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Abstract: Lung adenocarcinoma (LUAD) is a frequently diagnosed malignant tumor that is highly 

invasive and lethal. The prognosis of patients with LUAD still needs to be improved, as conventional 

treatment is remarkably well tolerated. In this study, the expression profile of LUAD in the TCGA 

database was used for differential expression analysis, and differential expression genes were 

determined to construct a weighted gene co-expression network analysis (WGCNA) for dividing and 

finding the gene modules with the highest correlation with tumor stage. Here, METTL5, DDX23, 

GPSM2, CEP95, WDCP, and METL17 were identified as hub genes. According to the relation 

degree, METTL5 was determined as the candidate gene in this study. Difference analysis and 

receiver operating characteristic (ROC) curve were applied to identify the predictive performance of 

METTL5 in LUAD, and Kaplan-Meier (KM) analysis showed that the prognosis of LUAD patients 

with high METTL5 expression was poor. Further GSEA analysis showed that high-expressed 

METTL5 was related to epithelial-mesenchymal transition and other pathways. Therefore, METTL5 

may be involved in the occurrence and malignant progression of LUAD. The current findings 

provide an effective molecular target for early diagnosis of LUAD, helping monitor the malignant 

progression of LUAD and improve the prognosis of LUAD patients. 
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1. Introduction 

Cancer remains the second most common cause of death in the world, and the incidence of 

cancer will continue to increase rapidly in the future. Cancer is expected to be a major drag on global 

life expectancy in the 21st century, and lung cancer is one of the leading causes of cancer morbidity 

and mortality worldwide, as deaths from lung cancer account for nearly one-fifth of all cancer deaths 

each year [1,2]. Lung cancer is mainly divided into adenocarcinoma, squamous cell carcinoma, small 

cell carcinoma and large cell carcinoma [3], and lung adenocarcinoma (LUAD) is the most common 

histological subtype, accounting for about 40% of lung cancer cases [4]. LUAD is highly aggressive 

and fatal. The overall survival period of LUAD patients is shorter than 5 years, and patients are prone 

to develop high tolerance when receiving conventional radiotherapy and chemotherapy [5]. 

Discovering specific tumor driver genes and pathways in LUAD and promoting personalized 

targeted therapy related to tumor progression may facilitate the clinical diagnosis and treatment of 

LUAD and accurate prediction of clinical treatment outcome [4,5]. 

Weighted gene co-expression network analysis (WGCNA) is a scientific technique for 

constructing co-expression networks based on mRNA expression profiles [6]. WGCNA connects 

corresponding genes that are significantly co-expressed in tissue samples using nodes and soft 

threshold assignment. Gene pairs sharing corresponding weights and their adjacency functions 

ensure that their connections conform to scale-free network analysis. WGCNA helps identify pivotal 

genes in the cancer process, and is widely applied to screen tumor markers for diagnosis and 

treatment of cancers [6,7]. 

The Cancer Genome Atlas (TCGA) is a large-scale public project established by the National 

Institutes of Health. Through genome sequencing and comprehensive multi-dimensional analysis of 

more than 11,000 human tumor samples from 33 different cancers, TCGA explores and classifies the 

major oncogenes in the human tumor population, thus improving the existing clinical diagnosis and 

treatment methods, and ultimately preventing or treating cancers [8,9]. In this study, a weighted gene 

co-expression network was constructed based on the expression profile of LUAD from TCGA and 

clinical data, aiming at determining pivotal genes in the occurrence and development of LUAD. This 

study provides potential biological markers for the diagnosis and treatment of LUAD. 

2. Materials and methods 

2.1.  Data filtering and preprocessing 

LUAD-related mRNA expression profiles and clinical data were downloaded from the TCGA 

database (https://www.cureline.com/the-cancer-genome-atlas.html), including 513 tumor samples 

and 59 normal samples. From GEO database (https://www.ncbi.nlm.nih.gov/), we searched and 

screened mRNA expression data (GSE138682) in LUAD and adult normal lung tissues and 

sorted them. 

2.2. Difference analysis 

The edgeR package was used to perform differential analysis on the expression profiles of 

mRNAs collected from TCGA. The screening conditions were |log2FC|> 1, P <0.05, and the R 

package ggplot2 was used to draw the volcano map. 

https://www.ncbi.nlm.nih.gov/
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2.3. Weighted gene co-expression network analysis (WGCNA) 

The R package WGCNA was used to construct the weighted co-expression network, and β was 

to 5 to ensurea scale-free network, which was then transformed into a topological overlap matrix 

(TOM) by after establishing adjacency matrix.  The hierarchical clustering tree was visualized 

according to the TOM. The minimum number of genes in the module was 30, the cutting height was 

0.25, and the threshold ≥ 0.2 was the screening condition for output. 

2.4. Function and pathway enrichment analysis 

To determine the biological functions of trait-related modules, the R package ClusterProfiler was 

applied to perform functional annotation and pathway enrichment analysis on the obtained module 

genes from the Gene Ontology (GO) database and Kyoto Encyclopedia of Genes and Genomes 

(KEGG). The data were visualized by the R package ggplot2. 

2.5. Screening of hub genes 

According to the intra-module connectivity, the target modules were filtered by WGCNA, 

visualized by Cytoscape software (version 3.7.1), and classified based on degree. 

2.6. Identification of hub genes 

The expressions of hub genes in LUAD tumor samples and normal samples from TCGA were 

compared by the edgeR analysis and further verified by GSE138682 data set. The LUAD specimens 

in TCGA were divided into high- and low-expression groups according to the median gene 

expression level of the hub genes. Kaplan-Meier (KM) analysis was performed to verify 484 patients 

with GDCRNAtools package, and log-rank test was used. Receiver operating characteristic (ROC) 

curve was plotted to evaluate the accuracy of hub genes as biomarkers, and Area Under Curve (AUC) 

reflected the predictive performance of the genes. The chi-square test was used to analyze the 

correlation of clinical traits among different subgroups. P<0.05 was considered as statistically 

significant. 

2.7. Single gene set enrichment analysis (GSEA) 

To further clarify the biological role of the hub genes in LUAD, the GSEA function in the R 

package enrichplot was applied to analyze the target genes identified from TCGA. The log2FC in the 

mRNA expression profile was pre-sorted and the gene list was generated according to ENTREZID. 

The MSigDB database was employed to match the H gene set in the gene list to calculate the 

enrichment score (ES), according to the filter condition of FDR<25%, |NES|>1.5, P<0.05. 

3. Results 

3.1. Identification of DEGs 

The R package edge was used to screen differentially expressed mRNAs (DEmRNAs) from the 

TCGA expression profile. A total of 9550 DEmRNAs (including 3072 up-regulated genes and 6,478 

down-regulated genes) were identified, as shown in Figure 1. 
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Figure 1. Identification of differentially expressed mRNAs (DEmRNAs) in the LUAD 

expression profile in TCGA. A) Heat map drawing based on mRNA expression profile in 

LUAD; B) Volcano map of DEmRNAs. 

 

Figure 2. Construction of a co-expression network. A) Dendrograms and trait heat maps 

of 484 samples, clustered based on expression data in tumor samples and normal samples 

in LUAD, color intensity and clinical traits (late tumor staging, M staging, T staging, N 

staging, age, male, longer survival time) are directly proportional; B) scale-free fitting 

index for each β; C) average connectivity. 
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3.2. Construction of weighted co-expression network and identification of key modules 

After preprocessing and quality evaluation of the TCGA data, an expression matrix of 484 

samples was obtained (Figure 2A), and a co-expression network is constructed, with β = 5, R [2] = 

0.98 to ensure the scale-free nature of the network (Figure 2B-C). The dynamic shear tree method 

was employed to divide and retain 32 modules. We found that the correlation between the blue 

module and the tumor stage was significantly closer than that of other modules. Thus, the blue 

module was confirmed as the key module (Figure 3). 

 

Figure 3. Screening of key modules. A) Dendrogram of the expression levels of all genes 

based on the difference metrics (1-TOM) clustering; B) Heat map of the correlation 

between the module characteristic genes and samples, each cell contains the correlation 

coefficient and P value; C) Total Interaction of expressed genes; D) Correlation diagram 

between modules. 

3.3. Enrichment analysis 

The correlation between gene members and gene significance in the blue module was verified 

(Figure 4A). GO enrichment analysis showed that the genes in the blue module were related to DNA 

replication, cell cycle checkpoints, and cell cycle G2/M phase transitions, moreover, biological 
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functions (BP) related to RNA catalytic activity, single-stranded DNA binding, helicase activity and 

other molecular functions (MF) and chromosomal regions and certain related cell components (CC) 

were found to be significantly enriched (Figure 4B). KEGG analysis results also demonstrated that 

the genes in the blue module were enriched in the cell cycle, DNA replication, p53 signaling pathway 

and some other related pathways (Figure 4C), indicating that the genes in the blue module may be 

involved in the development of LUAD. 

 

Figure 4. Enrichment analysis of the blue module. A) Scatter plot between members of 

the blue module and gene significance; B) GO enrichment analysis of genes in the blue 

module; C) KEGG enrichment analysis of genes in the blue module. 

3.4. Identification of hub genes 

The blue module contained a total of 2110 genes. Threshold > 0.2 was the filter condition to 

indicate the correlation edge in the blue module. After importing the data into Cytoscape, we 

obtained 218 edges and 173 nodes. According to the degree ranking, the degree of the six genes, 

namely, METTL5, DDX23, GPSM2, CEP95, WDCP, and METL17, was the largest (Figure 5), and 

therefore they were considered as the hub genes. Among them, as the degree of METTL5 was the 

highest, it served as the key gene of this study for subsequent analysis. 
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Figure 5. Mining of hub genes. A) Using Cytoscape to graphically depict the blue 

module, showing the gene pair with the highest intra-mold topological overlap, and each 

link corresponds to the TOM between the connected nodes; B) The degree value of each 

hub gene. 

3.5. The expression and role of METTL5 in LUAD 

A comparative analysis of the expression levels of METTL5 in LUAD tumor samples and 

normal samples from TCGA and GSE138682 showed that the relative expression of METTL5 in 

tumor samples was higher than that in normal samples (Figure 6A). KM analysis was performed to 

plot overall survival of LUAD patients with high and low METTL5 expression. We found that the 

overall survival of LUAD patients with high METTL5 expression was generally shorter (Figure 6B), 

suggesting that high expression of METTL5 may resulted in a poor prognosis of LUAD patients. The 

ROC curve (Figure 6C) demonstrated that the expression level of METTL5 had a high predictive 

performance in identifying tumor tissues and normal tissues (AUC = 0.854 (0.854-0.900), P<0.001; 

AUC = 0.880 (0.640-1.000), P= 0.047). However, there was no significant difference in tumor stage, 

M stage, T stage, N stage, age, or gender of LUAD patients between the two groups, which required 

further study (Figure 6D). GSEA was used to analyze the potential function of METTL5 in LUAD. It 

was found that the genes in the LUAD genome with high METTL5 expression were significantly 

enriched in the genes of "HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION", 

"HALLMARK_INFLAMMATORY_RESPONSE", and "HALLMARK_KRAS_SIGNALING_UPLU", 

indicating that METTL5 may be related to tumor metastasis and inflammation, reaction and carcinogenic 

signals and some other related biological processes. 
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Figure 6. The expression and role of METTL5 in LUAD. A) Comparison of the 

expression levels of METTL5 in tumor samples and normal samples on TCGA and 

GSE138682 chip; B) Survival curves of LUAD patients with high and low METTL5 

expression in TCGA; C) According to the expression levels of tumor samples and normal 

samples from TCGA and GSE138682 chips and the receiver operating characteristic 

(ROC) curve; D) Heat map of the correlation between high and low expression of 

METTL5 and the traits of LUAD patients; E) GSEA analysis result of METTL5. 

4. Discussion 

In this study, through differential analysis of the mRNA expression profile of LUAD in TCGA, a 

total of 9550 DEmRNAs were identified, of which 3072 DEmRNAs were up-regulated and 6,478 

DEmRNAs were down-regulated. To further explore the role of these DEmRNAs in LUAD, we 

constructed a weighted gene co-expression network using WGCNA to identify the gene modules the 

most relevant to clinical traits, and divided 9550 obtained DEmRNAs into 32 modules. After the 

correlation heat map between the characteristic genes of the module and the sample was established, 

we observed that the blue module had the highest correlation with tumor staging. The tumor staging 

is a key indicator for clinically determining different treatment plans for LUAD patients [10,11]. The 

gene modules of LUAD provide help for finding the corresponding targets in LUAD treatment. 

The results of GO and KEGG enrichment analysis demonstrated that the genes in the blue 

module were significantly enriched in BP related to DNA replication, cell cycle checkpoints, cell 

cycle G2/M phase transitions, cell cycle, DNA replication, and p53 signaling pathway, and other 

pathways. When human cell genes are stimulated by internal and external factors such as radiation 

and reactive oxygen species, DNA damage and replication defects will occur. Various checkpoints of 

normal cells will mediate DNA damage responses, activate DNA repair systems or induce cell 
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apoptosis, and prevent cells from proliferation. Subsequently, loss of cell cycle checkpoints or defects 

in the recognizing DNA damage in cancer cells will result in unlimited cell proliferation [12,13], but 

targeting genes that affect DNA replication pressure could ensure the overall integrity of the genome and 

cell cycle [12–14]. This also suggests that the genes in the blue module may be involved in the 

occurrence and development of LUAD. 

The genes in the blue module were imported into Cytoscape, and the hub genes were screened 

according to the degree. Here, METTL5 with the highest degree was determined as the candidate hub 

gene in this study. By comparing the expression levels of METTL5 in LUAD tumor samples and 

normal samples collected from TCGA and GSE138682, we found that METTL5 was significantly 

high expressed in LUAD tumor tissues and showed a great predictive performance. In addition, 

LUAD patients with high expression of METTL5 tended to have a lower overall survival rate, 

suggesting that METTL5 may be a biomarker for diagnosis and prognosis of patients with LUAD. 

This is consistent with the findings of Sun [15] et al. METTL5 expression in LUAD tumor tissue and 

normal tissue differed, but patients with low expression always had a better prognosis. However, this 

study did not find correlation between clinical characteristics and the high and low expressions of 

METTL5. This may be explained by the grouping and statistical methods applied in this study. Our 

future study will collect more clinical samples for systematic comparative analysis. 

Our GSEA results indicated that the high expression of METTL5 was related to 

epithelial-mesenchymal transition, inflammatory response and KRAS signal in LUAD. The above 

biological processes are the driving factors for the malignant transformation of LUAD. EMT induces 

the occurrence, metastasis, invasion and drug resistance of cancer [16,17]. Studies have pointed out 

that EMT and inflammatory response in tumor microenvironment and immune examination 

molecules are related to the increase of TDA, and blocking EMT can be used as a biomarker for 

LUAD immunotherapy [18]. On the other hand, KRAS mutation is the most common gene mutation 

in LUAD, and it is also an important cause of the death to LUAD patients. Signal activation of 

KRAS, which is often correlated with a strong inflammatory response in tracheal epithelium, may 

target and inhibit genes related to KRAS signaling. This may help improve the clinical outcome of 

KRAS-driven LUAD patients [19,20], and points to the possibility that METTL5 may be a molecular 

target with great potential in the clinical treatment of LUAD. 

A comprehensive knowledge of genomic methylation pattern is of great significance to healthy 

cells and organs. Methylation defects can lead to immune deficiency, cancer and other diseases [21]. 

m6A, which is a common RNA modification in mammals, can affect RNA processing, translation, 

decay and other aspects. m6A methylation facilitates cancer diagnosis and treatment through various 

mechanisms. m6ARNA methylation is similar to DNA. Moreover, histone methylation is also a form 

of abnormal supervision and is involved in mRNA processing, nucleation, translation, decay, 

mammalian development, stress response, tumorigenesis and other biological processes [22,23]. 

Evidence indicated that m6A methylation leads to certain changes in tumor specificity, accelerates 

tumor occurrence and promotes tumor progression, moreover, downregulation of m6A can promote 

the disease progression of a variety of malignant tumors [22,24]. 

m6A is widely present in mRNA, rRNA, and ncRNA. Studies demonstrated that METTL5 

protein can catalyze m6A at position A1832 in 18s rRNA. Loss of METTL5 expression could impair 

rRNA production, reduce the number of ribosomes, and decrease global translation efficiency, 

thereby affecting the differentiation of embryonic stem cells and pluripotency [25]. METTL5, which 

is an active member of the methyltransferase family, is mainly located at the nucleolus and is a main 
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methyltransferase in human 18srRNA methylation. It has been found that the expression of METTL5 

and its cofactor TRMT112 is significantly up-regulated in cancer, which maintain 18s rRNA 

methylation and regulate the translation efficiency of stress response-related factors (such as ATF4) 

to overcome tumor pressure [26,27]. However, the role of METTL5 in lung adenocarcinoma is less 

understood and requires further investigation. Due to the limitations of experimental conditions, this 

study failed to carry out molecular function experiments and construct experimental animal models. 

Thus, the specific molecular mechanism of METTL5 in LUAD will become the main direction of 

our later research. We also plan to carry out multi-center randomized controlled trials to examine the 

role of METTL5 as a diagnostic and prognostic biomarker. 

A total of 9550 DEmRNAs in the mRNA expression profile of LUAD in TCGA was divided into 

32 gene co-expression modules by WGCNA, and METTL5 as a hub gene in the blue module, which 

was related to tumor staging, was identified. This study found for the first time that METTL5 was 

high-expressed in LUAD. Moreover, a high expression of METTL5 was found to be related to the 

poor prognosis of LUAD patients. The current findings provide a new understanding of the 

molecular mechanism of LUAD. 
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