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Abstract: The image denoising model based on anisotropic diffusion equation often appears the
staircase effect while image denoising, and the traditional super-resolution reconstruction algorithm
can not effectively suppress the noise in the image in the case of blur and serious noise. To tackle
this problem, a novel model is proposed in this paper. Based on the original diffusion equation, we
propose a new method for calculating the adaptive fidelity term and its coefficients, which is based on
the relationship between the image gradient and the diffusion function. It is realized that the diffusion
speed can be slowed down by adaptively changing the coefficient of the fidelity term, and it is proved
mathematically that the proposed fractional adaptive fidelity term will not change the existence and
uniqueness of the solution of the original model. At the same time, washout filter is introduced as
the control item of the model, and a new model of image super-resolution reconstruction and image
denoising is constructed. In the proposed model, the order of fractional differential will be determined
adaptively by the local variance of the image. And we give the numerical calculation method of the
new model in the frequency domain by the method of Fourier transform. The experimental results
show that the proposed algorithm can better prevent the staircase effect and achieve better visual effect.
And by introducing washout filter to act as the control of the model, the stability of the system can be
improved and the system can converge to a stable state quickly.
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1. Introduction

Image resolution is an important indicator of the ability to present the details of an image, which
describes the number of pixels contained in the image. However, in many cases, due to the limitations
of some hardware devices in the imaging system, people are often unable to obtain high-resolution im-
ages. Image super-resolution reconstruction refers to the technology of using a single or sequence of
low-resolution images to reconstruct a high-resolution image [1]. Image super-resolution reconstruc-
tion is a typical ill-posed inverse problem [2] from a mathematical point of view, and its ill-conditioned
features determine that image reconstruction is not a simple problem. Therefore, it is necessary to
transform the morbid problem into a non-morbid problem in image reconstruction.

In recent years, the image processing technology based on variational method [3–5] and partial
differential equation [6, 7] has made great progress and development, and achieved good results in
removing noise and preserving boundary information. For image denoising, a image denoising and
decomposition model based on total variational regularization was proposed by Rudin, Osher and
Fatemi [8] (also known as ROF model). This algorithm is effective in preserving edge information.
However, there is an obvious “staircase effect” [9]after image reconstruction due to the model al-
lows the function to have discontinuous information such as jump and discontinuity in the BV space
(bounded variation function space). Perona and Malik [10] proposed a classical image denoising model
based on nonlinear diffusion equation (also known as PM model), which is a milestone in the use of
nonlinear partial differential equations to process and study images. Different denoising strategies are
adopted in the homogeneous region and edge, not only the effect of noise removal is better, but also
because it includes backward diffusion, it can also enhance the image boundary. However, the model
is easy to oscillate in the diffusion process, resulting in a “staircase effect”, and the details of the re-
constructed image will be lost. In order to reduce the “staircase effect” in image processing, many
improved methods have been proposed.

In order to solve the problem that the total variational regularization model is easy to produce “stair-
case effect”, Zemin Ren [11] proposed a fractional total variational regularized image super-resolution
reconstruction model, which effectively suppresses the “staircase effect” and produces clear edges by
introducing fractional derivatives. An image denoising model based on fractional-order anisotropic
diffusion equation proposed by Jian Bai [12], this model can not only eliminate noise, but also pre-
serve edge information, and effectively reduce the “staircase effect”. Yao [13] proposed a fractional
nonlinear diffusion model, which not only removes the multiplicative noise of the texture image, but
also preserves the structural details of the texture image, but it will produce some isolated white spots
when removing the noise, and it will also cause the “staircase effect” of the image because of the exces-
sive smoothing when removing the noise. Yin [14,15] proposed a model of image denoising and image
super-resolution reconstruction based on fractional nonlinear diffusion driven by differential curvature,
which effectively avoids speckle effect and gradient effect, but the convergence speed of the system is
too slow. Abirami [16] effectively applied the difference format of CN-GL and proposed a denoising
model based on the spatial fractional diffusion equation, but the denoising effect is not outstanding
when the image is high in noise. Making use of the advantages of ROF model and fractional total
variational model, Fariba [17] proposed a total variational denoising model based on the mixture of
integer order and fractional order. Based on the characteristics of local entropy and gradient of image,
Yu [18] proposed an image denoising algorithm based on adaptive fractional calculus, which can ef-
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fectively retain the edge and texture information of the image, but the “staircase effect” of the image is
still obvious in the case of high noise.

Although good results have been achieved in denoising and reducing the “staircase effect” through
different improved methods, the current image denoising and image reconstruction models based on
nonlinear partial differential equations still have some shortcomings that cannot be ignored. First, the
ill-conditioned problems caused by nonlinear partial differential equations cannot be solved efficiently,
that is, non-local information, such as texture information, cannot be effectively processed. Second,
it is impossible to efficiently avoid the “staircase effect” and fuzzy edge information generated in the
image reconstruction process. In fact, when using anisotropic partial differential equations to smoothly
eliminate noise for many times, the image will inevitably transition to a block image, causing a staircase
effect of the image. Even though the algorithm based on partial differential equations at the present
stage has achieved good results in suppressing the staircase effect, it will also cause the image edge and
detail information to be incompletely retained. It is in the two problems of suppressing the staircase
effect and effectively retaining the edge information. An effective neutralization method cannot be
obtained. Third, the image reconstruction algorithm related to partial differential equations at this
stage cannot effectively suppress the noise in the image in the case of high noise. At the same time, in
the case of severe noise, the convergence speed of the system is too slow.

In this study, for images with complex structure and texture information, the research focus shifted
to how to find a balanced algorithm that can effectively suppress the image staircase effect while retain-
ing the edge information of the image. And to solve the problem that the traditional super-resolution
reconstruction algorithm can not effectively suppress the noise in the image under the condition of
blur and serious noise, and accelerate the convergence speed of the system, we try to propose a new
fractional order adaptive fidelity image super-resolution reconstruction and denoising model based on
fractional nonlinear diffusion equation. First, a gradient adaptive operator is proposed to balance the
smooth image of the diffusion equation and the gradient fidelity term and the ability to retain edge in-
formation. Secondly, the washout filter is introduced into the model as the control term of the system to
improve the stability of the system. In addition, the original fractional diffusion model is improved, and
the order of the fractional order is adaptively changed based on the local variance of the image, which
effectively reduces or cuts down the “staircase effect” in the image reconstruction process. Finally,
numerical calculation and experimental comparative analysis of the algorithm proposed in this paper
are carried out. Simulation results show that the algorithm proposed model can not only better reduce
the “staircase effect” in the process of image super-resolution reconstruction and image denoising, but
also has a good anti-noise performance, and can effectively retain the edge information of the image.
The peak signal to noise ratio of the image reconstruction result and the visual effect of the image
have be improved. Moreover, the introduction of washout filter can improve the stability of the system
and accelerate the rapid convergence of the system to a stable state. This paper made the following
contributions:
• The gradient fidelity term is combined with the anisotropic diffusion system, and a new adaptive

fidelity term and its coefficient calculation method is proposed. The coefficient of the fidelity term can
be adaptively changed according to the gradient of the image. The use of gradient adaptive operators
can balance the diffusion equation and the retention of the smooth image and edge information of the
gradient fidelity term, and effectively suppress the image staircase effect.
• By introducing the washout filter into the model as a control item of the system, the stability of
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the system is improved, and the rapid convergence of the system to a stable state is accelerated, which
effectively solves the problem of the slow convergence speed of the anisotropic diffusion system.
• Based on the original fractional anisotropic diffusion model, a new adaptive fractional differ-

ential operator is constructed. In this paper, we are committed to seeking the mapping relationship
between the order of the fractional order differential operator and the local variance of the image, so
that the order of the fractional order will change adaptively with the magnitude of the local variance of
the image, avoiding large oscillations at the edges of the image, which can better preserve the texture
information of the image.

Moreover, other similar image super-resolution reconstruction algorithms based on regularization
or diffusion [19–21] always have some shortcomings. Using some regularization techniques based on
adaptive diffusion and L2 norm, in the flat area, the important image features can be well preserved,
but in the edge area, the staircase effect cannot be better suppressed. In the research of this article,
in addition to the realization that the image characteristics of the flat area and the edge area are well
preserved in the image reconstruction process, and in the case of high image noise, the algorithm can
still effectively reduce the noise. At the same time, the proposed algorithm has fast convergence and
stability.

The research content of this paper is arranged as follows. We will briefly introduce the fractional-
order anisotropic diffusion equation and the washout filter in section 2. In section 3 , the new model of
coupled fractional-order anisotropic diffusion equation and the proposed adaptive fractional gradient
fidelity term are analyzed and how to introduce the washout filter to act as the control is presented. In
section 4, the numerical calculation method of the new model is given, and the simulation experiments
and experimental results are analyzed. The conclusion of this paper will be given in section 5.

2. Related work

In this section, we will briefly introduce the theory of fractional calculus, fractional-order
anisotropic diffusion equation and washout filter.

2.1. Related theory of fractional calculus

In recent years, the application of fractional calculus in nonlinear fields (chaos, image, pattern dy-
namics and complex systems) has become increasingly prominent, and many achievements have been
made in engineering applications. However, it is a pity that there is not a unified definition of fractional
calculus, and its mathematical and physical meaning is not clear. At present, the definition of fractional
calculus is mainly divided into four definitions in spatial domain: Caputo definition, Riemann-Liouville
(R-L) definition, Grunwald-Letnikov (G-L) definition, the Marchaud definition [22] and two defini-
tions in frequency domain: the definition of Fourier transform domain and the definition of Laplace
transform domain. Here we mainly introduce the definition in the Fourier transform domain [11, 23].

In terms of image processing, Fourier transform is to transform the image from the spatial domain
to the frequency domain. As an extension of integer order calculus, fractional calculus and fractional
calculus have something in common in Fourier transform. For a given arbitrary real function f (x, y) ∈
L2(R), the definition of Fourier transform of integer order in frequency domain is as Eq (2.1).

f̂ (w1,w2) =

∫ +∞

−∞

e− j(w1 x,w2y) f (x, y)dxdy. (2.1)
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According to the differential property of Fourier transform, the definition of fractional calculus in
Fourier transform domain can be extended from integer order to fractional order. For any function
f (x, y) ∈ L2(R), the definition of the fractional partial derivative in the Fourier transform domain can
be obtained as Eqs (2.2) and (2.3).

Dv
x f (x, y) = F−1

(
( jw1)v f̂ (w1,w2)

)
, (2.2)

Dv
y f (x, y) = F−1

(
( jw2)v f̂ (w1,w2)

)
, (2.3)

where F−1 is a two-dimensional continuous Fourier transform operator, which means the inverse
Fourier transform.

2.2. Fractional-order anisotropic diffusion equation

The anisotropic diffusion equation was first applied to image denoising. The purpose of image
denoising is to recover the information of the original image u as much as possible from the known
observed image f and some noise statistical information (such as mean and variance), which is a
typical inverse problem. Therefore, the problem of image denoising is ill-posed, and the regularization
method is generally used to solve the problem. The more classical regularization method is the method
of partial differential equation. In 1990, Perona and Malik [10] proposed the anisotropic diffusion
equation (2.4).

∂u
∂t

= div(C(|∇u|)∇u), (2.4)

where div is the divergence symbol, C(s) is the diffusion function and ∇u represents the gradient
of the image. And C(s) satisfies the following basic properties: C(s) is a monotonously decreasing
function and C(0) = 1, lim

x→+∞
C(s) = 0. According to the fluid diffusion system, in the uniform region,

the corresponding |∇u| is smaller, C(s) → 1, the diffusion is similar to the thermal equation, which
can well remove noise; in the edge region, the corresponding |∇u| is larger, C(s) → 0, the diffusion
basically stops, which can well protect the boundary information. However, this algorithm will produce
a “staircase effect” in the diffusion process, resulting in some false boundaries in the grayscale gradient
region, which will affect the visual effect of the image. Perona and Malik give the two diffusion
coefficients in their model.

C(∇u) = exp
− (
|∇u|
K

)2 , (2.5)

C(∇u) =
1(

1 +
(
|∇u|
K

)2
) , (2.6)

where K is a given parameter that controls the degree of diffusion. Through the improvement of the
diffusion coefficient C(s), many new models have emerged. Zhai [24] proposed two gradient adaptive
diffusion coefficients. It is pointed out that fractional order instead of integer order diffusion coefficient
can be more effectively used for edge detection and noise elimination. Zhang [25] introduced a new
method for calculating the diffusion function, and the coefficient of the function is constructed by the
hyperbolic tangent function. V. B. S. Prasath [26] proposed a fuzzy diffusion coefficient, which takes
into account the variability of local pixels in order to better remove edge noise and selectively smooth
the image.
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Considering that the fractional derivative is not the local information of the image, the texture in-
formation can be well processed, and the introduction of fractional order can avoid large oscillations
at the edge. Bai Jian [12] combined with the concept of fractional order, proposed an image denoising
model based on fractional-order anisotropic diffusion, improved the mechanism of anisotropic diffu-
sion, achieved a good image visual effect, and effectively reduced the gradient effect. The proposed
model is as Eq (2.7).

∂u
∂t

= div(C(|∇αu|)∇αu), (2.7)

where t denotes time, C(s) is a decreasing continuous function. Eq (2.7) can be obtained by minimizing
equation (2.8). We consider defining the energy function in continuous image space.

E(u) =

∫
Ω

f (|Dαu|) dΩ. (2.8)

In Eq (2.8), Ω is the image region, f (·) ≥ 0 is an increasing function related to the diffusion coeffi-
cient, and the relationship between the function f (·) and C(·) is as Eq (2.9).

C(s) =
f ′(
√

s)
√

s
, (2.9)

where Dα denotes the fractional derivative operator defined by Dαu = (Dαxu,Dαyu), and |Dαu| =√
D2
αx + D2

αy. By using the variational method of Functionals, the Euler-Lagrange equation of the
energy function is obtained, and the gradient descending flow equation can be obtained as Eq (2.10).

∂u
∂t

= −D∗αx

(
c
(
|Dαu|2

)
Dαxu

)
− D∗αy

(
c
(
|Dαu|2

)
Dαyu

)
. (2.10)

The observed image is taken as the initial condition, and then the finite difference method is used to
solve Eq (2.10). When the iterative step t → +∞, the final solution of the equation is obtained, but the
time evolution can be stopped earlier to achieve the best effect between noise removal and boundary
preservation.

2.3. Washout filter

Washout filter [27] is a kind of high-pass filter which is widely used in engineering. It has the
advantage of not changing the equilibrium point of the original system. It has been used in many
industrial fields. Its transfer function is as Eq (2.11).

D(s) =
y(s)
x(s)

=
s

(s + p)
= 1 −

p
(s + p)

, (2.11)

where p is the time constant. When p>0, the washout filter works in steady state, and when p<0, it
works in unstable state. The equation of state is expressed as .{

ω̇ = x − dω
v = x − dω

, (2.12)
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where, ω is the state variable of washout filter, x is the input variable and υ is the output variable. When
the system is stable, ω̇ = 0, υ = 0, which means that the input signal x is washed out, so it is called
washout filter.

In recent years, the washout filter chaos control technology has been applied in the control of chaotic
systems and nonlinear systems due to its advantages of simple implementation, low control cost, cer-
tain robustness and suitability for engineering applications. Du [28] applied this filter to the bifurcation
control of chaotic systems, and delayed the bifurcation of balanced chaotic systems by adjusting the
parameters of the controller. Zhou [29] introduced washout filter control in the fractional-order chaotic
synchronization system. Consider the following fractional-order response system 2.13 and drive sys-
tem 2.14.

dαy(t)
dtα

= −y(t) + a[ f (y(t)) − b f (y(t − τ(t)))], (2.13)

dαx(t)
dtα

= −x(t) + a[ f (y(t)) − b f (y(t − τ))] − k(x(t) − y(t)), (2.14)

and the coupled system with washout filter controlling is constructed as Eq (2.15).
dαy(t)

dtα = −y(t) + a[ f (y(t)) − b f (y(t − τ(t)))],
dαx(t)

dtα = −x(t) + a[ f (y(t)) − b f (y(t − τ))] − k(x(t) − y(t)) + β dw
dt ,

dw(t)
dt = −ϕw + (x(t) − y(t)).

(2.15)

The research results show that the range of coupling parameter k in fractional order chaotic synchro-
nization system can be reduced by washout filter control, and the system trajectory can be converged
quickly. Therefore, it is of a great significance to study the specific application of washout filter in var-
ious chaotic systems. Generally speaking, considering the advantages that washout filter can improve
the anti-jamming ability of the system and accelerate the convergence speed of the system, the washout
filter control technology is introduced into the anisotropic diffusion system as the control item of the
system in order to improve the stability of the system.

3. The proposed model

In this section, we will introduce our new model and its analysis. In order to solve the problem
that the fractional anisotropic diffusion equation is easy to produce staircase effect and sometimes lose
some fine texture in image denoising at present, and the traditional super-resolution reconstruction
algorithm can not effectively suppress the noise in the image in the case of blur and serious noise, we
propose a new fractional fidelity term model based on gradient adaptive. It is realized that the diffusion
speed is slowed down by adaptively changing the fidelity coefficient, effectively removing noise and
realizing image reconstruction, while alleviating the staircase effect. At the same time, in order to solve
the problem of slow convergence of the anisotropic diffusion equation, the washout filter is introduced
as the control term of the system, which makes the system converge to the stable state quickly and
enhance the stability of the system. The following new model of image super-resolution reconstruction
and image denoising are proposed.{

∂u
∂t = div (c |∇αu| ∇αu) + λ · (∇αu −Gσ ⊗ ∇

αu0) + β∂w
∂t ,

∂w
∂t = −γw + (u − u0) ,

(3.1)
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where, div (c |∇αu| ∇αu) is the fractional diffusion term, (∇αu −Gσ ⊗ ∇
αu0) is the adaptive gradient

fidelity term, and λ is the coefficient of the fidelity term. c is the fractional anisotropic diffusion
coefficient, w is the state variable of washout filter, and β∂w

∂t is the washout filter, which can be used
as the control term of the model. β is the weight control constant, which is used to balance the ratio
between the gradient fidelity term and the control term, so as to maximize the effect of the fidelity term
and the control term. Usually γ is constant and γ = mn, where m, n is a positive integer and satisfies
(m, n) = 1.

In the process of image super-resolution reconstruction, in order to obtain the true value of the HR
image and test the effectiveness of the algorithm proposed in this paper, firstly, we will downsample the
original HR image to obtain the corresponding LR image, and then use the proposed algorithm The HR
image is recovered from the LR image. At the same time, in order to verify the anti-noise ability of the
proposed algorithm, we will also add Gaussian noise to the down-sampled LR image, and perform the
detection of the anti-noise ability of the proposed algorithm while performing image super-resolution
reconstruction.

3.1. Analysis of the new model

Considering that the gradient estimation of noisy image is an ill-posed inverse problem, we first use
Gaussian function to regularize the preprocessed image, and then calculate the gradient of the image.
At the same time, considering that the fractional derivative can better deal with the texture details of
the image, combined with the fractional-order anisotropic diffusion system, the exponential adaptive
fractional gradient fidelity term model is proposed and the energy functional is as Eq (3.2).

E(u) =

∫
Ω

f (|Dαu|) + λ · (‖∇αu − ∇α (Gσ ⊗ u0)‖)2 dxdy, (3.2)

where Ω is the definition domain of the image, σ is the variance of the Gaussian function, ⊗ represents
the convolution operation, Dα =

(
Dαx,Dαy

)
=

(
∇αx ,∇

α
y

)
= ∇α, |Dαu| =

√
D2
αx + D2

αy, and Dα and
∇α are fractional differential operators. The expression f (|Dαu|) in the Eq (3.2) is the fractional-order
anisotropic diffusion equation, and λ·(‖∇αu − ∇α (Gσ ⊗ u0)‖)2 is the adaptive fractional gradient fidelity
term. The fidelity term λ · (‖∇αu − ∇α (Gσ ⊗ u0)‖)2 makes the gradient of the reconstructed image
closer to that of the original image. In addition, the introduction of fractional derivative can better
deal with the texture information, which can make the reconstructed and denoised image piecewise
smooth and effectively prevent the staircase effect. λ is the fractional gradient fidelity term coefficient,
Xie [30] proposed the coefficient of fidelity term which can be adjusted adaptively according to the
characteristics of the image, in which the expression of the coefficient of fidelity term is as Eq (3.3).

λ =
1

1 + (|∇ (Gσ ⊗ u0)| /K)2 . (3.3)

It can be known from the Eq (3.3) that in the smooth region of the image, the gradient is smaller and
the coefficient of the gradient fidelity term is larger, so the role of the fidelity term will be enhanced,
making the denoising image gradient closer to the original image gradient. In the edge region of the
image, the gradient is larger and the coefficient of the value of gradient fidelity term is smaller, which
can better remove the noise. This method has a good effect on denoising and fidelity at the image
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boundary, but in some areas with non-edge or small gradient, the effect of gradient fidelity term will be
over-enhanced, and the image will lead to mosaic and incomplete denoising due to excessive fidelity.

In order to solve the problems of over-enhancement and incomplete denoising caused by the gradi-
ent fidelity term coefficient in the region with small gradient in (3.3), we propose an adaptive adjusted
coefficient as (3.4) for fractional gradient fidelity term.

λ =
1

1 + (|∇α (Gσ ⊗ u0)| /T )ϕ(‖∇αu‖) . (3.4)

The gradient fidelity coefficient λ is a function with respect to ϕ (‖∇αu‖), and the expression of
ϕ (‖∇αu‖) is as Eq (3.5).

ϕ (‖∇αu‖) = 2 +
2

1 + T · ‖∇αu‖2
, (3.5)

where T is a given parameter, tunable 0.4 in this article. The coefficient λ can adaptively adjust by the
image gradient ∇αu. In the (3.4) and (3.5), we introduce the concept of image gradient of fractional
order, which can be adaptively adjusted according to the local variance of the image to avoid large
oscillations at large gradients such as image edges. ϕ (‖∇αu‖) can be adjusted adaptively according to
the gradient information of the image. In the region with large gradient, ϕ (‖∇αu‖) is close to 2, and
in the region with smale gradient, the value of ϕ (‖∇αu‖) function is relatively large. In this way, the
gradient fidelity term converges in the region with small gradient, which appropriately enhances the
diffusion degree of the system; in the region with large gradient, the gradient fidelity term keeps the
original value as far as possible, and alleviates the diffusion degree in the edge region of the image. It
is realized that the diffusion speed is slowed down and the “staircase effect” is alleviated by adaptively
changing the size of the index term.

According to Eq (3.2), taking into account the complexity of partial differential equations or irreg-
ular boundary conditions, it is difficult to obtain an analytical solution to solve the equation, and it has
to be converted to an approximate solution that meets the requirements of the degree of approximation.
In this paper, the variational method is used as an approximate method to solve the energy function.
The so-called variational method is the extreme value problem of the functional.

The process of solving the energy functional is the process of finding its minimum value. It is
easy to prove that Eq (3.2) has a minimum value, so that the minimum value is u. Generally, the
variational method can be used to solve the energy functional and obtain the corresponding Euler-
Lagrange equation. For any test function η ∈ C+∞(Ω), we can define the Eq (3.6).

Φ(ε) = E(u + εη) =

∫
Ω

f (|Dα(u + εη)|) dxdy + λ · (∇α(u + εη) − ∇α (Gσ ⊗ u0))2 , (3.6)
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let ε = 0, and satisfy f ′(
√

s) = c(s) ·
√

s, then

Φ′(0) =
dE(u+εη)

dε

∣∣∣
ε=0

= lim
ε→0

1
ε
(E(u + εη) − E(u))

∣∣∣∣∣
ε=0

= lim
ε→0

1
ε

[∫
Ω

f (|Dαu + εDαη|) dxdy + λ · (∇αu + ε∇αη − ∇α (Gσ ⊗ u0))2
−

(∫
Ω

f (|Dαu|) dxdy + λ·

(∇αu − ∇α (Gσ ⊗ u0))2
)]
|ε=0

=
∫

Ω

(
f ′ (|Dαu|) Dαxu

|Dαu|Dαxη + f ′ (|Dαu|) Dαyu
|Dαu|Dαyη + λ · (∇αu −Gσ ⊗ ∇

αu0) η
)

dxdy
=

∫
Ω

(
c
(
|Dαu|2

)
DαxuDαxη + c

(
|Dαu|2

)
DαyuDαyη + λ · (∇αu −Gσ ⊗ ∇

αu0) η
)

dxdy
=

∫
Ω

(
D∗αx

(
c
(
|Dαu|2

)
Dαxu

)
+ D∗αy

(
c
(
|Dαu|2

)
Dαyu

)
+ λ · (∇αu −Gσ ⊗ ∇

αu0)
)
ηdxdy,

(3.7)
where D∗αx and D∗αy denote the conjugate operators of Dαx and Dαy respectively. Let Φ′(0) = 0, the
Euler-Lagrange equation (3.8) can be obtained.

D∗αx

(
c
(
|Dαu|2

)
Dαxu

)
+ D∗αy

(
c
(
|Dαu|2

)
Dαyu

)
+ λ · (∇αu −Gσ ⊗ ∇

αu0) = 0, (3.8)

then the above Euler-Lagrange equation is solved by the gradient descending flow method, and the
nonlinear differential equation can be obtained as Eq (3.9).

∂u
∂t

= −D∗αx

(
c
(
|Dαu|2

)
Dαxu

)
− D∗αy

(
c
(
|Dαu|2

)
Dαyu

)
− λ · (∇αu −Gσ ⊗ ∇

αu0) . (3.9)

The above shows that the range of coupling parameter k in the fractional-order chaotic synchronous
system can be reduced by the washout filter control, and the trajectory of the system converges rapidly.
Considering the advantages that the washout filter can improve the anti-disturbance ability of the sys-
tem and accelerate the convergence speed of the system, this paper introduces the washout filter control
technique into the anisotropic diffusion system and uses it as the control term of the system to achieve
the purpose of improving the stability of the system.

Next, coupling the washout filter in the above equation nonlinear equation, and the Eq (3.10) can
be obtained. ∂u

∂t = −D∗αx

(
c
(
|Dαu|2

)
Dαxu

)
− D∗αy

(
c
(
|Dαu|2

)
Dαyu

)
− λ · (∇αu −Gσ ⊗ ∇

αu0) + β∂w
∂t ,

∂w
∂t = −γw + (u − u0) .

(3.10)

At the same time, we consider that the fractional derivative can enhance the low frequency informa-
tion of the image, and has a better suppression effect on the high frequency information of the image
than the integer order, which avoids the large oscillation at the edge of the image, and can better retain
the texture information of the image. and it also has a good denoising ability. Based on aforementioned
analysis, we introduce the concept of fractional derivative into the proposed exponential adaptive gra-
dient fidelity term, and construct an adaptive fractional differential operator, and the order of fractional
order will change adaptively with the size of the local variance of the image. The expression of its
adaptive fractional order α is as Eq (3.11).

α = K1 + exp

K2 ×
σx,y −min

(
σx,y

)
max

(
σx,y

)
−min

(
σx,y

) , (3.11)
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where σx,y is the variance of the image u(x, y), min
(
σx,y

)
represents the minimum variance of the

image, max
(
σx,y

)
represents the maximum variance of the image, k1 and k2 are constants with values

of 0.5 and 0.693 respectively, and k2 denotes the maximum value of |∇I(x, y)|, so that the local variance
can be controlled between [0.5, 0.5+exp(k2)], making the effect of the local variance on the diffusion
coefficient comparable to the effect of the gradient on the diffusion function. . We set N to be a matrix
with (x, y) as the center and a size of n1 × n2, then the mathematical formula of σx,y is as Eq (3.12).

σx,y =
1

n1 × n2

∑
x,y∈N

(
u2(x, y) − µ2(x, y)

)
, (3.12)

where, µ(x, y) is expressed as the mean value of the image u(x, y), and its calculation formula is as
follows.

µx,y =
1

n1 × n2

∑
x,y∈N

u(x, y). (3.13)

As shown in the Eq (3.13), the order α can be adjusted adaptively according to the size of the local
variance of the image. In the high-frequency parts such as complex texture or edges, the local variance
of the image is larger, and the order of the fractional order is larger. The details and edge information
of the image are highlighted by strengthening the high-frequency components of the image. In the flat
area of the image, the local variance of the image is smaller, and the order of the fractional order is
smaller, which effectively suppresses the noise in the flat region and enhances the sharpening effect.

3.2. Theoretical analysis of gradient fidelity terms

In view of the fractional gradient fidelity term introduced in our proposed model, it can be proved
theoretically that the constraint term λ · (‖∇αu − ∇α (Gσ ⊗ u0)‖)2 will not change the existence and
uniqueness of the global optimal solution of the original model. In the process of proof, the fidelity
term coefficient λ can be regarded as a constant.

Lemma 1: if the functional is convex, the function has a unique global optimal solution.
Lemma 2: for ∀a, b>0, when a + b = 1,there exists functions u1 and u2 such that the functional E

satisfies E(a × u1 + b × u2) ≤ a × E(u1) + b × E(u2), then the functional E is a convex function.
Proposition 1: the fractional gradient fidelity term does not change the existence and uniqueness of

the global optimal solution of the original model.
Proof: for fractional gradient fidelity terms, the Eq (3.14) holds.

(‖∇α (a × u1 + b × u2) − ∇α (Gσ ⊗ u0)‖)2 = (‖a × ∇αu1 − a × ∇α (Gσ ⊗ u0) + b × ∇αu2 − b × ∇α (Gσ ⊗ u0)‖)2

= (‖a × ∇αu1 − a × ∇α (Gσ ⊗ u0) + b × ∇αu2 − b × ∇α (Gσ ⊗ u0)‖)2

= a2 × (‖∇αu1 − ∇
α (Gσ ⊗ u0)‖)2 + b2 × (‖∇αu2 − ∇

α (Gσ ⊗ u0)‖)2

+2ab × (∇αu1 − ∇
α (Gσ ⊗ u0)) × (∇αu2 − ∇

α (Gσ ⊗ u0))
≤ a × (‖∇αu1 − ∇

α (Gσ ⊗ u0)‖)2 + b × (‖∇αu2 − ∇
α (Gσ ⊗ u0)‖)2 ,

(3.14)
that is

(‖∇α (a × u1 + b × u2) − ∇α (Gσ ⊗ u0)‖)2
≤ a×(‖∇αu1 − ∇

α (Gσ ⊗ u0)‖)2+b×(‖∇αu2 − ∇
α (Gσ ⊗ u0)‖)2 ,

(3.15)
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from Eq (3.15), it can be concluded that the fractional gradient fidelity term (‖∇αu − ∇α (Gσ ⊗ u0)‖) is
a convex function, so there is a unique global optimal solution for the gradient fidelity term according
to Lemma 1. And the gradient fidelity term introduced in our proposed model will not change the
existence and uniqueness of the global optimal solution of the original model. However, in the aspect
of equation theory of classical PM model, the existence and uniqueness of the solution of the enhanced
model have not been proved, and in the aspect of numerical realization, the corresponding variational
form of PM equation is to solve the minimum value of the functional

∫
Ω

ln
(
1 + (|∇u|/K)2

)
, which is

a non-convex function with linear growth, so the well-posedness of the solution can not be obtained.
Therefore, it is difficult to prove the well-posedness, existence and uniqueness of the global solution of
the hybrid model which combines the PM model and the gradient fidelity term.

In fact, the ill-posed of the equation leads to instability in the discrete problem, and there are two
main ways to solve the appeal problem. The first improved method is to use Gaussian convolution
to obtain the regularized equation ∂u

∂t = div (c (|∇Gσ| ∗ u)∇u). The existence and uniqueness of the
solution of this equation have been proved. Another method is to use higher-order PM equations. A
new class of super-resolution and denoising models based on fractional-order anisotropic diffusion is
proposed in reference [31, 32]. These models can be regarded as generalizations of second-order and
fourth-order anisotropic equations. Therefore, these two methods and their promotion methods will
also be the focus of our next study, this paper will not do too much application and explanation.

At the same time, we can prove that the fractional gradient fidelity term introduced in our proposed
model is a bounded function in a bounded variation space (BV space) and the function is integrable.

Proposition 2: in the bounded variation space (BV), the fractional gradient fidelity term∫
Ω

(‖∇αu − ∇α (Gσ ⊗ u0)‖) is a bounded function.
Proof: for the fractional gradient fidelity term ‖∇αu − ∇α (Gσ ⊗ u0)‖, the Eq (3.16) holds.

‖∇αu − ∇α (Gσ ⊗ u0)‖ ≤ ‖∇αu‖ + ‖∇α (Gσ ⊗ u0)‖ , (3.16)

by integrating both sides of the Eq (3.16), the Eq (3.17) can be obtained.∫
Ω

‖(∇αu − ∇α (Gσ ⊗ u0))‖ dxdy ≤
∫

Ω

(‖∇αu‖ + ‖∇α (Gσ ⊗ u0)‖) dxdy

≤

∫
Ω

‖∇αu‖ dxdy +

∫
Ω

‖∇α (Gσ ⊗ u0)‖ dxdy,
(3.17)

in bounded variation space, there is
∫

Ω
‖∇αu‖ dxdy<+∞,

∫
Ω
‖∇α (Gσ ⊗ u0)‖ dxdy<∞according to

the property of bounded variation space (BV space). Therefore, according to the properties
of bounded function, it can be concluded that the fractional gradient fidelity term function∫

Ω
(‖∇αu − ∇α (Gσ ⊗ u0)‖) dxdy is also bounded function. The bounded function must be integrable,

so it is integrable in BV space, and the introduced fractional step fidelity term will not change the
denoising and edge preserving ability of the original model.

4. Numerical experiments

In this section, we will construct the numerical calculation scheme for the proposed image process-
ing model, and illustrate numerical simulation experiments and analysis of experimental results.
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4.1. Numerical calculations

We adopt the finite difference method to calculate the numerical value of Eq (3.10). In the case of
a two-dimensional image, ui, j is defined to represent the pixel value of the image at (ih, jh), and h is
the spatial step size, usually h = 1. ∆t is the time step, this article sets its value to 0.01. Let un

i, j and
wn

i, j be the approximate values of u(n∆t, ih, jh) and w(n∆t, ih, jh) respectively. The size of the image is
Ih × Jh, then the partial derivatives of space variables ∂u/∂x and ∂u/∂y can be approximated by the
central difference and expressed as Eq (4.1).

Dxui, j =
ui+1, j − ui−1, j

2h
,Dyui, j =

ui, j+1 − ui, j−1

2h
. (4.1)

The partial derivatives of the time variable ∂u/∂t and ∂w/∂t can be obtained by forward difference.

un+1
i, j − un

i, j

∆t
,

wn+1
i, j − wn

i. j

∆t
. (4.2)

Then the difference calculation format of the new model 3.10 can be obtained as 4.3.

un+1
i, j = un

i, j + ∆t ·
(
−D∗αx

(
c
(∣∣∣Dαun

i, j

∣∣∣2) Dαxun
i, j

)
− D∗αy

(
c
(∣∣∣Dαun

i, j

∣∣∣2) Dαyun
i, j

)
− λ

·
(
∇αun

i, j −Gσ ⊗ ∇
αu0(i, j)

)
− −γ · βwn

i, j + β ·
(
un

i, j − u0(i, j)

))
,

wn+1
i, j = wn

i, j + ∆t ·
(
−γwn

i, j +
(
un

i, j − u0(i, j)

))
,

w0
i, j = w0(ih, jh) = 0, 0 ≤ i ≤ I, 0 ≤ j ≤ J,

u0
i, j = u0(i, j) = u0(ih, jh), 0 ≤ i ≤ I, 0 ≤ j ≤ J.

(4.3)

According to the above calculation format, u0
i, j and w0

i, j are used to calculate u1
i, j and w1

i, j, and then
continue this iteration to obtain a series of evolutionary processes until the iteration is terminated at
the best result (PSNR maximum). In Eq (4.3), Dαxu and Dαyu u are expressed as fractional partial
derivatives of central difference, and D∗αx and D∗αy are conjugate operators of respectively. In this paper,
the discrete form of fractional differential in Fourier domain is adopted, and the calculation formulas
are as Eqs (4.4) and (4.5).

Dαxu = F−1 ((
1 − exp (− j2πω1/m)

)α
× exp ( jπαω1/m) û (ω1, ω2)

)
, (4.4)

Dαyu = F−1 ((
1 − exp (− j2πω2/m)

)α
× exp ( jπαω2/m) û (ω1, ω2)

)
. (4.5)

The conjugates corresponding to Eqs (4.4) and (4.5) are defined as Eqs (4.6) and (4.7).

D∗αxu = F−1 (
conj

(
1 − exp (− j2πω1/m)

)α
× exp (− jπαω1/m) û (ω1, ω2)

)
, (4.6)

D∗αyu = F−1 (
conj

(
1 − exp (− j2πω2/m)

)α
× exp (− jπαω2/m) û (ω1, ω2)

)
. (4.7)

Based on the appeal analysis, it can be concluded that the flow of the proposed super-resolution
reconstruction algorithm is shown in algorithm 1.
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Table 1. Steps of image super resolution reconstruction algorithm.

Algorithm 1: image super-resolution reconstruction based on fractional-order anisotropic
diffusion equation

Input: Initial the low-resolution image u(x, y), set ∆t = 0.01, β = 0.1, γ = 2/5,T = 0.4, and
initialization the number of iterations k = 1.

Output: Image u(x, y) after super- resolution reconstruction.
do

1. Calculate the value of λ and α according to formulas 3.4 and 3.11;
2. In the frequency domain, calculate Dαxu, Dαyu and their conjugate operators D∗αx, D∗αy;
3. Calculate c

(
|Dαu|2

)
Dαxu and c

(
|Dαu|2

)
Dαyu;

4. Calculate (∇αu −Gσ ⊗ ∇
αu0);

5. Use the difference method to iteratively calculate u(i, j)n+1 and w(i, j)n+1;
6. Iterate according to formula (37) to get u(n + 1)(x, y), set k = k + 1, and go to step 1.

When the PSNR reaches the maximum, the iteration is terminated and the reconstructed
image is output.

End for

4.2. Simulation experiment and analysis

In order to verify the image super-resolution reconstruction effect and anti-noise performance of our
proposed model. In the experiment, we would like to compare it to some methods which include image
super-resolution by adaptive sparse domain selection [33](ASDS), adjusted anchored neighborhood
regression for fast super-resolution [34] (A+), anchored neighborhood regression for fast example-
based super-resolution [35] (ANR), image super-resolution using deep convolutional networks [36]
(SRCNN), multimodal image super-resolution via joint sparse representations induced by coupled dic-
tionaries [37] (CDLSR), super-resolution via image-adapted denoising CNNs: incorporating external
and internal learning [38] (IDBP), robust single-image super-resolution via CNNs and TV-TV min-
imization [39] (CNNS-TV). The experimental procedures are implemented with MATLAB R2018b.
The experimental environment is: the operating system is Windows 10, the processor is i5, and the
memory size is 8GB.

In the experiment, we select 13 kind of images, such as “lena”, “butterfly”, “head”, “parrot”, and
“bird”, to be test images. Before the experiment, the degraded low-resolution image is obtained
after the original image is sampled at equal intervals at 2:1 and 3:1 as input, and then the image
super-resolution reconstruction was carried out using different methods to restore the estimated high-
resolution image, and finally compare the original image with the estimated high-resolution image
obtained.We take peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) as the main eval-
uation indexes for image super-resolution reconstruction and image noise immunity quality. Among
them, PSNR is used to evaluate the image quality, and a larger value of PSNR indicates a better qual-
ity of the reconstructed image; SSIM focuses on evaluating the integrity of the structural and detail
information of the image, and a larger value of SSIM indicates a smaller difference between the recon-
structed image and the original image. Assuming that the size of the image is m × n, the original input
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image is u0(x, y), and the reconstructed output image is u(x, y), the calculation formulas of PSNR and
SSIM are as Eqs (4.8) and (4.9).

PS NR = 10 log10

 2552

1
m×n

∑m
i=1

∑n
j=1 (u(i, j) − u0(i, j))2

 , (4.8)

S S IM =

(
2µxµy + C1

) (
2σxy + C2

)(
µ2

x + µ2
y + C1

) (
σ2

x + σ2
y + C2

) , (4.9)

where µx ,µy ,σx ,σy and σxy are the local mean values, standard deviations and cross-covariance along
the x and y directions of the image, respectively. Generally, the images with better quality have higher
PSNR and SSIM values.

4.2.1. Image super-resolution reconstruction

First of all, the super-resolution reconstruction experiments are carried out to enlarge the image
by two times and three times. After double and triple sampling, the degraded low-resolution image
is obtained as input, and then the image is reconstructed by different methods, and the results are
compared. In the experiment, the parameters are set to β = 0.1, γ = 2/5, T = 0.4, and the iteration
step size ∆t = 0.01. In the target data set of the image, we choose the image “butterfly” and the image
“bird” to carry out the comparison experiment of the image magnification by two and three times
of various algorithms respectively. The “butterfly” image and “bird” image have complex structures,
contain a lot of structural information, and rich texture information, which can be used as test images
for image comparison. The comparison experiment results of magnifying the image twice and three
times without super-resolution reconstruction algorithm are as Figures 1 and 2.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 1. Comparison of two times magnification of “butterfly” by different super-resolution
reconstruction algorithms.

As shown in Figures 1 and 2, where Figure 1(a) is the original test image, and Figures 1(b)–(j) are
respectively the images after image reconstruction using 8 different methods. At the same time, we
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 2. Comparison of three times magnification of “bird” by different super-resolution
reconstruction algorithms.

will enlarge the wing edge of the reconstructed image “butterfly” and the lower beak of the bird in the
reconstructed image “bird” locally. From Figure 1(b) and Figure 2(d), we can see that the sawtooth
effect in the image reconstructed by ASDS method is more obvious, and the ANR algorithm will
produce obvious ringing phenomenon. In Figure 1(g) and Figure 2(h), although there is no obvious
ringing phenomenon in IDBP algorithm and CNNS-TV algorithm, it can be seen from the enlarged
image of local details that both methods have aliasing effect and artifacts appear near the edge of
the wing. For Figure 1(c) and Figure 2(c), we can see that the reconstruction method based on A+

algorithm makes the reconstructed image partially blurred. It can be seen from Figure 1(e) and Figure
2(e) that the reconstruction effect of SRCNN algorithm is improved, but the whole reconstructed image
is too smooth and some details are lost. Through observation, the reconstruction effect of the algorithm
based on CDLSR is similar to that of the proposed algorithm, the sawtooth effect and ringing effect
are less in the algorithm results, and the reconstructed image has no obvious staircase effect, so it can
restore better edge information. It can be seen from the overall enlarged image and the partial detailed
enlarged image that the reconstruction error of the contour of the wing edge in the “butterfly” image
and the edge of the mouth in the “bird” image of the proposed algorithm is smaller than that of the
CDLSR algorithm, and is closer the original image, and the details of the image are reconstructed more
clearly and more realistically. To sum up, the proposed reconstruction algorithm has a better effect in
the preservation of image structure texture information and the restoration of edge information. And
the reconstructed image will not appear obvious sawtooth effect and ringing phenomenon, which the
staircase effect is suppressed effectively, and the overall performance of reconstruction is better than
that of other methods.

Because some algorithms have little difference in image details, it is not easy to observe the recon-
struction effect of each algorithm from a subjective point of view, and there is a certain subjectivity.
Therefore, we give the comparison of the objective evaluation indicators of PSNR value and SSIM
value of each algorithm for multiple image reconstruction, and the results are shown in the Tables 2
and 3.
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Tables 2 and 3 show the image magnification performance of different reconstruction methods when
the target image data set is magnified twice and magnified three times, respectively. Among them, the
bold value in the table is expressed as the optimal value of the relevant evaluation index under the same
conditions. From the data presented in the table, under different magnification, the objective evaluation
index of our algorithm has achieved most of the lead, and the proposed algorithm has the highest
average objective evaluation value, and has strong competitiveness compared with other algorithms.
furthermore, it shows the effectiveness of the proposed algorithm.

Table 2. PSNR and SSIM comparison tables with different methods when the image is
magnified two times.

Image scale ASDS A+ ANR SRCNN CDLSR IDBP CNN-TV Proposed

head 2
31.9346 27.113 32.7851 32.9304 32.6604 32.2793 33.5648 33.6828
0.7717 0.7577 0.8937 0.7911 0.8339 0.8089 0.8574 0.8485

lena 2
32.2633 29.7891 29.4512 33.5293 33.4888 33.2637 32.8329 34.2758
0.8755 0.8328 0.8916 0.8971 0.8897 0.8714 0.8975 0.922

butterfly 2
24.6351 20.4622 21.5973 26.5581 28.3173 26.3546 25.2069 28.4377
0.8569 0.832 0.7838 0.9047 0.9159 0.9145 0.9062 0.9314

parrot 2
28.7006 24.1868 26.78 30.3229 27.0114 26.5371 26.916 27.1162
0.7169 0.8181 0.8937 0.7946 0.9023 0.8538 0.9053 0.8989

peppers 2
29.9529 28.4326 29.3644 31.3301 31.6791 31.1792 32.2811 32.4094
0.851 0.817 0.8118 0.8631 0.8814 0.8723 0.8855 0.8975

house 2
29.4981 28.339 28.1411 30.815 31.3117 30.9813 32.1406 32.8916
0.8334 0.8029 0.8971 0.8503 0.8253 0.8134 0.8908 0.8967

zelda 2
34.2807 33.004 31.9358 36.3586 36.8819 36.1316 36.5695 37.4884
0.891 0.8621 0.9345 0.9138 0.9033 0.8786 0.9271 0.9353

baby 2
32.2132 30.0733 31.0585 33.2786 33.5137 33.1763 34.0296 35.9132
0.8754 0.8199 0.8978 0.8922 0.9045 0.9653 0.9428 0.9489

bird 2
32.1194 30.1842 28.5741 34.9014 35.1102 35.0074 33.8278 35.5999
0.8903 0.8762 0.873 0.9403 0.9542 0.9621 0.9577 0.9713

leaves 2
23.1918 20.1014 20.5918 26.1397 25.4902 25.7303 25.9054 26.4126
0.8477 0.8326 0.7323 0.8877 0.9242 0.9246 0.9258 0.9280

average 2
29.8789 27.1685 28.0279 31.6164 31.5464 31.0641 31.3274 32.4227
0.8409 0.8251 0.8609 0.8734 0.8934 0.8864 0.9096 0.9178

In order to more intuitively reflect the superiority of image reconstruction of the new algorithm
proposed in this article, we draw a line chart between the PSNR value and SSIM value obtained by
each comparison algorithm and the proposed algorithm and the test image. As shown in Figures 3
and 4, the abscissa represents different test images, and the ordinate represents the PSNR and SSIM
values of each image. Each curve represents a different algorithm, and the red curve represents the
algorithm in this article. Through the line graph, it can be more intuitively shown that the proposed
new algorithm has a better image reconstruction effect.

In order to facilitate further observation and analysis, we obtain the average of the PSNR and SSIM
values of each algorithm for all test images. At the same time, the average PSNR value of each
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Table 3. PSNR and SSIM comparison tables with different methods when the image is
magnified three times.

Image scale ASDS A+ ANR SRCNN CDLSR IDBP CNN-TV Proposed

baby 3
29.9441 31.6113 28.2948 31.1893 31.2657 30.6918 31.0779 32.5712
0.8185 0.8422 0.8475 0.844 0.8331 0.7769 0.8546 0.9002

lena 3
28.3499 30.2718 27.0828 29.5133 30.5137 30.1028 29.6944 30.9372
0.7801 0.812 0.8432 0.8044 0.7963 0.7718 0.7983 0.8695

bird 3
27.8103 27.6814 26.0868 29.0654 29.1657 28.6141 28.8615 29.4197
0.8249 0.7898 0.7998 0.8609 0.9101 0.9018 0.8597 0.9031

peppers 3
28.3244 28.5333 26.8071 29.1079 29.3326 28.9743 28.1825 29.6572

0.791 0.8015 0.8634 0.811 00.8390 0.8251 0.8183 0.8558

barbara 3
23.6897 23.931 25.5702 23.6953 23.9279 23.8644 24.472 25.6508
0.6241 0.679 0.7836 0.6641 0.6851 0.6791 0.7079 0.7708

airplane 3
25.8394 27.4096 25.5297 26.301 27.2269 27.1006 29.1824 27.8384
0.7828 0.8206 0.8416 0.8118 0.8729 0.8715 0.8858 0.8934

fruit 3
26.4485 27.9646 27.0995 27.7942 27.8994 27.8417 29.6221 29.6955
0.7648 0.776 0.8087 0.8194 0.7483 0.8417 0.8302 0.8444

zelda 3
32.2843 33.4101 30.3471 33.0567 33.6501 33.6058 34.1399 34.6516
0.8139 0.8534 0.8979 0.8389 0.8803 0.8795 0.8953 0.902

average 3
27.8363 28.8516 27.1022 28.7153 29.1227 28.8494 29.404 30.0527

0.775 0.7968 0.8357 0.8068 0.8206 0.8184 0.8312 0.8674

Figure 3. PSNR line chart of different algorithms for different images.
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Figure 4. SSIM line chart of different algorithms for different images.

Figure 5. Comprehensive performance comparison of the proposed algorithm and other
comparison algorithms.
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algorithm is used as the X axis, and the average SSIM value is used as the Y axis, and then the
algorithm of this paper is used in turn Compared with the other 7 algorithms, a scatter plot is drawn
according to the corresponding coordinates. As shown in Figure 5, the farther the scattered points
are from the origin of the coordinates, the better the overall performance of the algorithm. From the
comparison in Figure 5, it can be seen that the comprehensive performance of the A+ algorithm, the
ANR algorithm and the ASDS algorithm is poor, and the comprehensive performance of the algorithm
in this paper is better than other algorithms.

4.2.2. Image anti-noise detection

In order to verify the robustness of the anti-noise ability of the proposed algorithm, in this section,
we will illustrate the anti-noise simulation experimental results on “lena” and “peppers” images. First,
a Gaussian white noise with a mean of 0 and a variance of 15 is added to the low-resolution image,
and then the noisy low-resolution image is magnified two and three times. As shown in the Figures
6 and 7, where Figure 6,7(a) is the original image, Figure 6,7(b) is the image after adding noise with
a variance of 15, and the rest are represented as the results of denoising and magnification by other
reconstruction algorithms. From the reconstruction results, we can see that there is a lot of noise in
the reconstruction results of other algorithms, except for the denoising effect of CNNS-TV algorithm,
ANR algorithm and this algorithm. In all the experimental results, although there is some noise in the
output of the proposed algorithm, the denoising effect is obviously better than that of other algorithms,
so in the case of adding noise and image magnification, the denoising ability of the proposed algorithm
is the best, and has a good anti-noise ability.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. Comparison of two-times magnification of “lena” images with added noise by
different super-resolution reconstruction algorithms.

Finally, we evaluate the difference between the original image and the denoised reconstructed image
objectively by calculating the two objective evaluation indexes of the noisy and enlarged image: PSNR
and SSIM. As can be seen from Table 4, under the condition of adding Gaussian white noise with a
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7. Comparison of three-times magnification of “peppers” images with added noise
by different super-resolution reconstruction algorithms.

mean value of 0 and a variance of 15, the PSNR and SSIM values of this algorithm are much larger
than those of other algorithms, regardless of the magnification of two times or three times. From an
objective point of view, it shows that this algorithm is superior to other algorithms in denoising.

Table 4. PSNR and SSIM comparison tables for different methods of image magnification
after adding noise.

Image scale ASDS A+ ANR SRCNN CDLSR IDBP CNN-TV Proposed

lena
2

25.0364 23.7584 25.0873 25.4349 26.3102 26.2817 25.5432 30.3021
0.5269 0.5273 0.4848 0.5889 0.6338 0.6297 0.6749 0.8071

3
23.5732 23.8017 24.8438 23.9374 23.7869 23.8261 25.4615 28.688
0.3755 0.4293 0.4689 0.4042 0.4586 0.4189 0.7132 0.8178

peppers
2

25.1328 23.3634 24.3795 25.4621 25.5033 25.4165 27.5212 29.3616
0.5204 0.5178 0.4118 0.5739 0.5431 0.5388 0.6921 0.7865

3
23.7915 23.3859 24.2607 24.123 25.8402 25.6574 24.5499 28.6782
0.3882 0.4277 0.5106 0.4086 0.5698 0.5643 0.6474 0.8074

In order to verify the superiority of the proposed algorithm in terms of algorithm running time
when performing image denoising, we first added Gaussian noise with variance of 15 to the test image,
and then performed image denoising experiments with each comparison algorithm and the proposed
algorithm, and recorded the CPU running time of each algorithm, and obtained the following table
information.

As can be seen from the Table 5, the proposed algorithm in this paper achieves most of the lead in
running time compared with other compared algorithms, only longer than the running time of IDBP
algorithm and CNN-TV algorithm. However, the IDBP algorithm and the CNN-TV algorithm have
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Table 5. Running time comparison of different algorithms for image denoising (unit: s).

Image ASDS A+ ANR SRCNN CDLSR IDBP CNN-TV Proposed
bird 65.57 14.54 15.87 20.69 14.08 8.63 4.57 7.39
lena 386.24 16.89 12.69 18.61 17.10 8.79 5.86 13.53

peppers 83.85 22.43 19.66 14.70 10.87 7.76 4.46 12.12
butterfly 87.25 16.74 17.47 10.03 14.07 8.53 5.69 7.55

poor denoising effect, and both of them are deep neural network-based image super-resolution recon-
struction models that enjoy the advantages of deep learning, but it takes a lot of time to train the data
from the training database.

Meanwhile, to better visualize the adaptivity of the proposed fidelity term coefficients in this paper,
we plot the waveforms of the adaptive coefficients λ as the number of iterations k increases with
the number of iterations k,as shown in the Figure 8, using the number of iterations of the system as
the horizontal coordinate and the adaptive fidelity term coefficients as the vertical coordinate. Here,
we choose four test plots to verify and show that the proposed fidelity term coefficients will achieve
adaptivity with the gradient of the image.

(a) peppers (b) lena

(c) barbara (d) baby

Figure 8. Waveform plot of λ value versus the number of iterations k.

At the same time, in order to more intuitively reflect the superiority of this algorithm for image
denoising while achieving image super-resolution reconstruction, we have drawn the PSNR of different
algorithms for denoising “lena” and “peppers” images. And a histogram of SSIM values. As shown
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in Figures 9 and 10, the abscissa represents different algorithms, the ordinate represents the PSNR
and SSIM values after denoising, each bar represents a different algorithm, and the red represents the
algorithm in this article. It can be clearly seen from the histogram that the image reconstruction effect
of this algorithm is better than other algorithms in the case of high noise.

Figure 9. PSNR histogram of noisy images with different algorithms.

Figure 10. SSIM histogram of noisy images with different algorithms.

In addition, this paper proposes to introduce the washout filter control into the anisotropic diffusion
system as a control term. In order to verify whether the washout control term can improve the stability
and accelerate the convergence of the system, we use the image “lena” magnification three times as a
reference. The waveform of PSNR value and iteration number k after image super-resolution recon-
struction using washout filter as control term β = 0.1, γ = 25 and the waveform diagram of PSNR
value and iteration number k without washout filter β = 0, γ = 0 are shown in the Figure 11. As can be
seen from Figure 11(a), after introducing washout filter control, the system tends to be stable when the
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(a) (b)

Figure 11. Waveform diagram of PSNR value and iteration number k.

number of iterations is about k = 90. However, when the washout filter is not introduced, the system
does not tend to be stable at k = 500. To sum up, this paper introduces the washout filter into the
anisotropic diffusion system, which can improve the stability and accelerate the convergence speed of
the system. The practicability of introducing washout filter as a control term into anisotropic diffusion
system is further demonstrated, which lays a foundation for the subsequent introduction of washout
filter to other systems.

5. Conclutions

In our model, based on the fractional anisotropic diffusion equation, a new method for calculating
the coefficients of adaptive fidelity terms is proposed. And the proposed method is based on the rela-
tionship between image gradient and diffusion function. It is proved mathematically that the proposed
fractional fidelity term will not change the existence and uniqueness of the global optimal solution of
the original model. Simulation results show that the addition of the adaptive fidelity term can effec-
tively suppress the staircase effect and aliasing effect, better reconstruct the edge and texture detail
information of the image, and make the reconstructed image more clearly and naturally. And in the
case of serious noise, the reconstruction algorithm effectively suppresses the noise and has a strong
denoising ability. Besides, by introducing the washout filter to act as the control term of the fractional
anisotropic diffusion system, the stability of the system is improved and the convergence speed of the
system is accelerated.
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