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Abstract: In this paper, we introduce a class of stochastic harvesting population system with Frac-
tional Brownian Motion (FBM), which is still unclear when the stochastic noise has the character of
memorability. Stochastic optimal control problems with FBM can not be studied using classical meth-
ods, because FBM is neither a Markov pocess nor a semi-martingale. When the external environment
impact on the system of FBM, the necessary and sufficient conditions for the optimization are offered
through the stochastic maximum principle, Hamilton function and Itô formula in our work. To illus-
trate our study, we provide an example to demonstrate the obtained theoretical results, which is the
expansion of certainty population system.

Keywords: optimal harvesting control; Itô Formula; Fractional Brownian Motion (FBM); maximum
principle

1. Introduction

In the biological population system, it is affected by a variety of external factors, which they are
likely to change the population’s amount. In order to control the development of biological population
reasonably, it is necessary to select appropriate control variables and establish reasonable performance
indicators to study the optimal control of stochastic population systems. In the paper, a nonlinear
population system equation (the harvesting equation) is discussed. The typical harvesting system can
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be described in the form:
∂p(r,t)
∂r +

∂p(r,t)
∂t = −λ(r, t, P(t))p(r, t) − u(r, t)p(r, t),

p(r, 0) = p0,

p(0, t) =
∫ A

0
β(r, t, P(t))p(r, t)dr,

P(t) =
∫ A

0
p(r, t)dt.

where (r, t) ∈ Q, t ∈ (0,T ), r ∈ (0, A), 0 < A < ∞. Since the system with the external factors, we
are going to introduce the stochastic harvesting equations with Fractional Brownian Motion (FBM) as
follows: 

∂p(r,t)
∂r +

∂p(r,t)
∂t

= −λ1(r, t, P(t))p(r, t) − u1(r, t)p(r, t) + f1(r, t, P(t)) + g1(r, t, P(t))dBH
dt ,

p(r, 0) = p0, p(0, t) =
∫ A

0
β1(r, t, P(t))p(r, t)dr,

P(t) =
∫ A

0
p(r, t)dt.

(1.1)

where p(r, t) is the density of the population of age r at time t, A is the life expectancy, and p(A, t) =

0. λ1 is the average mortality ratio of the population of age r at time t, β1 is the average fertility ratio
of the population of age r at time t, u1(r, t) is harvesting effort function, which is the control variable
in the model and satisfies: 0 ≤ u(t) ≤ umax. f1(r, t, P(t)) + g1(r, t, P(t)) dBH

dt is the stochastic perturbation,
effecting of external environment on the population system, such as earthquakes, emigration, impacts
of extra terrestrial objects, and so on.

The stochastic model has aroused concern in the recent years. Abel Cadenikls [1] used a stochas-
tic maximum principle for systems with jumps, with applications to finance systems. Zhang [2–6]
investigated the stability of numerical solutions for the stochastic age-dependent system. Zhang [7,8]
provided the different methods for the numerical solutions in the stochastic system with age-dependent.
Pei [10] focuses on asymptotic mean-square boundedness of several numerical methods applied to a
class of stochastic age-dependent population equations with Poisson jumps. Emel Savku et al. [11,12]
illustrated that they contributed to modern OR by hybrid (continuous-discrete) dynamics of stochastic
differential equations with jumps and the optimal control. However, compared with stochastic sys-
tem driven by the classical Brownian motion, FBM is a family of centered Gaussian random process
indexed by the Hurst parameter H ∈ (0, 1) with continuous sample paths. Some special kinds of dy-
namical systems require both Wiener process and FBM to model their dynamics. Meanwhile, few
has been done because classical methods to solve stochastic problems can not be used directly, since
Fractional Brownian Motion (FBM) is not a semi-martingale and not a Markov process. Ma [13] de-
veloped a numerical scheme and show the convergence of the numerical approximation solution to the
analytic solution for stochastic age-dependent population equations with FBM. Kloeden [14] used the
multilevel Monte Carlo method introduced by Giles [15] to stochastic differential equations with Frac-
tional Brownian Motion of Hurst parameter H > 1/2 and achieved a prescribed root mean square error
of order ε with a computational effort of order ε−2. Duncan [16] discussed the solutions semi-linear
stochastic systems with FBM. Zhou [17] investigated the stability for the delayed neural networks with
FBM.

On the other hand, optimal control problems have also attracted wide attention, due to their several
applications in population system, economic system, finance system [11,12,18–20]. Luo [18] studied
optimal harvesting control problem for an age-dependent competing system of n-dimension competing
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species. Zhao [19] and Chen [20] talked about optimal control of different stochastic system. He
[21] investigated optimal harvesting problem for age-structured species. However, an optimal control
problem requires the minimization of a criterion function of the states and control inputs of the system
over a set of admissible control functions [22], which creates huge troublesome. Stochastic optimal
control problem driven by FBM is the bottleneck problem. In this paper, all the previous fields are
combined to consider the optimal control problem of stochastic harvesting population system with
FBM, the necessary and sufficient conditions for the optimization are obtained, and the example for
the obtained theoretical results is illustrated. We provide below a brief summary of our results.
•We introduce the fractional Brownian noise into a class of stochastic harvesting population system

and establish necessary as well as sufficient conditions of optimal control, which has not been studied
before;
• Using the stochastic maximum principle, Hamilton function and Itô formula to stochastic har-

vesting equations with Fractional Brownian Motion and study the optimal control of the system;
• The example is presented, and it supports our theoretical results.
The paper is divided into five sections. The assumption, notations and some basic definition are

given in section 2. In section 3, we establish necessary as well as sufficient conditions of optimal
control. In Section 4, an example is provided to illustrate the theoretical results. The conclusions are
given in section 5.

2. Preliminaries of the problem

Definition 2.1. (Fractional Brownian Motion)
For 0 < H < 1 Fractional Brownian Motion (FBM) BH = BH(t), t ∈ R, for Hurst parameter H ∈

(0, 1) is the Gaussian process with mean 0 for all t : E[BH] = 0 and covariance

E[BH(t)BH(s)] = 1
2 |t|

2H + |s|2H − |t − s|2H t, s ∈ R

We take BH(0) = 0. For H = 1
2 , B

1
2 is standard Brownian Motion.

Definition 2.2.
Let f (x) is continuous functions, its H order fractional derivative is defined as:

f H(x) = 1
Γ(−H)

∫ x

0
(x − ξ)−H−1 f (ξ)dξ, H < 0,

let H > 0,
f H−n(x) = 1

Γ(−H+n)

∫ x

0
(x − ξ)−H+n−1 f (ξ)dξ,

such that
B(t,H) = D−(H+ 1

2 ).

Where D is differential operator, H is Hurst parameter.
Lemma 2.1
Let f (t) is continuous functions, such that∫ t

0
f s(ds)H = H

∫ t

0
(t − s)H−1 f (s)ds, 0 < H < 1.
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In this paper, we discuss stochastic optimal control problems driven by fractional Brownian motion
(fBm), and consider the following stochastic control harvesting population system with FBM interval
[0,A]: { dy

dt + λ(t)y + u(t)y − β(t)y = f (t)+g(t) dBH
dt , t ∈ [0,T ]

y(0) = y0 ≥ 0.y(T ) = yT ≥ 0.
(2.1)

Getting motivation from the above facts, we discuss the optimal control problems in the system
(2.1) is

J(u) = maxminJ̃(u) ≡ E
∫ T

0
u(t)pu(t)dt. (2.2)

Were E(·) is expectation operator.
As the standing hypotheses, we always assume that the following conditions are satisfied:
(A1) λ ∈ C(Q×R+) is nonnegative measurable function, where

∫ r

0
λ(τ)dτ < +∞, r < A,

∫ A

0
λ(ξ)dξ =

+∞.
(A2) β ∈ C(Q × R+) is nonnegative measurable function, where sup

ξ∈(0,A)

∫ A

0
β(ξ)dξ ≤ 1.

(A3) u ∈ Uad = U which is non-empty convex subset, where U = L2(Q).
(A4) All xk, yk ∈ Rn, where ‖xk‖ ∨ ‖yk‖ ≤ d(k = 1, 2), and there exists a constant cd > 0, such that

‖ f1(x1, y1, t) − f1(x2, y2, t)‖2 ∨ ‖g1(x1, y1, t) − g1(x2, y2, t)‖2 ∨ ‖h1(x1, y1, t) − h1(x2, y2, t)‖2

≤ cd(‖x1 − x2‖
2 + ‖y1 − y2‖

2).

(A5) All x, y ∈ Rn, and there exists a constant L > 0, such that all t ∈ [0,T ] satisfied

‖ f1(x, y, t)‖2 ∨ ‖g1(x, y, t)‖2 ∨ ‖h1(x, y, t)‖2 ≤ L(1 + ‖x‖2 ∨ ‖y‖2).

(A6) Let f (t, y, u), g(t, y, u), h(t, y, u) are linear functions, we introduce

f (t, y, u) = Dty + Etu + Ft,

g(t, y, u) = Gty + Htu + It.

The Hamiltonian function is given by

H(t, q, γ, y, u) = −uyu + 〈q, f − λy + βy − uy〉 + 〈γ, g(t, y, u)〉.

Now, we introduce the adjoint equation for our problem. The adjoint equation can be written as:{
−

dq
dt + λ(t)q + uq − β(t)q = −Ly + qDt + γGt − γ

dBt
dt ,

q(A, t) = 0, q(r,T ) = 0.
(2.3)

Note that the couple(q, γ) is the adjoint process corresponding to the stochastic system p(r, t). The
adjoint equation admits one and only one Ft− adapted solution (q, γ),where L(t, y, u) = −uyu.

Moreover, to ensure that the above stochastic differential equation make sense, we shall consider
only those Ft− predictable control processes u : u ∈ Uad that satisfy

p{
∫ T

0
|Ftut|dt < ∞,

∫ T

0
|Itut|dt < ∞} = 1.

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5625–5634.



5629

3. The main results

This is the main result of this paper, in this section, we derive necessary conditions for a control to
be optimal.

Lemma 3.1. J is Gâteaux-differentiable with differential given by

〈J′(u), u〉 = E[
∫ T

0
{〈yu

t , Ly〉 + 〈ut, Lu〉}dt + 〈qt, yu
t 〉].

To obtain Equation (3.1), we use Itô formula [24], Gronwall’s inequality [25], and equivalently the
formula of integration by parts.

〈qt, yu
t 〉 − 〈q0, yu

0〉

=
∫ t

0
{〈yu

s , (Ly + λ(s)qs − β(s)qs − Dsqs − γsAs)〉
+ 〈qs, (−λ(s)yu

s − u(s)yu
s + β(s)yu

s + f (s))〉
+ 〈g, γs〉}ds +

∫ t

0
{〈qs, g〉 + 〈yu

s , γs〉}dBH + 2H
∫ t

0
s2H−1‖g(s, Ps − P0)‖22ds

=
∫ t

0
{〈yu

s , Ly〉 + 〈qs, Esu + Fs〉 + 〈γs,Hsu + Is〉}ds
+

∫ t

0
{〈qs, g〉 + 〈yu

s , γs〉}dBH
s + 2H

∫ t

0
s2H−1‖g(s, Ps − P0)‖22ds.

(3.1)

The above equation may be rewritten as

Ru
t = 〈q0, yu

0〉 +

∫ t

0
{〈yu

s , Ly〉 + 〈qs, Esu + Fs〉 + 〈γs,Hsu + Is〉}ds + S u
t .

Where we denote for every u ∈ U; t ∈ [0,T ]:

Ru
t := 〈q0, yu

0〉 − 2H
∫ t

0
s2H−1‖g(s, Pt) − g(s, P0‖

2
2ds.

S u
t :=

∫ t

0
{〈qs, g〉 + 〈yu

s , γs〉}dBH
s .

We have to consider the following tow cases:
Case 1: For every u ∈ U: E[R̄u

t ] ≤ [Ru
t ].

Case 2: For every u ∈ U: E[R̄u
t ] ≥ [Ru

t ].
Let us consider the function H̃: [0,T ] ×Ω × U → R defined by

H̃(t, u) = L(t, yt, u) − 〈qt, Etu〉 − 〈γt,Htu〉 − 2H
∫ t

0
s2H−1‖g(s, Ps − P0)‖22ds.

We note that H(t, u) is convex.
Theorem 3.1. If case 1 hold, then a necessary condition for a control u∗ to be optimal for Problem

(2.2) is that for every u∗ ∈ U:

E
[ ∫ t

0
{〈H̃u(t, u∗), u − u∗〉}dt

]
≥ 0. (3.2)

On the other hand, if case 2 holds, then inequality (3.2) is a sufficient condition of optimality for a
control u∗.

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5625–5634.



5630

Proof: Here, we apply previous knowledge and methods to obatain the results, such as Young
inequality [2], Itô integral (Lemma 2.1) and the Hölder, Burkholder-Davis-Gundy (BDG) inequalities
[22]. According to (2.3), u∗ is an optimal control if and only if u∗ ∈ U:

〈−J′(u), u − u∗〉 = E
[ ∫ T

0
{〈yu

t − yu∗
t , Ly〉 + 〈u − u∗, Lu〉}dt + 〈qT , yu∗

T − yu
T 〉

]
≥ 0. (3.3)

In case 1, we see that for every u ∈ U:

E
[ ∫ T

0
{〈H̃u(t, u∗), u − u∗〉}dt

]
= E

[ ∫ T

0
{〈Lu, u − u∗〉 + 〈qt, Et(u∗ − u)〉 + 〈γt,Ht(u∗ − u)〉

+ 2H
∫ t

0
s2H−1‖g(s, Ps − P0)‖22(u∗ − u)ds

= E
[ ∫ T

0
{〈Lu, u − u∗〉 + 〈yu

t − yu∗
t , Ly〉}dt

−
∫ T

0
{〈Ly, yu

t 〉 + 〈qt, Etu〉 + 〈γt,Htu〉 + 2H
∫ t

0
s2H−1‖g(s, Ps − P0)‖22uds

+
∫ T

0
{〈Ly, yu∗

t 〉 + 〈qt(ω), Etu∗〉 + 〈γt(ω),Htu∗〉 + 2H
∫ t

0
s2H−1‖g(s, Ps − P0)‖22u∗ds

]
≥

∫ T

0
{〈yu

t − yu∗
t , Ly〉 + 〈u − u∗), Lu〉}dt + 〈qT , yu∗

T − yu
T 〉.

(3.4)

Thus, in case 1 and in conjunction with (3.2), a necessary condition for a control u∗ to be optimal is
that ∀u ∈ U

E[
∫ T

0
{〈Lu, u − u∗〉 + 〈qt, Et(u − u∗)〉 + 〈γt,Ht(u − u∗)〉

+ 2H
∫ t

0
s2H−1‖g(s, Ps − P0)‖22(u∗ − u)}ds] ≥ 0.

(3.5)

Which is equivalent to (3.1).
On the other hand, in case 2, for every ∀u ∈ U:

E
[ ∫ T

0
{〈H̃u(t, u∗), u − u∗〉}dt

]
= E

[ ∫ T

0
{〈Lu, u − u∗〉 + 〈qt, Et(u∗ − u)〉 + 〈γt,Ht(u∗ − u)〉

+ 2H
∫ t

0
s2H−1‖g(s, Ps − P0)‖22(u∗ − u)ds

= E
[ ∫ T

0
{〈Lu, u − u∗〉 + 〈yu

t − yu∗
t , Ly〉}dt

−
∫ T

0
{〈Ly, yu

t 〉 + 〈qt, Etu〉 + 〈γt,Htu〉 + 2H
∫ t

0
s2H−1‖g(s, Ps − P0)‖22uds

+
∫ T

0
{〈Ly, yu∗

t 〉 + 〈qt(ω), Etu∗〉 + 〈γt(ω),Htu∗〉 + 2H
∫ t

0
s2H−1‖g(s, Ps − P0)‖22u∗ds

]
≤

∫ T

0
{〈yu

t − yu∗
t , Ly〉 + 〈u − u∗), Lu〉}dt + 〈qT , yu∗

T − yu
T 〉.

(3.6)

Thus, in case 2, a su1cient condition for a control u∗ to be optimal is that (3.6), or equivalently (3.2),
holds for every u∗ ∈ U.

4. An example

For convenience, we still adopt the notation introduced in Section 2.

Example 4.1. Let the admissible control domain be [0, 1], consider the following optimal control
problem

J(u) = E[
∫ T

0
u ∗ pdr],
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subject to 
∂p
∂r +

∂p
∂t = − 1

(1−r)2 p − up + 2pt − pt dBH
dt ,

p(r, 0) = exp(− 1
(1−r)2 ),

p(0, t) = 0, p(r, t) = t2
∫ 1

0
p(r, t)dr.

(4.1)

Here, BH stands for Fractional Brownian Motion (FBM). Take T = 1, A = 1 in Eq. (4.1). We can
set this problem in our formulation by taking H = L2([0, 1] × [0, 1]), V = W1

0 ([0, 1])(a Sobolev space
with elements satisfying the boundary condition above), f (r, t, P) = 2pt, λ(r, t) = 1

1−r2 , β(r, t) = t2,
g(r, t, P) = p, and p(r, 0) = exp(− 1

1−r ).
Clearly, the operators f ,g and λ satisfy the assumption.
To solve this problem, we must write down Hamiltonian function [26]:

H(t, q, γ, y, u) = −uq + q(−
1

(1 − r)2 y + 2yt − uy + t2y) + γpt.

And adjoint equation [22] is{ dq
dt = q(− 1

(1−r)2 y + 2yt − uy + t2y) − γt + γ dBt
dt ,

q(A, t) = 0, q(r,T ) = 0.
(4.2)

Solving equation (4.1) and (4.2), for any admissible control u(t, a) ∈ Uad and t ∈ [0, 1], if we
have the results that the equation (3.2) is valid, which is the necessary and sufficient conditions for
optimality in this control problem.

The corresponding Hamiltonian

H(t, q, γ, y, u) = −uq + q(−
1

(1 − r)2 y + 2yt − uy + t2y) + γpt,

and

H(t, q, γ, y, u∗) = −u∗q + q(−
1

(1 − r)2 y + 2yt − u∗y + t2y) + γpt.

If u∗(r, t) is optimal,the necessary condition for (4.1) is

E
∫ 1

0
(−uq + q(− 1

(1−r)2 y + 2yt − uy + t2y) + γpt)dt

≤ E
∫ 1

0
(−u∗q + q(− 1

(1−r)2 y + 2yt − u∗y + t2y) + γpt)dt.
(4.3)

Moreover, because of the solution for state equation p(r, t) is the function of u(r, t), λ(r, t), f (r, t, p)
and g(r, t, p) satisfying the assumption, we can conclude that

E
[ ∫ 1

0
{〈H̃u(t, u∗), u − u∗〉}dt

]
≥ 0.

So the Eq. (4.3) is also the sufficient condition for Eq. (4.1).
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5. Conclusions

Existence and optimal control results of the stochastic model with Fractional Brownian Motion
(FBM) is studied in this paper. Firstly, we introduce the fractional Brownian noise into a class of
stochastic harvesting population system and establish necessary as well as sufficient conditions of
optimal control, which has not been studied before. Secondly, Using the stochastic maximum principle,
Hamilton function and Itô formula to stochastic harvesting equations with Fractional Brownian Motion
and study the optimal control of the system. finally, the obtained theoretical results are verified by an
illustrative example. As further direction, researchers are invited to investigate the optimal control
problem for stochastic model by including Gâteaux-differentiable with differential.
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