
MBE, 18(5): 5592–5613. 

DOI: 10.3934/mbe.2021282 

Received: 11 May 2021 

Accepted: 11 June 2021 

Published: 22 June 2021 

http://www.aimspress.com/journal/MBE 

 

Theory article 

Conjugated heat transfer of power-law fluids in double-pass concentric 

circular heat exchangers with sinusoidal wall fluxes 

Chii-Dong Ho 1,*, Gwo-Geng Lin 1, Thiam Leng Chew 2,3 and Li-Pang Lin 1 

1 Department of Chemical and Materials Engineering, Tamkang University, 151 Yingzhuan Road, 

Tamsui, New Taipei, Taiwan 251 
2 Department of Chemical Engineering, Faculty of Engineering, Universiti Teknologi Petronas, 32610 

Seri Iskandar, Perak Darul Ridzuan, Malaysia 
3 CO2 Research Center (CO2RES), Institute of Contaminant Management, Universiti Teknologi 

Petronas, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia 

* Correspondence: Email: cdho@mail.tku.edu.tw; Tel: +1-886-2-2621-5656 ext. 2724; Fax: +1-886-

2-2620-9887. 

Abstract: An analytical formulation, referred to as conjugated Graetz problems, is developed to 

predict the temperature distribution and Nusselt numbers for the power-law fluid flowing in a double-

pass concentric circular heat exchanger under sinusoidal wall fluxes. A new design of inserting an 

impermeable sheet into a concentric tube, in parallel, to conduct recycling double-pass operations has 

been studied theoretically in the fully developed region, resulting in substantial improvements in the 

performance of heat exchanger device. The analytical solution was derived using the complex 

functions by transforming the boundary value problem into ordinary differential equations with the aid 

of the Frobenius method. The influences of power-law index and impermeable-sheet position on 

average Nusselt numbers with various designs and operating parameters are also delineated. The 

theoretical predictions show that the heat transfer efficiency is considerably improved through 

operating the double-pass device compared to via a single-pass circular heat exchanger (where an 

impermeable sheet is not inserted). The economic feasibility of operating double-pass concentric 

circular heat exchanger for power-law fluids is exemplified by the ratio of the heat-transfer efficiency 

enhancement and the increment in power consumption. The double-pass effect from increasing the 

convective heat-transfer coefficient can compensate for the rise in power consumption, which serves 

as important economic advantage of this design. 

Keywords: power-law fluids; sinusoidal wall fluxes; concentric circular heat exchangers; conjugated 
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Graetz problem 

 

1. Introduction  

A wide variety of heat-transfer problems applied to Newtonian fluids flow in bounded conduits 

of cylindrical or parallel-plate geometries with negligible axial conduction has been successfully 

reduced and known as the Graetz problem [1,2]. Multi-stream or multiphase systems, however, are 

fundamentally different since conjugated boundary conditions must be coupled at the boundaries, 

referred to as conjugated Graetz problems [3,4], which were solved analytically by means of an 

orthogonal expansion technique [5,6] with the eigenfunction expansion in terms of the extended power 

series. Extension to markedly increased applications of practical processes with recycle-effect concept 

is possible. It’s been widely used in separation, fermentation, and polymerization such as 

distillation [7], extraction [8], loop reactors [9], air-lift reactor [10], draft-tube bubble column [11], 

mass exchanger [12], and thermal diffusion column [13].  

Many materials of food, polymeric systems, biological process, pulp and paper suspensions [14] 

with high molecular weight in processing industries exhibit a range of non-Newtonian fluid behavioral 

features and display shear-thinning and/or shear thickening behavior [15,16]. Those non-Newtonian 

fluids can be treated as the laminar flow conditions with negligible viscoelastic effects based on their 

high viscosity levels in the appropriate shear rate range [17]. Therefore, the analytical solution could 

be analogously obtained under the similar mathematical treatment when dealing with Newtonian fluids. 

A considerable body of literature has shown the practical feasibility of solving the power-law model 

of non-Newtonian flows by LBM (Lattice Boltzmann Method). It is also devoted to studying the non-

Newtonian behavior with shear-thinning and shear-thickening liquids on sedimentation [18,19] and 

flows over a heated cylinder [20], an inclined square [21], cylinder [22] and various shapes [23]. 

Furthermore, the heat-transfer responses to the distributions of the conduit wall and fluid temperature 

are two major concerns in investigating the heat-transfer efficiency improvement under different kinds 

of boundary conditions which can be detected at the conduit wall. Two cases of the uniform wall 

temperature (Dirichlet problem) [24, 25] and uniform heat flux (Neumann problem) [26,27] were 

processed in the application of engineering field, in general. Recently, a non-trivial amount of research 

use metal foams of PCMs (phase change materials) and nanoparticles of NEPCMs (nano-encapsulated 

phase change materials) to enhance heat transfer properties in some applications regarding constant 

heat load, transient, or cyclic loads. Thermal and energy storage managements of crucial importance 

of systems were investigated within the thermal performance given variable heat loads [28] and non-

uniform magnetic sources [29], as well as thermal benefit of NEPCMs nanoparticles in microchannels 

that considers forced convection [30] and natural convection flow [31,32]. However, the well-known 

case of sinusoidal wall heat flux distribution [33] of non-uniform heating was the simplest model 

of period heating within the convective heat-transfer problems in the periodic [34] and 

circumferentially [35] heating systems. It’s been investigated by many researchers to design the 

cooling tubes in nuclear reactors [36]. 

The present study is an extension of our previous work [37] to apply the system of non-Newtonian 

fluids for the conjugated Graetz problem where the power-law index of the shearing-thinning aqueous 

polymer solutions were given. Though the phenomenon of heat transfer in the present study could be 

drawn parallel comparison, in similar sense, with that of heat-transfer mechanism in our previous 
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work [37], the manners of non-Newtonian fluids with the convective heat transfer are somehow 

different. It’s actually affected by the velocity profile of shear-thinning fluid. A power-law fluid 

flowing through a double-pass laminar countercurrent-flow concentric-tube heat exchanger that 

implemented an impermeable sheet with sinusoidal wall fluxes was investigated for the purpose of 

examining the heat transfer efficiency and temperature distributions under external recycling, which 

was solve analytically through the resultant conjugated partial differential equations by the 

superposition technique. The recycle ratio and impermeable-sheet position are two parameters treated 

as essential and should be suitably adjusted to an improved design of heat transfer equipment. The 

comparison of heat-transfer efficiency improvement and Nusselt numbers in both operations (single- 

and double-pass device) is also discussed. 

2. Dimensionless temperature distributions 

A double-pass concentric circular heat exchanger was made by inserting an impermeable sheet 

into a circular tube of inside diameter 2R and length L, as shown in Figure 1. The thickness of the inner 

(subchannel a) and annular tube (subchannel b) are 2κR and 2(1-κ)R, respectively. Comparing with the 

radius of outer circular tube R and outer circular tube R1, the thickness of the impermeable barrier δ is 

negligible (δ << R). Two flow patterns, flow pattern A and flow pattern B, are proposed by and used 

in this study. An inlet fluid with volumetric flow rate V and temperature T1 will enter the subchannel a 

and then flows reversely into the subchannel b with the aid of a convectional pump at the end of the 

conduit like flow pattern A, as shown in Figure 1(a). On the other hand, the flow pattern B is that the 

fluid feeds into subchannel b and exits from the subchannel a, as shown in Figure 1(b). The fluid is 

heated by the outer wall with sinusoidal heat fluxes, 𝑞𝑤
″ (𝑧) = 𝑞0

″[1 + 𝑠𝑖𝑛( 𝛽 𝑧)] in both flow patterns. 

The problem of laminar heat transfer at steady state with negligible axial conduction was known 

as the Graetz problem, and the convective velocity in radial direction is neglected by applying the 

Navier-stokes relations to obtain the hydro-dynamical equation for laminar flow. The energy balance 

equations of fluid flowing in the subchannel a and subchannel b in dimensional form with specified 

velocities are: 

𝜌𝐶𝑝𝑣𝑎(𝑟)
𝜕𝑇𝑎(𝑟, 𝑧)

𝜕𝑧
=

𝑘

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇𝑎(𝑟, 𝑧)

𝜕𝑟
) + 𝑘

𝜕2𝑇𝑎

𝜕𝑧2
 (1)  

𝜌𝐶𝑝𝑣𝑏(𝑟)
𝜕𝑇𝑏(𝑟, 𝑧)

𝜕𝑧
=

𝑘

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇𝑏(𝑟, 𝑧)

𝜕𝑟
) + 𝑘

𝜕2𝑇𝑏

𝜕𝑧2
 (2)  

The theoretical analysis of double-pass heat exchangers is developed based on the following 

assumptions: (a) constant physical properties of fluid; (b) fully-developed laminar flow with power 

law index 𝜔 (𝜏 = −𝑐 �̇�𝜔) in each subchannel; (c) neglecting the entrance length and the end effects; 

(d) ignoring the longitudinal heat conduction and the thermal resistance of the impermeable sheet; (e) 

well mixed at both inlet and outlet. With these assumptions, the dimensionless energy balance 

equations and the velocity distributions of a double-pass heat exchanger with sinusoidal heat fluxes 

were formulated by neglecting the second terms on the right-hand side of Eq. (1) and Eq. (2). The 

descriptions of two or more contiguous streams of multi-stream (or phases of multi-phase) problems 

with coupling mutual boundary conditions [38,39] becomes 
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(b) Flow pattern B 

Figure 1. Schematic diagram of a double-pass concentric circular heat exchanger. 
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(
𝑣𝑎(𝜂)𝑅2

𝛼𝐺𝑧𝐿
)

𝜕𝜑𝑎(𝜂, 𝜉)

𝜕𝜉
=

1

𝜂

𝜕

𝜕𝜂
(𝜂

𝜕𝜑𝑎(𝜂, 𝜉)

𝜕𝜂
) (3)  

(
𝑣𝑏(𝜂)𝑅2

𝛼𝐺𝑧𝐿
)

𝜕𝜑𝑏(𝜂, 𝜉)

𝜕𝜉
=

1

𝜂

𝜕

𝜕𝜂
(𝜂

𝜕𝜑𝑏(𝜂, 𝜉)

𝜕𝜂
) (4)  

where 𝑣𝑎 and 𝑣𝑏 are the velocity distributions in subchannels a and b, respectively, as follows in 

flow pattern A: 

𝑣𝑎 = (
3𝜔+1

𝜔+1
)

𝑉

𝜋(𝜅𝑅)2 (1 − (
𝜂

𝜅
)

𝜔+1

𝜔
) = 𝐺 (1 − (

𝜂

𝜅
)

𝜔+1

𝜔
),  0 ≤ 𝜂 ≤ 𝜅 (5)  

𝑣𝑏 = −
(3+1/𝜔)𝑉

𝜋𝑅2[(1−𝛽2)1+
1
𝜔−𝜅

1−
1
𝜔(𝛽2−𝜅2)1+

1
𝜔]

∫ (𝛽2 1

𝜂
− 𝜂)

1

𝜔
𝑑𝜂

𝜂

𝜅
= −𝐻 ∫ (𝛽2 1

𝜂
− 𝜂)

1

𝜔
𝑑𝜂

𝜂

𝜅
, 𝜅 ≤ 𝜂 ≤ 𝛽 (6)  

𝑣𝑏 = −
(3+1/𝜔)𝑉

𝜋𝑅2[(1−𝛽2)1+
1
𝜔−𝜅

1−
1
𝜔(𝛽2−𝜅2)1+

1
𝜔]

∫ (𝜂 − 𝛽2 1

𝜂
)

1

𝜔
𝑑𝜂

1

𝜂
= −𝐻 ∫ (𝜂 − 𝛽2 1

𝜂
)

1

𝜔
𝑑𝜂

1

𝜂
, 𝛽 ≤ 𝜂 ≤ 1 (7)  

and in flow pattern B: 

𝑣𝑎 = − (
3𝜔+1

𝜔+1
)

𝑉

𝜋(𝜅𝑅)2 (1 − (
𝜂

𝜅
)

𝜔+1

𝜔
) = −𝐺 (1 − (

𝜂

𝜅
)

𝜔+1

𝜔
),  0 ≤ 𝜂 ≤ 𝜅 (8)  

𝑣𝑏 =
(3+1/𝜔)𝑉

𝜋 𝑅2[(1−𝛽2)1+
1
𝜔−𝜅

1−
1
𝜔(𝛽2−𝜅2)1+

1
𝜔]

∫ (𝛽2 1

𝜂
− 𝜂)

1

𝜔
𝑑𝜂

𝜂

𝜅
= 𝐻 ∫ (𝛽2 1

𝜂
− 𝜂)

1

𝜔
𝑑𝜂

𝜂

𝜅
, 𝜅 ≤ 𝜂 ≤ 𝛽 (9)  

𝑣𝑏 =
(3+1/𝜔)𝑉

𝜋 𝑅2[(1−𝛽2)1+
1
𝜔−𝜅

1−
1
𝜔(𝛽2−𝜅2)1+

1
𝜔]

∫ (𝜂 − 𝛽2 1

𝜂
)

1

𝜔
𝑑𝜂

1

𝜂
= 𝐻 ∫ (𝜂 − 𝛽2 1

𝜂
)

1

𝜔
𝑑𝜂

1

𝜂
, 𝛽 ≤ 𝜂 ≤ 1 (10)  

The values of 𝛽 (𝑣𝑏(𝛽) = 𝑣𝑏,𝑚𝑎𝑥) in Eq. (6) and Eq. (7) for flow pattern A, and Eq. (9) and Eq. 

(10) for flow pattern B, were obtained via the given 𝜔 and 𝜅, as shown in Table 1 [40].  The terms 

with the power law index 𝜔 on the right-hand side of Eq. (5) and Eq. (6) and (7) for flow pattern A 

(Eq. (9) and (10) for flow pattern B), respectively, were approximated using the polynomials fitted at 

the selected points for the acceptable tolerance as follows: 

(1 − (
𝜂𝑎

𝜅
)

𝜔+1
𝜔

) = 𝑈1 + 𝑈2𝜂 + 𝑈3𝜂2 + 𝑈4𝜂3 + 𝑈5𝜂4 (11)  
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∫ (𝛽2
1

𝜂
− 𝜂)

1
𝜔

𝑑𝜂
𝜂

𝜅

+ ∫ (𝜂 − 𝛽2
1

𝜂
)

1
𝜔

𝑑𝜂
1

𝜂

= 𝑍1 + 𝑍2𝜂 + 𝑍3𝜂2 + 𝑍4𝜂3 + 𝑍5𝜂4 (12)  

Table 1. The values of 𝛽 in Eqs. (4) and (5) (or Eqs. (7) and (8)) for various 𝜔 and 𝜅. 

𝜔 𝜅 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 0.3442 0.4687 0.5632 0.6431 0.7140 0.7788 0.8389 0.8954 0.9489 

0.2 0.3682 0.4856 0.5749 0.6509 0.7191 0.7818 0.8404 0.896 0.9491 

0.3 0.3884 0.4991 0.584 0.657 0.7229 0.784 0.8416 0.8965 0.9492 

0.4 0.4052 0.5100 0.5912 0.6617 0.7259 0.7858 0.8426 0.8969 0.9493 

0.5 0.4193 0.5189 0.597 0.6655 0.7283 0.7872 0.8433 0.8972 0.9493 

0.6 0.4312 0.5262 0.6018 0.6686 0.7303 0.7884 0.8439 0.8975 0.9494 

0.7 0.4412 0.5324 0.6059 0.6713 0.7319 0.7893 0.8444 0.8977 0.9495 

0.8 0.4498 0.5377 0.6093 0.6735 0.7333 0.7902 0.8449 0.8979 0.9495 

0.9 0.4872 0.5422 0.6122 0.6754 0.7345 0.7909 0.8452 0.898 0.9495 

1.0 0.4637 0.5461 0.6147 0.6770 0.7355 0.7915 0.8455 0.8981 0.9496 

The coefficients were obtained with the given power law index 𝜔 = 0.6 as an illustration, shown 

in Table 2. 

Table 2. The coefficients in Eqs. (3) and (4) (or Eqs. (7) and (8)) for various 𝜅. 

coefficients  𝜔 = 0.6 

𝜅 0.3 0.5 0.7 𝜅 0.3 0.5 0.7 

𝑈1 0.4898 0.8694 0.9467 𝑍1 -2.4715 -4.3986 -8.5530 

𝑈2 3.2650 0.8362 0.3409 𝑍2 17.0332 23.4914 39.6461 

𝑈3 -12.2439 -3.1356 -1.2783 𝑍3 -39.9047 -46.0023 -68.7476 

𝑈4 -16.3251 -4.1808 -1.7045 𝑍4 39.5577 39.5465 52.9275 

𝑈5 1.0203 0.2613 0.1065 𝑍5 -14.2148 -12.6369 -15.2730 

The corresponding boundary conditions are: 

𝜕𝜑𝑎(0, 𝜉)

𝜕𝜂
= 0 (13)  

𝜕𝜑𝑏(1, 𝜉)

𝜕𝜂
= 1 + 𝑠𝑖𝑛(𝐵𝜉) (14)  

𝜕𝜑𝑎(𝜅, 𝜉)

𝜕𝜂
=

𝜕𝜑𝑏(𝜅, 𝜉)

𝜕𝜂
 (15)  

𝜑𝑎(𝜅, 𝜉) = 𝜑𝑏(𝜅, 𝜉) (16)  
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in which 

𝜂 =
𝑟

𝑅
, 𝜅 =

𝑅1

𝑅
, 𝜉 =

𝑧

𝐿𝐺𝑧
, 𝜑𝑎 =

𝑘(𝑇𝑎−𝑇𝑖)

𝑞0
″𝑅

,𝜑𝑏 =
𝑘(𝑇𝑏−𝑇𝑖)

𝑞0
″𝑅

,𝐵 = 𝛽𝐺𝑧𝐿 = 2𝜋𝐺𝑧,𝐺𝑧 =
4𝑉

𝛼𝜋𝐿
 (17)  

The general form of dimensionless temperature distributions of the laminar double-pass 

countercurrent-flow concentric tube heat exchangers with sinusoidal wall fluxes can be expressed as 

follows [41]: 

𝜑𝑎(𝜂, 𝜉) = 𝜃0𝑎𝜉 + 𝜃1𝑎(𝜂) + 𝜃2𝑎(𝜂) 𝑠𝑖𝑛(𝐵𝜉) + 𝜃3𝑎(𝜂) 𝑐𝑜𝑠(𝐵𝜉) (18)  

𝜑𝑏(𝜂, 𝜉) = 𝜃0𝑏 (
1

𝐺𝑧
− 𝜉) + 𝜃1𝑏(𝜂) + 𝜃2𝑏(𝜂) 𝑠𝑖𝑛( 𝐵𝜉) + 𝜃3𝑏(𝜂) 𝑐𝑜𝑠( 𝐵𝜉) (19)  

in which the 𝜃0a and 𝜃0b are the constants yet to be determined, and the 𝜃1a(𝜂), 𝜃2𝑎(𝜂), 𝜃3𝑎(𝜂), 

𝜃1b(𝜂), 𝜃2𝑏(𝜂) and 𝜃3𝑏(𝜂) are the functions of 𝜂 to be determined. 

Substituting Eqs. (18) and (19) into the governing equations, Eqs. (3) and (4), and the boundary 

conditions, Eqs. (13)–(16), yields 

𝑑

𝑑𝜂
(𝜂

𝑑𝜃1𝑎(𝜂)

𝑑𝜂
) −

𝑣𝑎(𝜂)𝑅2𝜂

𝐺𝑧𝐿𝛼
𝜃0𝑎 + [

𝑑

𝑑𝜂
(𝜂

𝑑𝜃2𝑎(𝜂)

𝑑𝜂
) +

𝑣𝑎(𝜂)𝐵𝑅2𝜂

𝐺𝑧𝐿𝛼
𝜃3𝑎(𝜂)] 𝑠𝑖𝑛( 𝐵𝜉) 

+ [
𝑑

𝑑𝜂
(𝜂

𝑑𝜃3𝑎(𝜂)

𝑑𝜂
) −

𝑣𝑎(𝜂)𝐵𝑅2𝜂

𝐺𝑧𝐿𝛼
𝜃2𝑎(𝜂)] 𝑐𝑜𝑠( 𝐵𝜉) = 0 

(20)  

𝑑

𝑑𝜂
(𝜂

𝑑𝜃1𝑏(𝜂)

𝑑𝜂
) +

𝑣𝑏(𝜂)𝑅2𝜂

𝐺𝑧𝐿𝛼
𝜃0𝑏 + [

𝑑

𝑑𝜂
(𝜂

𝑑𝜃2𝑏(𝜂)

𝑑𝜂
) +

𝑣𝑏(𝜂)𝐵𝑅2𝜂

𝐺𝑧𝐿𝛼
𝜃3𝑏(𝜂)] 𝑠𝑖𝑛( 𝐵𝜉) 

+ [
𝑑

𝑑𝜂
(𝜂

𝑑𝜃3𝑏(𝜂)

𝑑𝜂
) −

𝑣𝑏(𝜂)𝐵𝑅2𝜂

𝐺𝑧𝐿𝛼
𝜃2𝑏(𝜂)] 𝑐𝑜𝑠( 𝐵𝜉) = 0 

(21)  

𝑑𝜃1𝑎(0)

𝑑𝜂
+

𝑑𝜃2𝑎(0)

𝑑𝜂
𝑠𝑖𝑛(𝐵𝜉) +

𝑑𝜃3𝑎(0)

𝑑𝜂
𝑐𝑜𝑠(𝐵𝜉) = 0 (22)  

(
𝑑𝜃1𝑏(1)

𝑑𝜂
− 1) + (

𝑑𝜃2𝑏(1)

𝑑𝜂
− 1) 𝑠𝑖𝑛( 𝐵𝜉) + [

𝑑𝜃3𝑏(1)

𝑑𝜂
] 𝑐𝑜𝑠( 𝐵𝜉) = 0 (23)  

(
𝑑𝜃1𝑎(𝜅)

𝑑𝜂
−

𝑑𝜃1𝑏(𝜅)

𝑑𝜂
) + (

𝑑𝜃2𝑎(𝜅)

𝑑𝜂
−

𝑑𝜃2𝑏(𝜅)

𝑑𝜂
) 𝑠𝑖𝑛(𝐵𝜉) + (

𝑑𝜃3𝑎(𝜅)

𝑑𝜂
−

𝑑𝜃3𝑏(𝜅)

𝑑𝜂
) 𝑐𝑜𝑠(𝐵𝜉) = 0 (24)  

𝜃0𝑎𝜉 + 𝜃1𝑎(𝜅) + 𝜃2𝑎(𝜅) 𝑠𝑖𝑛(𝐵𝜉) + 𝜃3𝑎(𝜅) 𝑐𝑜𝑠(𝐵𝜉) 

= 𝜃0𝑏 (
1

𝐺𝑧
− 𝜉) + 𝜃1𝑏(𝜅) + 𝜃2𝑏(𝜅) 𝑠𝑖𝑛( 𝐵𝜉) + 𝜃3𝑏(𝜅) 𝑐𝑜𝑠( 𝐵𝜉) 

 

(25)  
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2.1. Solving 𝜃2𝑎(𝜂), 𝜃3𝑎(𝜂), 𝜃2𝑏(𝜂) and 𝜃3𝑏(𝜂)by using Frobenius method 

Multiplying Eqs. (20)–(25) by 𝑠𝑖𝑛( 𝐵𝜉) and integrating with respect to   in the interval [0, 

2/B] gives: 

𝑑

𝑑𝜂
(𝜂

𝑑𝜃2𝑎(𝜂)

𝑑𝜂
) +

𝑣𝑎(𝜂)𝐵𝑅2𝜂

𝛼𝐺𝑧𝐿
𝜃3𝑎(𝜂) = 0 (26)  

𝑑

𝑑𝜂
(𝜂

𝑑𝜃2𝑏(𝜂)

𝑑𝜂
) +

𝑣𝑏(𝜂)𝐵𝑅2𝜂

𝛼𝐺𝑧𝐿
𝜃3𝑏(𝜂) = 0 (27)  

𝑑𝜃2𝑎(0)

𝑑𝜂
= 0 (28)  

𝑑𝜃2𝑏(1)

𝑑𝜂
= 1 (29)  

𝑑𝜃2𝑎(𝜅)

𝑑𝜂
=

𝑑𝜃2𝑏(𝜅)

𝑑𝜂
 (30)  

𝜃2𝑎(𝜅) = 𝜃2𝑏(𝜅) (31)  

Similarly, multiplying Eqs. (20)–(25) by 𝑐𝑜𝑠( 𝐵𝜉)  and integrating with respect to   in the 

interval [0, 2//B], one can obtain: 

𝑑

𝑑𝜂
(𝜂

𝑑𝜃3𝑎(𝜂)

𝑑𝜂
) −

𝑣𝑎(𝜂)𝐵𝑅2𝜂

𝛼𝐺𝑧𝐿
𝜃2𝑎(𝜂) = 0 (32)  

𝑑

𝑑𝜂
(𝜂

𝑑𝜃3𝑏(𝜂)

𝑑𝜂
) −

𝑣𝑏(𝜂)𝐵𝑅2𝜂

𝛼𝐺𝑧𝐿
𝜃2𝑏(𝜂) = 0 (33)  

𝑑𝜃3𝑎(0)

𝑑𝜂
= 0 (34)  

𝑑𝜃3𝑏(1)

𝑑𝜂
= 0 (35)  

𝑑𝜃3𝑎(𝜅)

𝑑𝜂
=

𝑑𝜃3𝑏(𝜅)

𝑑𝜂
 (36)  

𝜃3𝑎(𝜅) = 𝜃3𝑏(𝜅) (37)  

The complex functions 𝜓𝑎(𝜂) = 𝜃2𝑎(𝜂) + 𝜃3𝑎(𝜂)𝑖  and 𝜓𝑏(𝜂) = 𝜃2𝑏(𝜂) + 𝜃3𝑏(𝜂)𝑖  were 

introduced to combine Eqs. (26)–(31) and Eqs. (32)–(37) into a unique one-dimensional boundary 

value problem according to the prior mathematical treatment [41] as follows: 
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𝑑

𝑑𝜂
(𝜂

𝜕𝜓𝑎(𝜂)

𝜕𝜂
) −

𝑣𝑎(𝜂)𝐵𝑅2𝜂

𝐺𝑧𝐿𝛼
𝜓𝑎(𝜂) 𝑖 = 0 (38)  

𝑑

𝑑𝜂
(𝜂

𝜕𝜓𝑏(𝜂)

𝜕𝜂
) −

𝑣𝑏(𝜂)𝐵𝑅2𝜂

𝐺𝑧𝐿𝛼
𝜓𝑏(𝜂) 𝑖 = 0 (39)  

𝑑𝜓𝑎(0)

𝑑𝜂
= 0 (40)  

𝑑𝜓𝑏(1)

𝑑𝜂
= 1 (41)  

𝑑𝜓𝑎(𝜅)

𝑑𝜂
=

𝑑𝜓𝑏(𝜅)

𝑑𝜂
 (42)  

𝜓𝑎(𝜅) = 𝜓𝑏(𝜅) (43)  

We can apply the method of Frobenius which enables one to create a power series solution to solve 

differential equations. Assuming 𝜓𝑎(𝜂) and 𝜓𝑏(𝜂) have the forms of power series multiplied by 

unknown powers of 𝜂, respectively, leads to: 

𝜓𝑎(𝜂) = ∑ 𝑎𝑛𝜂𝑛+𝑟𝑎∞
𝑛=0 ,  𝑛 ≥ 0 (44)  

𝜓𝑏(𝜂) = ∑ 𝑏𝑛𝜂𝑛+𝑟𝑏∞
𝑛=0 ,  𝑛 ≥ 0 (45)  

One can find the constants of 𝑟𝑎  and 𝑟𝑏  are proved to be zero in this system equations. The 

coefficients 𝑎𝑛 and 𝑏𝑛 are determined by solving Eqs. (38) and (39) and incorporating the boundary 

conditions of Eqs. (40) to (43), and then comparing with the real and imaginary parts of the complex 

functions 𝜓𝑎(𝜂) = 𝜃2𝑎(𝜂) + 𝜃3𝑎(𝜂) 𝑖  and 𝜓𝑏(𝜂) = 𝜃2𝑏(𝜂) + 𝜃3𝑏(𝜂) 𝑖 , and thus the recursive 

relations were obtained for flow pattern A, respectively, as follows: 

𝑎0, 𝑎1 = 0, 𝑎𝑛 =
𝐵𝐺

𝑛2 (𝑈1𝑎𝑛−2 + 𝑈2𝑎𝑛−3  + 𝑈3𝑎𝑛−4 + 𝑈4𝑎𝑛−5 + 𝑈5𝑎𝑛−6), 𝑛 ≥ 2 (46)  

and 

𝑏0, 𝑏1 = 0, 𝑏𝑛 =
−𝐵𝐻

𝑛2 (𝑍1𝑏𝑛−2 + 𝑍2𝑏𝑛−3 + 𝑍3𝑏𝑛−4 + 𝑍4𝑏𝑛−5 + 𝑍5𝑏𝑛−6), 𝑛 ≥ 2 (47)  

Similarly, the recursive relations of the coefficients 𝑎𝑛 and 𝑏𝑛 for flow pattern B are 

𝑎0, 𝑎1 = 0, 𝑎𝑛 =
−𝐵𝐺

𝑛2 (𝑈1𝑎𝑛−2 + 𝑈2𝑎𝑛−3  + 𝑈3𝑎𝑛−4 + 𝑈4𝑎𝑛−5 + 𝑈5𝑎𝑛−6), 𝑛 ≥ 2 (48)  

and 
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𝑏0, 𝑏1 = 0, 𝑏𝑛 =
𝐵𝐻

𝑛2 (𝑍1𝑏𝑛−2 + 𝑍2𝑏𝑛−3 + 𝑍3𝑏𝑛−4 + 𝑍4𝑏𝑛−5 + 𝑍5𝑏𝑛−6), 𝑛 ≥ 2 (49)  

2.2. Solving 𝜃0𝑎, 𝜃1𝑎(𝜂), 𝜃0𝑏 and 𝜃1𝑏(𝜂) by double integrations 

Integrations of Eqs. (20) to (25) with respect to 𝜉 in the interval [0,2𝜋/𝐵], one can obtain 

𝑑

𝑑𝜂
(𝜂

𝑑𝜃1𝑎(𝜂)

𝑑𝜂
) −

𝑣𝑎(𝜂)𝑅2𝜂

𝐺𝑧𝐿𝛼
𝜃0𝑎 = 0 (50)  

𝑑

𝑑𝜂
(𝜂

𝑑𝜃1𝑏(𝜂)

𝑑𝜂
) +

𝑣𝑏(𝜂)𝑅2𝜂

𝐺𝑧𝐿𝛼
𝜃0𝑏 = 0 (51)  

𝑑𝜃1𝑎(0)

𝑑𝜂
= 0 (52)  

𝑑𝜃1b(1)

𝑑𝜂
= 1 (53)  

𝑑𝜃1𝑎(𝜅)

𝑑𝜂
=

𝑑𝜃1𝑏(𝜅)

𝑑𝜂
 (54)  

𝜃0𝑎 = −𝜃0𝑏 (55)  

𝜃1𝑎(𝜅) =
𝜃0𝑏

𝐺𝑧
+ 𝜃1𝑏(𝜅) (56)  

Furthermore, integrating Eqs. (50) and (51) twice with respect to 𝜂  for 𝜃1𝑎(𝜂)  and 𝜃1𝑏(𝜂) , 

respectively, yields 

𝜃1𝑎 = 𝐺𝜃0𝑎 (
1

4
𝑈1𝜂2 +

1

9
𝑈2𝜂3 +

1

16
𝑈3𝜂4 +

1

25
𝑈4𝜂5 +

1

36
𝑈5𝜂6) + 𝛾1𝑎 𝑙𝑛 𝜂 + 𝛾2𝑎 (57)  

and 

𝜃1𝑏 = −𝐻𝜃0𝑏 (
1

4
𝑍1𝜂2 +

1

9
𝑍2𝜂3 +

1

16
𝑍3𝜂4 +

1

25
𝑍4𝜂5 +

1

36
𝑍5𝜂6) + 𝛾1𝑏 𝑙𝑛 𝜂 + 𝛾2𝑏 (58)  

where 𝛾1𝑎, 𝛾2𝑎, 𝛾1𝑏 and 𝛾2𝑏 are the integrating constants in Eqs. (57) and (58). Since there are six 

constants (𝜃0𝑎 , 𝜃0𝑏 , 𝛾1𝑎 , 𝛾2𝑎 , 𝛾1𝑏  and 𝛾2𝑏 ) to be determined given five equations (Eqs. (52) to 

(56)), it needs one extra equation. The additional one equation of the overall energy balance is required 

as follows: 

𝜌𝐶𝑝𝑉(𝑇𝐹 − 𝑇𝑖) = ∫ 𝑞″ (𝑧)2𝜋𝑅 𝑑𝑧
𝐿

0

 (59)  

Eq. (59) can be rewritten as 
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𝜑𝐹 = ∫ 8[1 + 𝑠𝑖𝑛( 𝐵𝜉)]𝑑𝜉

1
𝐺𝑧

0

= 8 [
1

𝐺𝑧
−

1

𝐵
(𝑐𝑜𝑠 (

𝐵

𝐺𝑧
) − 1)] (60)  

where the 𝜑𝐹 is the average outlet temperature and it is defined as  

𝜑𝐹 = −
1

𝑉
∫ 𝑣𝑏2𝜋𝑅2𝜂𝜑𝑏(𝜂, 0)𝑑𝜂

1

𝜅

 (61)  

in flow pattern A, and 

𝜑𝐹 = −
1

𝑉
∫ 𝑣𝑎2𝜋𝑅2𝜂𝜑𝑎(𝜂, 0)𝑑𝜂

𝜅

0

 (62)  

in flow pattern B. Further, Eqs. (61) and (62) should be solved by using Eqs. (6), (7) and (19) and Eqs. 

(8) and (18) at 𝜉 = 0, respectively. Therefore, the complete solutions of dimensionless temperature 

distributions in a double-pass concentric circular heat exchanger were obtained by substituting the 

functions of 𝜃1𝑎, 𝜃1𝑏, 𝜃2𝑎, 𝜃2𝑏, 𝜃3𝑎 and 𝜃3𝑏, and constants of 𝜃0𝑎 and 𝜃0𝑏 into the 𝜑𝑎 and 𝜑𝑏 

(say Eqs. (18) and (19)). 

3. Heat-transfer efficiency enhancement 

The local Nusselt number is usually used to measure the convection heat transfer occurring at the 

wall surface of double-pass concentric circular heat exchangers in forced convection heat-transfer 

problems and defined as 

𝑁𝑢(𝜉) =
ℎ𝐷𝑒

𝑘
 (63)  

where k is the heat conductivity coefficient of the fluid, 𝐷𝑒 is the equivalent diameter of the conduit, 

𝐷𝑒 = 2𝑅, and h is the heat transfer coefficient.  The heat-transfer coefficient h is defined as 

𝑞𝑤
″ (𝑧) = ℎ(𝑇𝑗(𝑅, 𝑧) − 𝑇𝑖), j = a,b (64)  

or, in the dimensionless form 

ℎ =
𝑘

𝑅

𝑞𝑤
″ (𝜉)

𝑞0
″𝜑𝑗(1, 𝜉)

=
𝑘

𝑅

1 + 𝑠𝑖𝑛( 𝐵𝜉)

𝜑𝑗(1, 𝜉)
, j = a,b (65)  

Substituting Eq. (65) into Eq. (63) yields 

𝑁𝑢(𝜉) =
2[1 + 𝑠𝑖𝑛( 𝐵𝜉)]

𝜑𝑗(1, 𝜉)
, j = a,b (66)  

Similarly, the local Nusselt number of single-pass heat exchangers is defined as 

𝑁𝑢0(𝜉) =
2[1 + 𝑠𝑖𝑛( 𝐵𝜉)]

𝜑0(1, 𝜉)
 (67)  

where the wall temperature distribution, 𝜑0(1, 𝜉), of single-pass heat exchangers can be determined, 

according to the reference [41]. 

Moreover, the average Nusselt numbers of single- and double-pass concentric circular heat 
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exchangers, respectively, were determined by 

𝑁𝑢 = 𝐺𝑧 ∫ 𝑁𝑢(𝜉)
1/𝐺𝑧

0

𝑑𝜉 = 𝐺𝑧 ∫
2[1 + 𝑠𝑖𝑛( 𝐵𝜉)]

𝜑𝑗(1, 𝜉)

1/𝐺𝑧

0

𝑑𝜉, j = a,b (68)  

and 

𝑁𝑢0 = 𝐺𝑧 ∫ 𝑁𝑢0(𝜉)
1/𝐺𝑧

0

𝑑𝜉 = 𝐺𝑧 ∫
2[1 + 𝑠𝑖𝑛( 𝐵𝜉)]

𝜑0(1, 𝜉)

1/𝐺𝑧

0

𝑑𝜉 (69)  

The heat-transfer efficiency enhancement was illustrated by calculating the percentage increase 

in the device by employing a double-pass operation, based on single-pass device with the same 

working dimensions and operating parameters 

𝐼ℎ =
𝑁𝑢 − 𝑁𝑢0

𝑁𝑢0

(%) (70)  

4. Power consumption increment 

The power consumption increment is unavoidable due to inserting an impermeable sheet into a 

single-pass device to conduct double-pass operations. The power consumption only incurring the 

friction losses to walls in double-pass operation were significant. And relations to joint, diversion or 

bending of conduit are neglected for simplicity. It may be obtained by using generalized Bernoulli 

equation [42] with following assumptions: (a) incompressible fluid; (b) no change in average velocity; 

(c) no change in elevation; (d) no work performed. Hence, the power consumption may determine 

using Fanning friction factor 𝑓𝐹 [43]: 

ℓ𝑤𝑓,𝑗 =
2𝑓𝐹,𝑗�̄�𝑗

2𝐿

𝐷𝑒𝑗
,  𝑗 = 𝑎, 𝑏    (71)  

 𝑃 = 𝑉𝜌ℓ𝑤𝑓,𝑎 + 𝑉𝜌ℓ𝑤𝑓,𝑏,  𝑃0 = 𝑉𝜌ℓ𝑤𝑓,0    (72)  

The relative extents 𝐼𝑃 of power consumption increment was illustrated by calculating the 

percentage increment in the double-pass operation, based on the single-pass device as 

𝐼𝑃 =
𝑃double−𝑃single

𝑃single
× 100%    (73)  

5. Results and discussions 

The applications of Frobenius method to solve for differential equations are expanded in terms 

of an extended power series, say Eqs. (38) and (39). To illustrate, comparison is made to such a power 

series with terms truncated after 𝑛 = 70 and 𝑛 = 75 with 𝜅 = 0.5 and 𝜔 = 0.8. The accuracy 

of those comparisons is analyzed and some results are presented in Table 3 for an extended power 

series for flow pattern A. It can be observed from Table 3 that the power series agree reasonably 

well with the term of 𝑛 = 70, and hence those power series with 𝑛 = 70 are employed in the 

calculation procedure.  
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Table 3. The convergence of power series in Eqs. (44) and (45) with 𝑛 = 70 and 𝑛 = 75 

for flow pattern A as an illustration. 

𝐺𝑧 n 𝜃2𝑎(0.3) 𝜃3𝑎(0.3) 𝜃2𝑏(0.7) 𝜃3𝑏(0.7) 𝑁𝑢 

1 70 -0.092 0.135 0.136 -1.124 0.07 

75 -0.092 0.135 0.136 -1.124 0.07 

10 
70 −5.2 × 10−24 −9.2 × 10−23 1.71 × 10−13 6.5 × 10−15 1.87 

75 −6.7 × 10−25 −2.6 × 10−24 2.7 × 10−14 1.0 × 10−15 1.87 

50 
70 −1.4 × 10−23 −7.7 × 10−24 1.8 × 10−13 7.2 × 10−15 6.31 

75 −4.4 × 10−25 −2.4 × 10−25 2.8 × 10−14 1.1 × 10−15 6.31 

100 
70 −5.1 × 10−24 1.7 × 10−24 1.8 × 10−13 7.3 × 10−15 7.92 

75 −1.6 × 10−25 5.2 × 10−26 2.8 × 10−14 −1.1 × 10−15 7.92 

1000 
70 −1.3 × 10−38 −2.3 × 10−38 1.9 × 10−13 6.3 × 10−15 10.06 

75 4.5 × 10−40 −4.9 × 10−40 3.0 × 10−14 1.0 × 10−15 10.06 
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Figure 2. Dimensionless wall temperature distribution with and as parameters (flow pattern A). 

The dimensionless temperature distributions of power-law fluids in double-pass concentric 

circular heat exchanger with sinusoidal wall flux are obtained through solving the energy balance 

equations with the aid of the linear superposition method. Obtaining the wall temperature distributions 

in advance of the design of the heat exchanger equipment is important for an engineer to select the 

appropriate materials and to carefully consider both technical and economic feasibility. It can be 

observed in Figure 2 for the flow pattern A that the wall temperature is getting lower at the downstream 
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in subchannel b. The wall temperature at the whole part of subchannel b could reach an extremely low 

value, especially for remarkably high flow rate, say 𝐺𝑧 =100. On the contrary, the wall temperature 

is getting higher at the downstream in subchannel b for the flow pattern B. The wall temperature 

profiles are growing up toward the end downstream, as shown in Figure 3 for the flow pattern B. The 

wall temperatures are found to be close to the inlet temperature at the flow entrance irrespective of the 

𝐺𝑧 values. The wall temperature becomes a little bit lower for smaller 𝜔 (more apparently shear-

thinning), regardless of the flow pattern. It is noteworthy that the wall temperatures are monotonically 

increasing or decreasing along the heat-exchanger device even with the sinusoidal wall heat flux. 

Regarding the device performance, the simulated Nusselt number Nu is demonstrated in Figure 4, and 

both flow patterns of the double-pass concentric circular heat exchanger show much more effective 

energy transfer than that from the single-pass device. The performance of device is further improved 

along with the increasing 𝐺𝑧. The device with the flow pattern B is shown to be more effective than 

that of the flow pattern A and single-pass operations under the same 𝜔  condtion. For both flow 

patterns, the Nu is getting lower with the smaller 𝜔.  
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Figure 3. Dimensionless wall temperature distribution with and as parameters (flow pattern B). 

The dimensionless wall temperatures are demonstrated in Figures 5 and 6 for the flow patterns 

A and B, respectively, to illustrate the influence of 𝜅value (impermeable-sheet position). The wall 

temperature shows monotonically decreasing tendency for flow pattern A and increasing tendency for 

flow pattern B. On the other hand, the wall temperature presented longitudinal fluctuations in 

accordance with the sinusoidal wall flux. It is also found that the wall temperature increases with small 

𝜅 (relative larger thickness of subchannel b) and decrease with a higher 𝐺𝑧 for both flow patterns. 
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Figure 4. Average Nusselt number vs. 𝐺𝑧 with 𝜔 as a parameter for 𝜅 = 0.5. 

 

0.0

0.2

0.4

0.6

0.8

1

1

1 0

0

Gz=50

Gz

 

 

0


b (

1,
 

)

 

 

Gz

 = 0.8

 Single-pass device

  = 0.3

  = 0.7

Gz=30 Gz=100

Gz

 

 

 

Figure 5. Dimensionless wall temperature vs. 𝐺𝑧𝜉 with 𝜅 for various 𝐺𝑧 (flow pattern A). 
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Figure 6. Dimensionless wall temperature vs. 𝐺𝑧𝜉 with 𝜅 for various 𝐺𝑧 (flow pattern B). 

In Figure 7, it is found that the Nusselt number Nu of the current double-pass heat exchanger is 

sensitive to the 𝜅 values. The Nusselt number Nu increases with the 𝜅 values which indicated the 

double-pass device with a narrower subchannel b could accomplish better heat-transfer efficiency. It 

is also found the device of flow pattern B could have better device performance improvement than that 

of flow pattern A.  
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Figure 7. The average Nusselt number vs. 𝐺𝑧 with 𝜅 as a parameter as a parameter. 
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When simultaneously considering the heat-transfer improvement enhancement 𝐼ℎ  and the 

power consumption increment 𝐼𝑝 , its ratio 𝐼ℎ/𝐼𝑝  is plotted versus Graetz number 𝐺𝑧  with the 𝜅 

value as a parameter in Figure 8 and Tables 4 and 5. The ratio of 𝐼ℎ/𝐼𝑝 rapidly increases with 𝐺𝑧 and 

quickly flatten out. It also rises with the increase in 𝜅 . The double-pass device of flow pattern B 

demonstrated to be more beneficial in economic sense than that of flow pattern A. 
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Figure 8. The ratio of 𝐼ℎ/𝐼𝑝 vs. 𝐺𝑧 with 𝜅 as a parameter. 

 

Table 4. The ratio of 𝐼ℎ/𝐼𝑝 with , 𝐺𝑧 and 𝜅 as parameters for flow pattern A. 

𝐼ℎ/𝐼𝑝 

 

𝐺𝑧 

 = 0.4   = 0.6   = 0.8  = 1.0 

Impermeable-sheet position (𝜅) 

0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 

            

1 -5.88 -13.68 -11.02 -2.98 -9.34 -7.57 -1.38 -6.38 -5.22 -0.71 -4.31 -3.63 

10 -1.36 -3.29 -2.43 -0.60 -2.00 -1.55 -0.25 -1.16 -0.86 -0.1 -0.63 -0.47 

100 3.15 13.48 20.48 1.65 9.77 14.74 0.84 6.97 10.58 0.42 4.9 7.55 

1000 4.56 19.63 31.99 2.36 14.04 22.98 1.19 9.97 16.29 0.59 6.91 11.56 
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Table 5. The ratio of 𝐼ℎ/𝐼𝑝 with , 𝐺𝑧 and 𝜅 as parameters for flow pattern B. 

𝐼ℎ/𝐼𝑝 

 

𝐺𝑧 

 = 0.4   = 0.6   = 0.8  = 1.0 

Impermeable-sheet position (𝜅) 

0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 

            

1 -0.57 -1.29 -1.02 -2.26 -7.08 -5.65 -1.43 -6.43 -5.27 -0.49 -3.01 -2.45 

10 4.71 13.58 13.63 2.59 9.43 9.21 1.24 6.6 6.58 0.62 4.71 4.76 

100 4.35 18.59 28.29 2.4 13.34 20.15 1.18 9.37 14.28 0.58 6.52 10.12 

1000 4.7 20.29 33.16 2.45 14.51 23.79 1.23 10.12 16.84 0.61 7.12 11.94 

6. Conclusions 

A mathematical formulation for a concentric circular double-pass heat exchanger of power-law 

fluids with sinusoidal wall flux has been formulated, and the analytical solution is obtained using 

orthogonal expansion technique. The double-pass flow patterns can be achieved by inserting an 

impermeable sheet into a cylindrical heat exchanger to examine the heat transfer behavior. The double-

pass device performance can be significantly enhanced when compared to that of the single-pass one, 

especially for a narrower annular flow channel (subchannel b). The average Nusselt number of the 

device of flow pattern B (annular flow in, core flow out) is larger than that of flow pattern A (core flow 

in, annular flow out). The longitudinal wall temperature profile is able to be more smoothing despite 

the sinusoidal wall flux. The wall temperature is decreasing in longitudinal direction for flow pattern 

A and increasing for flow pattern B, and the variations are much more moderate for high flow rates, 

for example at 𝐺𝑧 = 100. A comparison is also made for the heat-transfer improvement enhancement 

𝐼ℎ and the power consumption increment 𝐼𝑝 in the form of 𝐼ℎ/𝐼𝑝. One could find that the flow pattern 

B always performs better than that of flow pattern A when assessing the economic feasibility of both 

the flow patterns A and B by ratio 𝐼ℎ/𝐼𝑝. 
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Supplementary  

Nomenclature 

an [-] constants 

B [m] constant B=𝛽𝐺𝑧𝐿 

bn [-] constants 

De [m] hydraulic diameter 

𝑓𝐹 [-] Fanning friction factor 

gc [-] gravity factor 

𝐺 [-] constant 

𝐺𝑧 [-] Graetz number 

𝐻 [-] constant 

ℎ [kW/mK] heat transfer coefficient 

𝐼ℎ [-] heat-transfer improvement enhancement 

𝐼𝑝 [-] power consumption increment 

𝑘 [kW/mK] thermal conductivity of the fluid 

𝐿 [m] conduit length 

ℓ𝑤𝑓 [kJ/kg] friction loss in conduit 

𝑁𝑢 [-] the average Nusselt number 

P [(Nm)/s] power consumption 

𝑞″ [kW] wall heat flux 

r [m] radius coordinate  

R [m] outer tube radius 

R1 [m] inter tube radius 

T  [K] temperature of fluid in conduit 
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𝑈𝑖 [-] constants, 𝑖 = 1,2,3,4,5 

𝑉 [m3/s] inlet volumetric flow rate 

𝑣 [m/s] velocity distribution of fluid 

𝑍𝑖 [-] constant, 𝑖 = 1,2,3,4,5 

z [m] longitudinal coordinate 

  [m2/s] thermal diffusivity of fluid 

  [1/m] constant 

 �̇�  [1/s] shear rate 

𝛾1𝑎, 𝛾2𝑎 [-] integration constants 

𝛾1𝑏, 𝛾2𝑏 [-] integration constants 

δ [m] impermeable sheet thickness 

  [-] coefficients 

𝜂 [-] dimensionless radius coordinate, = r/R 

  [-] constant = R1/R 

𝜆 [-] constant 

𝜉 [-] dimensionless longitudinal coordinate = z/𝐺𝑧𝐿 

𝜌 [kg/m3] density of the fluid 

𝜏 [Pa] shear stress 

𝜑 [-] dimensionless temperature 𝑘(𝑇 − 𝑇𝑖)/𝑞0
″𝑅 

𝜔 [-] power-law index 

𝜓 [-] complex functions of dimensionless temperature  

Subscripts 

0 [-] = at the inlet or for the single-pass device 

a [-] = the inner flow channel 

b [-] = the outer flow channel 

F [-] = at the outlet of a double-pass device 

i [-] = at the inlet of a double-pass device 

L [-] = at the end of the channel= 

w [-] = at the wall surface 
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