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Abstract: For the existing Closed Set Recognition (CSR) methods mistakenly identify unknown 

jamming signals as a known class, a Conditional Gaussian Encoder (CG-Encoder) for 1-dimensional 

signal Open Set Recognition (OSR) is designed. The network retains the original form of the signal 

as much as possible and deep neural network is used to extract useful information. CG-Encoder 

adopts residual network structure and a new Kullback-Leibler (KL) divergence is defined. In the 

training phase, the known classes are approximated to different Gaussian distributions in the latent 

space and the discrimination between classes is increased to improve the recognition performance of 

the known classes. In the testing phase, a specific and effective OSR algorithm flow is designed. 

Simulation experiments are carried out on 9 jamming types. The results show that the CSR and OSR 

performance of CG-Encoder is better than that of the other three kinds of network structures. When 

the openness is the maximum, the open set average accuracy of CG-Encoder is more than 70%, 

which is about 30% higher than the worst algorithm, and about 20% higher than the better one. When 

the openness is the minimum, the average accuracy of OSR is more than 95%. 

Keywords: Jamming recognition; Open Set Recognition (OSR); Conditional Gaussian Encoder 

(CG-Encoder); residual network; Kullback-Leibler (KL) divergence 

 

1. Introduction  

1.1. Background and motivation 

In order to ensure the communication quality, corresponding anti-jamming measures should be 

adopted according to different jamming [1]. The anti-jamming effect depends on the accurate 



6621 

Mathematical Biosciences and Engineering  Volume 18, Issue 5, 6620–6637. 

identification of communication interference types, so the research of communication interference 

identification has important application value, which has attracted many researchers' attention. The 

current interference recognition methods include traditional and deep learning-based interference 

recognition algorithms. 

The traditional interference recognition algorithm consists of feature extraction and pattern 

recognition. The algorithm process is generally as follows: first extract the signal features, such as 

signal high-order cumulant [2,3], signal space [4,5] and time-frequency domain analysis [6], and then 

use the pattern recognition algorithm to classify, including decision tree, support vector machine, 

back propagation neural network and other methods. The rationality of feature selection determines 

the recognition effect, and the feature selection is related to the cognition of professionals to 

interference, so human factors have great influence. 

The key of interference recognition algorithm based on deep learning lies in data set, which 

avoids manual feature selection. The data set can be amplitude spectrum [7], IQ dual channel signal [7] 

and signal time-frequency diagram [8–11]. Literature [12] proved that convolution neural network 

(CNN) can extract features with good separability. This algorithm is better than the traditional 

interference recognition algorithm. 

However, the electromagnetic environment is more and more complex, and new types of 

jamming are emerging. However, the existing algorithms can only recognize the known jamming 

types, that is, Closed Set Recognition (CSR). When a new type appears, the existing methods 

identify it as one of the known mistakenly, but cannot identify it as an unknown jamming accurately. 

Therefore, the Open Set Recognition (OSR) problem of communication jamming signal needs to be 

solved urgently. 

In reference [13], OSR is defined as: the knowledge in training is incomplete, but the algorithm 

can detect and reject unknown classes samples in the process of testing. OSR methods include 

traditional machine learning-based methods and deep learning-based methods. The models of the 

former methods [14–17] cannot be applied to large-scale raw data without feature extraction, and the 

latter methods can not only overcome this problem, but also get better results. Open set recognition 

methods based on deep learning can be divided into two branches: discriminative model and 

generative model. At present, the proposed discriminative models are almost all for computer vision, 

text classification and other classification tasks, but cannot be directly applied to noisy signal 

recognition. The proposed generative models cannot get ideal effect when applied to OSR of noisy 

signals, because the generative models are reconstructed based on the training samples, when the 

training samples are noisy signals, the noise greatly affects the reconstruction effect. In order to cope 

with the OSR of noisy 1-dimensional jamming signals, an OSR network structure with Conditional 

Gaussian Encoder (CG-Encoder) is proposed, in this paper. CG-Encoder adopts the ResNet network 

structure [18] as a whole. After the convolution layer, it connects two parallel fully connected layers, 

which are used to learn the mean and variance of input to get their corresponding latent vectors. At 

the end, it is a SoftMax classifier. During training, the conditional posterior distributions approximate 

multiple multivariate Gaussian models, to enhance the discrimination of latent features between the 

classes and achieve better classification. Then, we obtain the Gaussian probability density thresholds 

by ensuring 98% training data to be recognized as known and the rest as unknown. When testing, the 

probability density function thresholds are used to judge whether test samples, which include known 

and unknown, are unknown. The results show that CG-Encoder algorithm achieves better effect in 

OSR and CSR recognition.  
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1.2. Related work 

1.2.1. Discriminative model 

Bendale et al. [19] proposed the OpenMax model and replaced the SoftMax activation layer in 

the neural network with the OpenMax layer, which is used to estimate the probability that input 

images come from unknown classes. This is the first solution for an open set deep network. Prakhya 

et al. [20] explored open set text categorization along the OpenMax model. Shu et al. [21] replaced 

SoftMax layer with 1-vs-rest layer, and proposed deep open classifier (DOC) model for text 

classification. Kardan et al. [22] proposed a COOL (Competitive Overcomplete Output Layer) neural 

network, and demonstrated the effectiveness of COOL by applying it to high-dimensional images. 

Dhamija et al. [23] solves the OSR problem by combining SoftMax with novel entropy open set and 

target ball loss. Shu et al. [24] proposed a joint open classification model to determine whether a pair 

of samples belong to the same class, where the sub-model can be used as a distance function of 

clustering to discover hidden classes in rejected samples. But these models cannot be directly applied 

to noisy signal recognition, which are suitable for computer vision, text classification and etc. 

1.2.2. Generative model 

Different from the discriminative model, the generative method uses GAN [25], auto-encoder 

[26] and flow-based model [27] to generate unknown or known samples to help the classifier learn 

the decision boundary between known and unknown samples. Ge et al. [28] proposed the 

G-OpenMax algorithm, which is a direct extension of OpenMax, using conditional generative to 

synthesize unknown classes. This algorithm provides explicit probability estimates of the generative 

unknown classes, enabling the classifier to locate decision margins based on the knowledge of 

known classes and generative unknown classes. Unlike G-OpenMax, Neal et al. [29] introduced a 

new data set enhancement technique called OSRCI, which uses the VAEGAN architecture to 

generate synthetic open set examples that are close to but not part of any known class. Similar to [29], 

Jo et al. [30] used GAN technology to generate pseudo data as unknown class data to further enhance 

the robustness of unknown class classifier. Yoshihashi et al. [31] proposed a 

Classification-Reconstruction Open Set Recognition (CROSR), which uses latent representations to 

reconstruct, enabling unknown class detection robustly without compromising the classification 

accuracy of known classes. Oza and Patel [32] proposed a C2AE model using a class conditional 

auto-encoder with novel training and testing methods, which uses class conditional auto-encoder to 

derive the decision boundary from EVT reconstruction errors. Variational Auto-Encoder (VAE) [33] 

is combined with clustering [34], one class [35] or Gaussian mixed model (GMM) [36] algorithm for 

OSR. The posterior distribution ( )|q z x  in latent space is trained to approximate a prior 

distribution ( )p z , which enables VAE to correctly describe the known data, and the deviated 

samples will be identified as unknown. Xin et al. [26] provided VAE with a kind of conditional 

Gaussian distribution learning, which can detect unknown and classify known samples by forcing 

different latent features to approach different Gaussian models. Zhang et al. [27] proposed a joint 

embedded space consisting of a classifier and a flow-based density estimator. But these generative 

models cannot get ideal effect of OSR of noisy signals. 
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However, the CG-Encoder we propose in this paper not only classifies known jamming types, 

but also detects an unknown jamming accurately. 

1.3. Contributions and structure of the paper 

The contributions of this paper are mainly as follows: 

⚫ To our knowledge, we are the first to study open set recognition of communication 

interference signals. 

⚫ We propose a new classification model called CG-Encoder. Compared with previous 

methods based on convolution neural network, the proposed method not only achieves 

better classification results, but also can be used for unknown detection. 

⚫ We found a novel unknown detection method based on probability density function. The 

proposed algorithm is superior to other detection methods for unknown signals. 

⚫ We conduct experiments on nine common classes of communication jamming, and the 

results show that our method outperform existing methods and achieve new state-of-the-art 

performance. 

The rest of the paper is organized as follows. Section 2 introduces briefly Variational 

Auto-Encoder (VAE) and Deep Residual Structure. Section 3 discusses Open Set Recognition 

Algorithm Based on CG-Encoder in detail. Finally, Section 4 gives the algorithm simulations and 

performance analysis in detail. Finally, Section 5 concludes the paper. 

2. Basic principles 

2.1. Variational auto-encoder (VAE) 

VAE [33] is generally composed of two neural networks: encoder and decoder. The parameters, 

input and output of the encoder are  , sample x and latent representation z, respectively. The 

parameters, input and output of the decoder are θ, z and the probability distribution of samples. The 

loss function of VAE is as follows: 

 ( ) ( ) ( )( ) ( ) ( )|
, , | || log |KL q

L D q p E p
 = − +   θ θz x

θ x z x z x z  (1) 

where is the KL-divergence between the approximate posterior distribution

( )|q z x  and the prior distribution ( )pθ z  and   represents the reconstruction 

error. 

In general, ( )pθ z  is multivariate standard normal Gaussian, so ( )|q z x  is a multivariate 

Gaussian distribution with diagonal covariance matrix: 

 ( ) ( )2| ; ,q N =z x z μ I   (2) 

( ) ( )( )| ||KLD q p θz x z

( ) ( )|
log |

q
E p


  θz x

x z
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where the mean µ and the standard deviation σ are the encoding multilayered perceptrons’ (MLPs) 

outputs. z is defined as: 

 = + •z μ σ ξ   (3) 

where ( )~ ,Nξ 0 I , •  is the element-wise product. The KL-divergence [18] can be calculated: 

 

( ) ( )( )

( )( )2 2 2

1

| ||

1
1 log

2

KL KL

J

j j j

j

L D q p

  
=

= −

= + − −

θ
z x z

  (4) 

where J is the dimensionality of z. By minimizing ( ), ,L θ x , the VAE is trained not only to 

reconstruct the input accurately, but also to force ( )|q z x  in latent space to approximate ( )pθ z . 

2.2. Deep residual structure 

Weight layer

Weight layer

relu

x


relu

y

( )F x

 

Figure 1. Residual basic block. 

ResNet [18] is a deep residual structure, which is constructed from the basic block shown in 

Figure 1, it is defined as: 

 ( )( ),relu F= +y W x x   (5) 

where x and y are the input and output vectors, the function F(W, x) represents the residual map to be 

learned, and relu is one of the nonlinear operations. The structure in Figure 1 has two layers, then 

( ) ( )2 1 *, *reluF =W x W W x , where the bias term is ignored to simplify the representation. 

The dimensions of x and F(W, x) must be equal in Eq. (5), which can be matched by linear 

projection Ws . 
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 ( )( ), srelu F= +y W x W x   (6) 

The form of residual function F is variable, and the trunk of basic block can stack more layers. 

For the sake of simplicity, the above symbol is about the fully connected layer. In fact, the function 

F(W, x) can represent multiple convolution layers, and the elements are added channel by channel on 

two feature maps. 

3. Open set recognition algorithm based on CG-Encoder  

In the communication jamming recognition identification, the input sample is 1-dimensional 

jamming signal 0 noise= +x x , x0 is the jamming signal with a sampling length of l, and noise is 

Gaussian white noise with the same length. If the inputs are reconstructed by the usual VAE model, 

this will be affected by the noise, and the reconstruction loss cannot be used as the condition of 

unknown detection. Therefore, this paper only uses the encoder network to learn the latent feature 

distribution of the classes, and judges whether the test samples are known or unknown by their 

probability density value, so as to realize the unknown detection. 

3.1. Design of the CG-Encoder structure 

As shown in Figure 2, the structural block diagram of the jamming signal OSR method 

(CG-Encoder) consists of three modules. Encoder, Classifier, and Detector. 

Encoder is a 1-dimensional residual network, which consists of 33 1-dimensional convolution 

layers (including 16 basic residual blocks), two 1-dimensional pooling layers and two fully 

connected layers. Its input is x; The outputs are the mean μ  and variance 2
σ  obtained by the two 

parallel fully connected layers respectively. The nonlinear function softplus is used to ensure that all 

components of variance are greater than 0. 

The input and output dimensions of the residual blocks of the solid shortcut in the Figure 2 are 

the same, and Eq. (5) is used to calculate output. And the dimensions are not same in the 

dotted shortcut, and the input and output should map linearly using Eq. (6). 

The convolution layer parameters meanings are convolution kernel size, type of convolution 

layer, number of convolution kernel, and change of the sequence length through that layer. For 

example, the first layer parameters are {7 × 1 conv1d, 64, /2}, which mean that the layer uses 

1-dimensional convolution (conv1d) with convolution kernel size of 7 × 1, the number of 

convolution kernel is 64, and the jamming sequence length after the layer is shortened by half. The 

pooling layers are max pool and adapt pool respectively. The former reduces the signal sequence 

length by half after, and the latter can accept inputs of any length sequence and make the output 

length fixed, here set a fixed value as 1. 

Classifier is a fully connected layer with SoftMax as the activation function. Its input is z 

obtained by Eq. (3) and its output is a known class label. 

Detector is modeled by information hidden in the latent representation z. During testing, the 

detector is viewed as a binary classifier. When output is 1, x is recognized as unknown jamming, and 

when output is 0, x is recognized as class y.  
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Figure 2. CG-Encoder structure. 
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3.2. Closed set training phase 

In the training phase, ( )| ,q k z x  are forced to approximate multiple multivariate Gaussian 

distributions ( ) ( ), ; ,k kp N=θ z z μ I  for the above proposed model, where k is the index of a known 

class. kμ  is output of a fully connected layer and represents the mean vector of the k-th class 

Gaussian distribution. The KL-divergence (Eq. (4)) is modified as follows: 
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
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CG-Encoder has no decoder compared with VAE, so the loss function discards the 

reconstruction error in Eq. (1) and adds the classification loss 
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where num is the batch size, K is the number of known classes, zi is the feature of the i-th sample, yi 

is the class label corresponding to xi, and Wj and bj are the weight and bias of class j.  

The loss function of CG-Encoder is 

 KL cL L L= +   (9) 

where λ is a constant. The parameters of CG-Encoder are optimized by minimizing the loss function 

L, and the training method is consistent with the common closed set training method. During training, 

the latent vector z of correctly classified training set samples is saved for later open set testing to use. 

3.3. Open set testing phase 

3.3.1. Establishment of multivariate gaussian model 

According to the class labels of training samples, the latent vector z is divided into K sets, 

namely {z1}，{z2}，…，{zK}, each set contains only one class latent representation. The mean vector 

and covariance matrix of K kinds of multivariate Gaussian distribution models can be obtained from 
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where mk is the number of samples in {zk}. Furthermore, the probability density function of each 

kind of jamming signal multivariate Gaussian distribution model can be obtained as follows 

 

( ) ( )

( )

( )( ) ( )( )1

1

22

; , , 1,...,

1 1
exp

2
2

k k k k k

T
i i

k k k k kn

k

f N k K



−

= =

 
= − − − 

 

z z μ Σ

z μ Σ z μ

Σ

 (12) 

where n is the dimension of latent space.  

3.3.2. Threshold setting 

Because the signal distribution can provide effective information for unknown detection, 

according to Eq. (12), the probability density values of all latent vectors in K sets {z1},{z2},…,{zK}, 

namely {p1}，{p2}，…，{pK} are calculated and arranged in descent in each set. In a manner similar 

to Reference [26], the threshold k  is set to less than the probability density of the first 98% and 

greater the probability density of the last 2%.  

3.3.3. Open set test algorithm  

The specific steps of the algorithm are as follows: 

a) Calculate the latent space distribution model ( )k kf z  of each known class according to Eqs. 

(10) – (12). 

b) According to section 3.3.2, set the threshold k  of each known class. 

c) Input the test jamming sample xt to the trained encoder for obtaining its latent vector zt. 

d) The probability density values of the latent vector zt in various Gaussian models

( ) ( ); , , 1,...,k t t k kf N k K= =z z μ Σ  calculated by Eq. (12). 

e) If ( )k t kf z , the Detector detects xt as unknown, otherwise, it gets its class y through 

Classifer. 

4. Algorithm simulation and performance analysis 

The Adam optimizer with initial learning rate of 0.001 is used, and the batch size is fixed to 256; 

the dimension n of latent representation z is 32, parameter λ is set to 100. 

4.1. Datasets 

In order to test the performance of the proposed OSR method, simulation experiments are 

carried out on 9 kinds of jamming signals, including single-tone jamming, multi-tone jamming, 

periodic Gaussian pulse jamming, frequency hopping jamming, linear sweeping frequency jamming, 

second sweeping frequency jamming, BPSK modulation jamming, noise frequency modulation 

jamming and QPSK modulation jamming. The range of jamming-to-noise rate (JNR) is -10~18dB, 
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with a value taken every 2dB. The additive noise is Gaussian white noise in the signal band. The 

sampling frequency is 10MHz, the number of sampling points is l, the size of jamming sample is 

expressed as 1 × l, and the parameters of each jamming type are shown in Table 1. 

Figure 3 shows the time domain waveforms of the above 9 jamming signals randomly generated 

when JNR = 10dB and l = 1024.  

Table 1. Parameters setting of jamming. 

Jamming types Corresponding label  Parameters Setting  

single-tone jam1 

The center frequency fc is between [100,400] kHz, 

and the phase  is between [0, 2 ]. 

Multi-tone jam2 
The number N of audio is [2,10], and fc and  are 

the same as jam1. 

periodic 

Gaussian pulse 
jam3 

The pulse period T is 2.5 ~ 10 s , and the duty 

cycle is 1 / 8 ~ 1 / 2 

frequency 

hopping 
jam4 

N = 20, {fc} is between [100,400] kHz, the 

frequency hopping period TH is between [3.2, 6.4] 

s , and the phase is between [0, 2 ]. 

linear sweeping 

frequency 
jam5 

The starting frequency fc1 is [50,100] kHz, and the 

ending frequency fc2 is [300,1000] kHz. 

second sweeping 

frequency 
jam6 

The frequency is quadratic, and other parameters 

are the same as jam5. 

BPSK 

modulation 
jam7 

The information symbol is a 32-bits 0,1 random 

sequence, the symbol period is 3.2 s , and the 

modulation signal is sinusoidal signal. 

noise frequency 

modulation 
jam8 

The frequency modulation coefficient is between 

0.125 and 0.933, and the carrier signal parameters 

are the same as jam1. 

QPSK 

modulation 
jam9 

The information symbol is a 32-bit 0,1 random 

sequence, the symbol period is 3.2 s , I-channel 

modulation signal is sinusoidal signal, Q-channel 

modulation signal is cosine signal. 

 




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jam1 jam2 jam3

jam4 jam5 jam6

jam7 jam8 jam9

 

Figure 3. Time domain waveforms of 9 jamming signals. 

4.2. Performance analysis of CSR and OSR 

The performance of CSR and OSR of CG-Encoder algorithm and the following three algorithms 

with JNR of - 10 ~ 18dB is simulated and analyzed. 

(1) CNN [12]. The network structure of this algorithm is similar to CG-Encoder, the difference 

is that there is no shortcut, and only one fully connected layer is connected after convolution layers 

to get the latent vector z. The threshold of unknown detection is the confidence that makes 98% of 

the correctly classified training samples known. If the confidence of test sample is greater than the 

threshold, it is known. If the confidence of test sample is less than the threshold, it is unknown. The 

model can be regarded as a traditional CNN. 

(2) ResNet [18]. The network structure of this algorithm is similar to CG-Encoder, but only one 

fully connected layer is connected after convolution layers to get the latent vector z. Unknown 

detection algorithm is the same as CNN. This model can be regarded as a common ResNet structure. 

(3) ResNet+G [26]. The network structure of this algorithm is similar to CG-Encoder, the 

difference is that the posterior distribution of all classes approximates a single multivariate Gaussian 

distribution. The open set testing phase is the same as section 3.3.3. This model can be regarded as 

that ResNet learning a multivariate Gaussian model, named ResNet+G.  

4.2.1. CSR performance analysis 

CSR is usually recognition for known classes, without using unknown detector. Set the number 

of sampling points to 1024. The training set classes include jam1 ~ jam8, each class has 2000 

samples under each JNR, a total of 240000. The testing set classes are also jam1 ~ jam8, with 2000 

samples for each category under each JNR. In this paper, the accuracy is used to measure the 

performance of the algorithm. The experimental results of the four algorithms are shown in Figure 4. 
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Figure 4. Closed set recognition accuracy of four algorithms. 

It can be seen from Figure 4 that the closed set recognition accuracy of the four algorithms 

increases with the increase of JNR. When JNR > -10dB, the accuracy is higher than 88%, and the 

accuracy is close to 1 when JNR > 0dB, so the recognition performance of four networks for known 

classes is better. Under the low JNR, CNN performance is slightly inferior to the other three 

networks. Under the high JNR, ResNet+G performance is slightly inferior to the other three networks. 

ResNet performance is better than CNN, which shows that shortcut in residual structure can improve 

recognition performance of known classes. ResNet performance is better than ResNet+G, which 

indicates that the difference between classes will be reduced by the approximation of posterior 

distribution to a single Gaussian model. CG-Encoder performance is equivalent to ResNet, which 

illustrates that the latent distribution of different classes approximates different Gaussian models, 

which can improve the performance of CSR.  

4.2.2. OSR performance analysis 

The training set of OSR is consistent with CSR, and jam9 is added to the testing set as the 

unknown class to verify the unknown detection performance of the four algorithms. The 

experimental results of OSR are shown in Figure 5. 

In the case of OSR, the accuracy of open set recognition increases with the increase of JNR. The 

CG-Encoder algorithm has the best performance, which proves the OSR effectiveness of the 

algorithm for noisy jamming signals. When JNR = -10 ~ 0dB, the accuracy is low, which indicates 

that noise has a great influence on OSR performance. When JNR > 5dB, the change of accuracy is 

small, and the performance of each algorithm is stable.  

When JNR > 0dB, the performance of OSR of network structure is CG-Encoder > ResNet > 

CNN > ResNet+G, and CG-Encoder is about 2%, 4% and 10% higher than the average accuracy of 

other three algorithms respectively. CG-Encoder > ResNet+G shows that the latent distribution of 

different classes approximates different Gaussian models, which not only makes the known classes 

more separable, but also improves the division between known and unknown classes. ResNet > CNN 
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shows that the shortcut method improves the accuracy of known classes, and also indirectly 

benefits the performance of OSR. CNN > ResNet+G indicates that when all the latent 

distributions of all classes belong to one distribution, the unknown class will approach the 

distribution. Even if residual structure is adopted, the performance of ResNet+G will not be 

better than that of ordinary CNN network.  

 

Figure 5. Open set recognition accuracy of four algorithms. 

4.3. Visual analysis of latent space features 

In order to better observe the latent space features of the samples, the dimension of latent 

representation z is set to 2, and four kinds of algorithm network models are retrained to visualize the 

latent space that each network learned on the 2-dimensional plane, as shown in Figure 6.  

Figure 6 (a), (b), (c) and (d) is the 2-dimensional distribution of latent feature space learned by 

CNN, ResNet, ResNet+G and CG-Encoder algorithms respectively. Each point represents a sample, 

in which clusters of known classes are labeled at their corresponding positions, and the unknown 

class jam9 is represented by black cluster. In fact, the blank area is other unknown classes. It can be 

seen from Figure (a) and (b) that CNN and ResNet map the features of unknown class to the 

overlapping place of all known class, which are relatively far away from the center of each known 

class. As can be seen from Figure (c), ResNet+G network makes the unknown class almost coincide 

with jam4 and jam8, which is difficult to distinguish. As can be seen from Figure (d), CG-Encoder 

algorithm completely separates the known classes, whose effect the former three algorithms cannot 

achieve. Although the unknown class are close to jam4, they only overlap a little, and the Detector 

can effectively detect the unknown jamming. 
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Figure 6. Visualization of 2D latent space. 

4.4. Openness of OSR 

Openness is related to the number of training classes trainN  and the number of test class testN . 

The formula is given in Reference [13]. 
2

1 train

train test

N
O

N N


= −

+
. In the experiment of this section, 

trainN = 2 ~ 8, testN = 9. And it means that the unknown class contains 1 ~ 7 different classes. 

According to the formula of openness, the larger trainN , the smaller O, the less unknown 

information.  

Figure 5 shows that the OSR performance of the four algorithms is relatively stable when JNR > 

0dB, so the average accuracy between JNR = 0 ~ 18dB is used to analyze the openness of the four 

algorithms. As shown in Figure 7, the horizontal axis represents the degree of openness. In order to 
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be more intuitive, trainN v testN  is used instead of its corresponding O value. On the whole, the OSR 

performance of the four algorithms increases with the increase of the number of known class, 

indicating that the less unknown information, the better the OSR performance. The CG-Encoder 

algorithm proposed in this paper has the best recognition effect under different openness. When 

2trainN = 、 9testN = , the OSR average accuracy of CG-Encoder algorithm is more than 70%, which is 

about 30% and 20% higher than CNN and ResNet+G, respectively. When the openness is the 

minimum, the OSR average accuracy of CG-Encoder algorithm can reach more than 95%.  
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Figure 7. Openness of OSR. 

It can also be concluded from Figure 7, when 4trainN  , the recognition performance of 

ResNet+G is better than that of CNN and ResNet algorithm, while when 5trainN  , the recognition 

performance of ResNet+G is worse than that of ordinary CNN algorithm, which indicates that the 

more the number of known classes is, the more confusion between classes caused by using posterior 

distribution to approximate a single distribution will be, and the more features of each class need to 

be learned.   

5. Conclusion 

In order to solve the problem that the existing jamming signal recognition algorithms 

mistakenly recognize the unknown class as a known class with a certain probability, a CG-Encoder 

network structure suitable for 1-dimensional signal OSR is constructed based on ResNet and 

multivariate Gaussian model. This paper not only defines a reasonable loss function for the training 

of the network, but also designs a specific OSR process. For nine types of jamming, simulation 

experiments are carried out under JNR= -10 ~ 18dB. The CSR and OSR performance of CNN, 
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ResNet, ResNet+G and CG-Encoder network algorithms are compared. The feature learning ability 

of each algorithm is further compared by visualizing the latent space, and the algorithm openness on 

OSR is analyzed. The results show that CG-Encoder can achieve more than 98% CSR effect when 

JNR is -6dB, its OSR performance is better than the other three networks, and the OSR accuracy can 

reach more than 95% when the openness is the smallest. 

Acknowledgment 

This work was supported by the National Natural Science Foundations of China under grant nos. 

U19B2016, and Zhejiang Provincial Key Lab of Data Storage and Transmission Technology, 

Hangzhou Dianzi University. 

Conflict of Interest 

The authors declare there is no conflict of interest. 

References 

1. F. Q. Yao, Communication anti-jamming engineering and practice, Beijing Publishing House 

Electron. Industry, (2008), 1–8. 

2. Y. Y. Wen, J. Y. Wei, H. Chen, A new algorithm of interferences signals recognition, Space 

Electron. Technol., 1 (2015), 85–88.  

3. J. X. Wang, Q. Chang, Y. Tian, J. Huang, Research on GNSS interference signal detection method, 

Navig. Position. Tim., 4 (2020), 117–122. 

4. G. S. Wang, Q. H. Ren, Z. G. Jang, Y. Liu, B. Z. Xu, Jamming classification and recognition in 

transform domain communication system based on signal feature space, Syst. Eng. Electron., 39 

(2017),1950–1958. 

5. G. C. Huang, G. S. Wang, Q. H. Ren, S. F. Dong, W. T. Gao, S. Wei, Adaptive recognition 

method for unknown interference based on Hilbert signal space, J. Electron. Inform. Technol., 41 

(2017), 1916–1923. 

6. J. Y. Liu, Research on electronic jamming identification method based on time frequency domain 

analysis, University Electron. Sci. Technol. China, 2018. 

7. G. J. Xun, Research on identification of typical communication jamming signals, University 

Electron. Sci. Technol. China, 2018. 

8. Q. Liu, W. Zhang, Deep learning and recognition of radar jamming based on CNN, 2019 12th 

International Symposium on Computational Intelligence and Design (ISCID), IEEE, 1 (2019), 

208–212. 

9. T. F. Chi, Recognition algorithm for the four kinds of interference signals, Huazhong University 

Sci. Technol., 2019. 

10. Z. B. Zhang, Y. X. Fan, X. Meng, Pattern recognition method of communication interference 

based on power spectrum density and neural network, J. Terahertz Sci. Electron. Inform. Technol., 

17 (2019), 959–963.  



6636 

Mathematical Biosciences and Engineering  Volume 18, Issue 5, 6620–6637. 

11. Y. Cai, K. Shi, F. Song, Y. F. Xu, X. M. Wang, H. Y. Luan, Jamming pattern recognition using 

spectrum waterfall. a deep learning method, 2019 IEEE 5th International Conference on 

Computer and Communications (ICCC), IEEE, (2019), 2113–2117.  

12. Z. L. Wu, Y. L. Zhao, Z. D. Yin, H. C. Luo, Jamming signals classification using convolutional 

neural network, 2017 IEEE International Symposium on Signal Processing and Information 

Technology (ISSPIT), IEEE, (2017), 062–067.  

13. W. J. Scheirer, A. R. Rocha, A. Sapkota, T. E. Boult, Towards open set recognition, IEEE 

Transact. Pattern Anal. Mach. Intell., 35 (2013), 1757–1772. 

14. M. D. Scherreik, B. D. Rigling, Open set recognition for automatic target classification with 

rejection, IEEE Transact. Aerosp. Electron. Systems, 52 (2016), 632–642. 

15. P. R. M. Jnior, R. M. D. Souza, R. D. O. Werneck, B. V. Stein, D.V. Pazinato, W. R. Almeida, et al, 

Nearest neighbors distance ratio open-set classifier, Mach. Learn., 106 (2017), 359–386.  

16. E. M. Rudd, L. P. Jain, W. J. Scheirer, T. E. Boult, The extreme value machine, IEEE Transact. 

Pattern Anal. Mach. Intell., 40 (2018) ,762–768. 

17. E. Vignotto, S. Engelke, Extreme value theory for open set classification GPD and GEV 

classifiers, arXiv preprint, arXiv:1808.09902, 2018. 

18. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, Proceedings of the 

IEEE Conference on Computer Vision and Pattern Recognition, (2016), 770–778. 

19. A Bendale, T. E. Boult, Towards open set deep networks, Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, (2016), 1563–1572. 

20. S. Prakhya, V. Venkataram, J. Kalita, Open set text classification using convolutional neural 

networks, International Conference on Natural Language Processing, 2017.  

21. L. Shu, H. Xu, B. Liu, DOC: Deep open classification of text documents, Proceedings of the 

2017 Conference on Empirical Methods in Natural Language Processing, (2017), 2911–2916. 

22. N. Kardan, K. O. Stanley, Mitigating fooling with competitive overcomplete output layer neural 

networks, International Joint Conference on Neural Networks (IJCNN), (2017), 518–525. 

23. A. R. Dhamija, M. Günther, T. Boult, Reducing network agnostophobia, Advances in Neural 

Information Processing Systems, (2018), 9157–9168. 
24. L. Shu, H. Xu, B. Liu, Unseen class discovery in open-world classification, arXiv preprint, 

arXiv:1801.05609, 2018. 

25. I. Goodfellow, J. P. Abadie, M. Mirza, B. Xu, D. W. Farley, S. Ozair, et al., Generative adversarial 

nets, Adv. Neural Inform. Process. Systems, (2014), 2672–2680. 

26. X. Sun, Z. N. Yang, C. Zhang, Xin Sun, K. V. Ling, G. H. Peng, Conditional gaussian distribution 

learning for open set recognition, Proceedings of the IEEE/CVF Conference on Computer Vision 

and Pattern Recognition, (2020),13480–13489. 

27. H. J. Zhang, A. Li, J. Guo, Y. W. Guo, Hybrid models for open set recognition, Proceedings of 

European Conference on Computer Vision, (2020),102–117. 

28. Z. Y. Ge, S. Demyanov, Z. Chen, R. Garnavi, Generative OpenMax for multi-class open set 

classification. British Machine Vision Conference 2017, British Machine Vision Association and 

Society for Pattern Recognition, 2017.  

29. L. Neal, M. Olson, X. Fern, W. K. Wong, F. X. Li, Open set learning with counterfactual images, 

Proceedings of the European Conference on Computer Vision (ECCV), (2018), 613–628. 



6637 

Mathematical Biosciences and Engineering  Volume 18, Issue 5, 6620–6637. 

30. I. Jo, J. Kim, H. Kang, Y. D. Kim, S. Choi, Open set recognition by regularising classifier with 

fake data generated by generative adversarial networks, 2018 IEEE International Conference on 

Acoustics, Speech and Signal Processing (ICASSP), (2018), 2686–2690.  

31. R. Yoshihashi, W. Shao, R. Kawakami, S. D. You, M. Iida, T. Naemura, 

Classification-reconstruction learning for open-set recognition, Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition. (2019), 4016–4025. 

32. P. Oza, V. M. Patel, C2ae: Class conditioned auto-encoder for open-set recognition, Proceedings 

of the IEEE Conference on Computer Vision and Pattern Recognition, (2019), 2307–2316. 

33. D. P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv: Machine Learning, 2013. 

34. C. Aytekin, X. Ni, F. Cricri, E. Aks, Clustering and unsupervised anomaly detection with l2 

normalized deep auto-encoder representations, 2018 International Joint Conference on Neural 

Networks (IJCNN), Rio de Janeiro, Brazil, (2018), 1–6. 

35. L. Ruff, R. Vandermeulen, N. Goernitz, P. Liznerski, M. Kloft, K. R. Müller, Deep one-class 

classification, International Conference on Machine Learning, PMLR, (2018), 4393–4402. 

36. B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, et al, Deep autoencoding 

Gaussian mixture model for unsupervised anomaly detection, International Conference on 

Learning Representations, 2018. 

©2021 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0). 

https://links.jianshu.com/go?to=https%3A%2F%2Farxiv.org%2Fabs%2F1312.6114

