov Chain Monte Carlo
methods are still the method of choice, then issues such as sample size, convergence of the chains, and
randomized chain starting points will need to be taken into account. In addition, a laboratory protocol
will be need to be developed to estimate the sensor-dependent values of q3 and q4 that appear in
eq. (2.3). As far as the numerical results presented in Section 3.4 are concerned in regard to the values
chosen for q3 and q4, they primarily serve to reinforce the theoretical results in Sections 3.1 and 3.2.

Finally, Of primary interest is the direct inversion of BrAC, u, given TAC as in eq. (2.12) without
the need for a two-step process like that of the method used in this paper. We believe that a hierarchical
model paired with a Gaussian Process framework may reduce the problem down to a single step (see,
[52]). In such a framework, we place a prior on q, as well as a function space prior over u. In this
way, we obtain a method that statistically deconvolves BrAC from TAC while providing a distribution
from which we may derive error bars on the estimated BrAC values. We are also currently examining
the inclusion of another hierarchical Bayesian model that incorporates covariates in both priors placed
over q and u. We believe that this will improve the accuracy of our predictions by allowing the use of
all available subject and environment data.
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4. E. Nyman, A. Palmlöv, The elimination of ethyl alcohol in sweat1, Skandinavisches Archiv Für
Physiologie, 74 (1936), 155–159.

5. G. Pawan, Physical exercise and alcohol metabolism in man, Nature, 218 (1968), 966–967.

6. T. Wade, N. Pai, J. Eisenberg, J. Colford, Do u.s. environmental protection agency water quality
guidelines for recreational waters prevent gastrointestinal illness? a systematic review and meta-
analysis, Environ. Health Perspect., 111 (2003), 1102–9.

7. R. M. Swift, Transdermal measurement of alcohol consumption, Addiction, 88 (1993), 1037–1039.

8. R. M. Swift, Transdermal alcohol measurement for estimation of blood alcohol concentration,
Alcohol. Clin. Exp. Res., 24 (2000), 422–423.

9. R. M. Swift, C. S. Martin, L. Swette, A. LaConti, N. Kackley, Studies on a wearable, electronic,
transdermal alcohol sensor, Alcohol. Clin. Exp. Res., 16 (1992), 721–725.

10. P. Kriikku, L. Wilhelm, S. Jenckel, J. Rintatalo, J. Hurme, J. Kramer, et al., Comparison of
breath-alcohol screening test results with venous blood alcohol concentration in suspected drunken
drivers, Forensic Sci. Int., 239 (2014), 57–61.

11. E. Schechtman, D. Shinar, An analysis of alcohol breath tests results with portable and desktop
breath testers as surrogates of blood alcohol levels, Accid. Anal. Prev., 43 (2011), 2188–2194.

12. A. Jones, L. Andersson, Comparison of ethanol concentrations in venous blood and end-expired
breath during a controlled drinking study, Forensic Sci. Int., 132 (2003), 18–25.

13. D. A. Labianca, The chemical basis of the breathalyzer: A critical analysis, J. Chem. Educ., 67
(1990), 259–261.

14. A. W. Jones, Determination of liquid/air partition coefficients for dilute solutions of ethanol in
water, whole blood, and plasma, J. Anal. Toxicol., 7 (1983), 193–197.

15. Z. Dai, I. G. Rosen, C. Wang, N. P. Barnett, S. E. Luczak, Using drinking data and pharmacokinetic
modeling to calibrate transport model and blind deconvolution based data analysis software for
transdermal alcohol biosensors, Math. Biosci. Eng., 13 (2016), 911–934.

Mathematical Biosciences and Engineering Volume 18, Issue 5, 6739–6770.



6768

16. D. M. Dougherty, N. E. Charles, A. Acheson, S. John, R. M. Furr, N. Hill-Kapturczak, Comparing
the detection of transdermal and breath alcohol concentrations during periods of alcohol consump-
tion ranging from moderate drinking to binge drinking, Exp. Clin. Psychopharmacol., 20 (2012),
373.

17. D. M. Dougherty, N. Hill-Kapturczak, Y. Liang, T. E. Karns, S. E. Cates, S. L. Lake, et al., Use of
continuous transdermal alcohol monitoring during a contingency management procedure to reduce
excessive alcohol use, Drug Alcohol Depend., 142 (2014), 301–306.

18. D. M. Dougherty, T. E. Karns, J. Mullen, Y. Liang, S. L. Lake, J. D. Roache, et al., Transdermal
alcohol concentration data collected during a contingency management program to reduce at-risk
drinking, Drug Alcohol Depend., 148 (2015), 77–84.

19. M. Dumett, I. G. Rosen, J. Sabat, A. Shaman, L. Tempelman, C. Wang, et al., Deconvolving an
estimate of breath measured blood alcohol concentration from biosensor collected transdermal
ethanol data, Appl. Math. Comput., 196 (2008), 724–743.

20. I. G. Rosen, S. E. Luczak, W. W. Hu, M. Hankin, Discrete-time blind deconvolution for distributed
parameter systems with dirichlet boundary input and unbounded output with application to a trans-
dermal alcohol biosensor, in 2013 Proceedings of the Conference on Control and Its Applications,
Society for Industrial and Applied Mathematics, 2013, 160–167.

21. I. G. Rosen, S. E. Luczak, J. Weiss, Blind deconvolution for distributed parameter systems with un-
bounded input and output and determining blood alcohol concentration from transdermal biosensor
data, Appl. Math. Comput., 231 (2014), 357–376.

22. G. D. Webster, H. C. Gabler, Feasibility of transdermal ethanol sensing for the detection of intox-
icated drivers, Annual Proceedings / Association for the Advancement of Automotive Medicine, 51
(2007), 449–464.

23. G. D. Webster, H. C. Gabler, Modeling of transdermal transport of alcohol effect of body mass and
gender, Biomed. Sci. Instrum., 44 (2008), 361–366.

24. M. Sirlanci, S. E. Luczak, I. G. Rosen, Estimation of the distribution of random parameters in
discrete time abstract parabolic systems with unbounded input and output: Approximation and
convergence, Commun. Appl. Anal., 23 (2019), 44.

25. M. Sirlanci, I. G. Rosen, S. E. Luczak, C. E. Fairbairn, K. Bresin, D. Kang, Deconvolving the
input to random abstract parabolic systems: a population model-based approach to estimating
blood/breath alcohol concentration from transdermal alcohol biosensor data, Inverse Probl., 34
(2018), 125006.

26. N. Hill-Kapturczak, J. D. Roache, Y. Liang, T. E. Karns, S. E. Cates, D. M. Dougherty, Accounting
for sex-related differences in the estimation of breath alcohol concentrations using transdermal
alcohol monitoring, Psychopharmacology, 232 (2014), 115–123.

27. T. E. Karns-Wright, J. D. Roache, N. Hill-Kapturczak, Y. Liang, J. Mullen, D. M. Dougherty, Time
delays in transdermal alcohol concentrations relative to breath alcohol concentrations, Alcohol
Alcohol., 52 (2017), 35–41.

28. M. Yao, S. E. Luczak, I. G. Rosen, Linear quadratic Gaussian control of random abstract parabolic
systems, IEEE Contr. Syst. Lett., submitted for publication.

Mathematical Biosciences and Engineering Volume 18, Issue 5, 6739–6770.



6769

29. R. Adams, J. Fournier, Sobolev Spaces, ISSN, Elsevier Science, 2003.

30. H. Tanabe, Equations of evolution, Monographs and Studies in Mathematics.

31. A. Pazy, Semigroups of linear operators and applications to partial differential equations,
Springer, 1983.

32. K. J. Hawekotte, Obtaining Breath Alcohol Concentration from Transdermal Alcohol Concentra-
tion Using Bayesian Approaches, PhD thesis, University of Southern California, 2021.

33. M. Schultz, Spline Analysis, Prentice-Hall Series in Automatic Computation, Pearson Education,
Limited, 1972.

34. H. T. Banks, K. v. Bremen-Ito, U. S. R. Association., I. for Computer Applications in Science and
Engineering., A unified framework for approximation in inverse problems for distributed param-
eter systems, National Aeronautics and Space Administration, Langley Research Center, Institute
for Computer Applications in Science and Engineering Hampton, Va, 1988.

35. H. T. Banks, K. Kunisch, Estimation Techniques for Distributed Parameter Systems, Birkhauser
Boston, Inc., Secaucus, NJ, USA, 1989.

36. T. Kato, Perturbation theory for linear operators, Grundlehren der mathematischen Wis-
senschaften, Springer Berlin Heidelberg, 2013.

37. M. Dashti, A. M. Stuart, The Bayesian Approach to Inverse Problems, 311–428, Springer Interna-
tional Publishing, Cham, 2017.

38. T. Bui-Thanh, O. Ghattas, J. Martin, G. Stadler, A computational framework for infinite-
dimensional bayesian inverse problems part i: The linearized case, with application to global
seismic inversion, SIAM J. Sci. Comput., 35 (2013), A2494–A2523.

39. N. Petra, J. Martin, G. Stadler, O. Ghattas, A computational framework for infinite-dimensional
bayesian inverse problems, part II: Stochastic newton MCMC with application to ice sheet flow
inverse problems, SIAM J. Sci. Comput., 36 (2014), A1525–A1555.

40. A. M. Stuart, Inverse problems: A bayesian perspective, Acta Numer., 19 (2010), 451–559.

41. M. J. Schervish, Theory of statistics, Springer Science & Business Media, 2012.

42. T. Choi, R. V. Ramamoorthi, Remarks on consistency of posterior distributions, vol. Volume 3 of
Collections, 170–186, Institute of Mathematical Statistics, Beachwood, Ohio, USA, 2008.

43. S. Walker, New approaches to bayesian consistency, Ann. Stat., 32 (2004), 2028–2043.

44. T. Choi, M. Schervish, Posterior consistency in nonparametric regression problems under gaussian
process priors, 2004.

45. N. Choudhuri, S. Ghosal, A. Roy, Bayesian estimation of the spectral density of a time series, J.
Am. Stat. Assoc., 99 (2004), 1050–1059.
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