% MBE, 18(5): 5321-5346.
AIMS DOI: 10.3934/mbe.2021270
@ Received: 10 March 2021
Accepted: 02 June 2021
http://www.aimspress.com/journal/ MBE Published: 16 June 2021

Research article

An ensemble framework based on Deep CNNs architecture for glaucoma
classification using fundus photography

Aziz-ur-Rehman'-*, Imtiaz A.Taj’>, Muhammad Sajid’ and Khasan S. Karimov'+*

! Faculty of Electrical Engineering, GIK Institute of Engineering Sciences and Technology, Topi

23640, District Swabi, KPK, Pakistan

Department of Electrical Engineering, Capital University of Science and Technology Islamabad
Expressway, Kahuta Road, Zone-V Islamabad, Pakistan

Department of Electrical Engineering, Mirpur University of Science and Technology (MUST),
Mirpur 10250 (AJK), Pakistan

Centre for Innovative and New Technologies of Academy of Sciences of the Republic of Tajikistan,
734015, Rudaki Ave., 33. Dushanbe Tajikistan

* Correspondence: Email: azizur80@hotmail.com; Tel: +923338109594.

Abstract: Glaucoma is a chronic ocular degenerative disease that can cause blindness if left
untreated in its early stages. Deep Convolutional Neural Networks (Deep CNNs) and its variants
have provided superior performance in glaucoma classification, segmentation, and detection. In this
paper, we propose a two-staged glaucoma classification scheme based on Deep CNN architectures. In
stage one, four different ImageNet pre-trained Deep CNN architectures, i.e., AlexNet, InceptionV3,
InceptionResNetV?2, and NasNet-Large are used and it is observed that NasNet-Large architecture
provides superior performance in terms of sensitivity (99.1%), specificity (99.4%), accuracy (99.3%),
and area under the receiver operating characteristic curve (97.8%) metrics. A detailed performance
comparison is also presented among these on public datasets, i.e., ACRIMA, ORIGA-Light, and RIM-
ONE as well as locally available datasets, i.e., AFIO, and HMC. In the second stage, we propose an
ensemble classifier with two novel ensembling techniques, i.e., accuracy based weighted voting, and
accuracy/score based weighted averaging to further improve the glaucoma classification results. It is
shown that ensemble with accuracy/score based scheme improves the accuracy (99.5%) for diverse
databases. As an outcome of this study, it is presented that the NasNet-Large architecture is a feasible
option in terms of its performance as a single classifier while ensemble classifier further improves the
generalized performance for automatic glaucoma classification.

Keywords: Deep Convolutional Neural Network; transfer learning; fundoscopy; Optic Nerve Head;
performance metrics; ensemble; accuracy based weighted voting and averaging
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1. Introduction

According to the World Health Organization (WHO), an increasing number of glaucoma patients
have been reported worldwide in recent years [1]. Glaucoma prevention and treatment has been a major
focus of international directives including the WHOs Vision 2020 campaign. It is estimated that the
number of people with glaucoma is expected to rise from 64 million to 76 million in 2020 and 111.8
million in 2040, with Africa and Asia being affected more heavily than the rest of the world as there
is a shortage of trained ophthalmologist for its diagnosis [2,3]. Hence, this disease is considered as a
major public health concern, and its early diagnosis is important for preventing blindness.

Glaucoma is the second most common cause of irreversible vision loss and its diagnosis is a
challenging research field because real world glaucoma images are acquired in the presence of several
factors such as, illumination changes, background interference, light variation, etc [4]. With the rapid
advancement in imaging technologies, several retinal imaging modalities like Heidelberg Retina
Tomography (HRT) and Optical Coherence Tomography (OCT) have been developed. Although,
these are used in developed and under-developed countries for image based diagnosis of various
ocular diseases, i.e., Macular degeneration, Diabetic retinopathy and Glaucoma. However, these are
costlier technologies and are not affordable for smaller public health units. Therefore, the most
popular and widely used imaging device is the Fundoscopy [5].

Fundoscopy enables ophthalmologist to examine the Optic Nerve Head (ONH) for the glaucoma
diagnosis and a typical image of ONH is shown in Figure 1. There are various parts of ONH which
can be considered to classify between normal and glaucoma eyes. Four main changes can be observed
in ONH associated with glaucoma, including ONH cupping, Neuroretinal rim thinning, Nerve Fibre
Layer (NFL) thickness and Parapapillary Atrophy (PPA). These changes are detected manually
through analysis of ONH images to diagnose glaucoma [6]. However, identification of glaucomatous
signs in ONH require specialist ophthalmologists with years of experience and practice. Therefore,
the development of automatic glaucoma assessment algorithms based on fundus image analysis, will
be very helpful in reducing overall workload of ophthalmologists and also make the diagnosis more
feasible and efficient even in smaller health units.
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Figure 1. The most prominent area, Optic Nerve Head to diagnose the glaucoma initially.

Recently, Deep CNNs have attracted a lot of interest and are seen to have great potential for the
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solution of computer vision tasks like image classification and semantic segmentation [7]. These
networks are more robust to discover meaningful features in the images that are usually ignored in
conventional image processing techniques. Moreover, different intermediate steps such as feature
extraction and selection are embedded within the networks and these networks can perform feature
learning and classification, simultaneously. Due to their popularity, numerous algorithms have been
developed during the past few years on the detection and classification for glaucomatous fundus
images. However, to train deep CNNs a large amount of annotated data is required [8, 9]. Therefore, a
lot of research effort is being put on the training methodology of the networks. We can divide these
methodologies into two categories, 1.e., training a deep network from scratch (full training) and
transfer learning with fine-tuning.

Training from scratch requires large amount of labeled data which is extremely difficult to find in
medical imaging. It is expensive to collect images both in terms of time and budget for disease
identification. Besides, the training of Deep CNNss is time consuming that usually requires extensive
memory and computational resources.  Furthermore, the designing and adjustment of the
hyper-parameters are the challenging tasks with reference to over-fitting and other issues. On the
contrary, transfer learning with fine-tuning [10-12] is the easiest way to overcome such problems.
The transfer learning is commonly defined as the ability of the network to exploit the knowledge
learned in one domain, to another that share some common characteristics. Therefore, it is more
popular method in machine learning and data mining for regression, clustering, and classification
problems.

In an ensemble framework, various classifiers are trained to solve the same problem. The
classification capability of an individual optimized Deep CNN is not generalized for diverse
databases. Generally, the classification performance of grouping of various Deep CNNs is better than
single architecture [13]. To make the most of the single classification capability, a promising solution
would be to create an ensemble of several Deep CNN models.

1.1. Background

During the past few years, extensive research has been carried out for the development of
automatic glaucoma assessment systems based on fundus image analysis through transfer
learning [14-16]. In the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), millions of
labeled images selected from 1000 different classes have been successfully tested on different medical
image analysis [17]. It is tested that CNNs outperform the previous implementations with computer
aided screening systems for medical images. Two individual CNN architectures are used in [18] to
segment the optic disc and optic cup to find the cup-to-disc ratio (CDR). In [19], the authors have
developed a CNN architecture to automate the detection process of glaucoma. Another Deep CNN
algorithm has been developed in [20] to detect glaucoma through extraction of different features with
the combination of different classifiers, i.e., Random Forest, Support Vector Machine and Neural
Network. Feature learning through deep learning algorithm from retinal fundus images has also
proposed in [21] to detect glaucoma. The authors have considered CNN model to learn features with
linear and nonlinear activation functions. In the study [22], authors have implemented a
Glaucoma-Deep system. The deep-belief network has been used to select the most discriminative
features. In the work [23], two different types of CNNs, i.e., Overfeat and VGG-S, have been used as
feature extractors. Contrast-Limited Adaptive Histogram Equalization (CLAHE) and vessels deletion
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have considered to investigate the performance of these networks. The authors have proposed a joint
segmentation of optic disc, optic cup and glaucoma prediction in [24]. CNN feature sharing for
different tasks ensured better learning and over-fitting prevention. Inception-v3 architecture has
presented in [25] to detect glaucomatous optic neuropathy. Local space average color subtraction has
been applied in pre-processing to accommodate for varying illumination. A framework on a dataset of
fundus images collecting from different hospitals has presented in [26] by incorporating both domain
knowledge and feature learned from a deep learning model. The assessment of deep learning
algorithms with transfer learning have also been addressed in [27,28], with greater number of images
than previous methods with high accuracy, sensitivity and specificity. Recently, in [29], authors have
implemented deep learning based segmentation to identify glaucomatous optic disc. In [30], the
authors have combined CNN and Recurrent Neural Network (RNN) to extract the spatial features in a
fundus image and also the temporal features embedded in a fundus video,i.e., sequential images.
ResNet50 deep CNN model has been explored with 48 full convolutional neural network layers. A
deep learning approach based on deep residual neural network (ResNet101) for automated glaucoma
detection using fundus images is proposed in [31].  Chronic eye disease diagnosis using
ensemble-based classifier has presented in [32]. This study tends to achieve an early and accurate
diagnosis of glaucoma based on an ensemble classifier by integrating the principal component
analysis with rotation forest tree. Ensemble learning based CNN has been proposed in [33] to
segment retinal images. The output of the classifier is subject to an unsupervised graph cut algorithm
followed by a convex hull transformation to obtain the final optic cup and disc segmentation. A novel
disc-aware ensemble network based on the application of different CNNs is presented in [34] for
automatic glaucoma screening. The authors have introduced a deep learning technique to gain
additional image-relevant information and screen glaucoma from the fundus image directly. More
recently, a multi-class multi-label ophthalmological disease detection using transfer learning has been
investigated in [35] with four pre-trained Deep CNN architectures. ResNet, InceptionV3, MobileNet,
and VGG16 are implemented to detect eight types of ocular diseases. Besides, in [36], an artificial
intelligence and telemedicine based screening tool has been developed to identify glaucoma suspects
from color fundus Images. An ensemble of five pre-trained Deep CNN architectures is presented to
detect glaucoma on the basis of cup to disc ratio (CDR). Two Xception architectures,
InceptionResNetV?2, NasNet, and InceptionV3 are used in the proposed ensemble to calculate the
final CDR value for glaucoma detection.

It is evident from the above literature that almost all previously proposed methods employ CNN for
the detection of glaucoma. However, limited work has been carried out to ensemble Deep CNNs for
glaucoma diagnosis.

1.2. Paper contribution

The research contributions of presented work are summarized as follows:

1) We propose a new two-staged scheme based on Deep CNNs architectures for glaucoma
classification using fundus images. This new scheme comprises four Deep architectures, i.e.,
AlexNet, InceptionV3, InceptionResNetV2 and NasNet-Large obtained through extensive
experimental results search. We also assess their individual performance on both publicly and
local hospital datasets. Our results clearly demonstrate the effectiveness of the newly proposed
scheme based on Deep CNN architecture.
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2) We propose a new ensemble framework for better glaucoma classification. Four different pre-
trained Deep CNN models are fused together in parallel and the output scores / probabilities are
optimized using five different voting techniques to find the best Deep CNNs combination. We
also propose two novel voting techniques to achieve much better results as compared to existing
state-of-the-art for glaucoma classification.

The rest of the paper is organized as follows: the proposed methodology is presented in Section 2.
Experiments and results are given in Section 3. Results related discussion is presented in Section 4,
while conclusion and future work are summarized in Section 5.

2. Proposed methodology
The proposed automatic glaucoma diagnosis using fundus images is shown in Figure 2. There are

five steps: 1) data collection; 2) pre-processing; 3) Deep CNN feature learning; 4) Ensemble (4x Deep
CNNGs); 5) classification/diagnosis. These steps are explained in the following subsections:

ImageNet Pre-trained Network
Dataset

Y Y

| Transfer Learning

A4
Datasets Pre-processed [7”| Fine-tuned Deep CNNs 1= Diagnosis
(5x types) (stage-I)
Y

Test
Images Pre-processing l Glaucoma Normal

Ensemble
(4x Deep CNNs)

Diagnosis
stage-11

““ Normal

| 4
Glaucoma

Figure 2. The proposed ensemble classifier based on Deep CNNs architecture for glaucoma
diagnosis.

2.1. Data collection

Both public and private datasets are used to train, validate and test the different Deep CNNs. In
this way, we can create the diversity in the images and the results will be generalized. The description
about each dataset is given as follows:

ACRIMA is the most newly available public dataset for the classification of glaucoma through
Deep learning. It consists of 705 fundus images (309 normal and 396 glaucomatous). All images are
annotated by two glaucoma experts with eight years of experience. It is only be used for classification
tasks because optic disc and optic cup annotations are not provided [37].
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The ORIGA-light is another public dataset which is annotated by experienced professionals from
Singapore Eye Research Institute. There are 650 fundus images (482 normal and 168 glaucomatous)
with a resolution of 3072 x 2048 pixels. This dataset is widely used as a benchmark for the diagnosis
of glaucoma [38].

The RIM-ONE is a very popular publicly available dataset for ONH segmentation and glaucoma
detection. The database was created by collaboration of three Spanish hospitals, i.e., Hospital
Universitario de Canarias, Hospital Clnico San Carlos and Hospital Universitario Miguel Servet.
There are 455 fundus images, 261 normal and 194 glaucoma [39].

Another 124 fundus images, are collected from local private hospital, i.e., Armed Forces Institute
of Ophthalmology (AFIO), Military Hospital, Rawalpindi, Pakistan. Similarly, 55 images are also
acquired from local private hospital, i.e., Hayatabad Medical Complex (HMC), Peshaware, Pakistan.
These images are annotated by two glaucoma experts with ten years of experience in glaucoma
department. The number of normal and glaucoma images in each database are listed in Table 1.

Table 1. Key statistics of fundus images used to train/test the Deep CNNs.

Dataset Normal Glaucoma Total
ACRIMA 309 396 705
ORIGA-light 482 168 650
RIM-ONE 261 194 455
AFIO 85 39 124
HMC 40 15 55
1177 812 1989

The images of different datasets are shown in Figure 3. The difference between normal and
glaucoma images are also presented in Figure 4. The first row shows the normal while the second row
is the glaucoma images.

(c) AFIO

(d) ORIGA-Light (e) HMC

Figure 3. Examples of fundus images of different datasets.
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(d) (e) )

Figure 4. Normal and glaucoma images, (a)—(c) are normal while (d)—(f) are glaucoma
images.

2.2. Pre-processing

The data pre-processing steps include the image patch extraction centered at ONH and data
augmentation for the training of Deep CNNss.

First of all, we process all the images into a standard format that are used to train Deep CNNs.
Image patches, centered at ONH, are extracted at same size according to the requirement of different
Deep CNNs. Bicubic interpolation [40] is considered for resizing. It is examined that output pixel
values are weighted average of pixels in 4-by-4 neighborhood pixels. The fundus images are cropped
by evaluating the bounding box of 1.5 times the optic disc radius. Meanwhile, the illumination and
contrast enhancement procedures are avoided to make the Deep CNNs learning more dynamic. In case
of images from the local hospitals, i.e., AFIO and HMC, we have to localize ONH at the center of
fundus images. It is to note that glaucoma disease mainly affects the ONH and its surrounding area.
The cropping of images around ONH turned out to be more effective as compared to whole image,
used for the training of Deep CNNs [41]. Moreover, the computational cost is also reduced during
network learning.

The data augmentation technique is also explored during training of Deep CNNs to increase the
training images and minimize over-fitting. The fundus images are invariant for flipping, rotation and
translation. Hence, these three steps have been considered to increase the data for training of Deep
CNNe .

2.3. Deep CNN feature learning

Currently, Deep CNNs are applied to a wide variety of applications in image segmentation and
classification tasks. In this work, we also implement ImageNet trained Deep CNNs for the diagnosis
of glaucoma through retinal fundus images. We have explored four types of Deep CNNs, i.e., AlexNet,
InceptionV3, InceptionResNetV2 and NasNet-Large for the classification of normal and glaucomatous
images. The basic architecture as well as feature extraction scheme of each network are illustrated in
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the forthcoming paragraphs.

AlexNet, first proposed in [42] , is an extremely powerful model in achieving high accuracies on the
challenging databases. It is very similar architecture as LeNet [43] but much deeper with more filters
per layer with stacked CNNs layers. In this model, there are 5 convolutional and 3 Fully Connected
(FC) layers with max pooling, Rectified Linear Unit (ReLu), and dropout layers. The input to this
model is an RGB image of size 256 X 256. The basic structure of this network is shown in Figure 5.

0] [0]
0[O
—> (1| |+
o 16| |O
Pool 3 ol lo
Pool 2C0nv3 M 1M Softmax
Conv2 FC

Pool 1

Convl

Figure 5. The basic architecture of AlexNet used for glaucoma classification.

InceptionV3 [44] is an extended network of the GoogLeNet [45] with good classification
performance in several biomedical applications with transfer learning [46,47]. InceptionV3 originally
contains 11 Inception modules and one FC layer. Each Inception module also has 4 to 10 multiscale
convolutional operations conducting with 1 X 1,3 X 3, or 5 X 5 filters. Max-pooling is used as the
spatial pooling operation in the inception modules and FC is for final classification. This design
reduces the computational complexity as well as number of parameters to be trained. It is trained on
more than a million images from the ImageNet database. The network has an image input size of
299 x 299. The fundamental architecture of InceptionV3 is illustrated in Figure 6.

We also consider the state-of-the-art InceptionResnetV2 network [48] to extract deep spatial
features. It is a combination of two recent networks, one is Residual Connections [49] and another is
Inception structure [44]. The engaged InceptionResNetV2 network includes Stem, InceptionResNet,
Reduction layers, average pooling layer and a FC layer. The Stem includes preliminary convolution
operations executed before entering the Inception blocks. The InceptionResNet layers have residual
connections with convolution operations while the Reduction layers are responsible for changing the
width and height of the image. The spatial features are extracted from the convolutional layers and the
pooling layers decrease the dimensionality of individual feature map, but hold the most significant
features. Furthermore, the convolutional layers are followed by the batch normalization layer and
ReLU, which is a nonlinearity function and helped to decrease the training time. The network has an
image input size of 299 x 299. Figure 7 illustrates the architecture of deep spatial feature extraction
using InceptionResNetV2 network.

Neural Architecture Search Network Large (NASNet-Large) is basically composed of two kinds of
layers or cells, i.e., Normal and Reduction Cells. During the forward path, the width and height of
feature map is reduced half by Reduction Cell while the Normal Cell retain these two dimensions same
as the input feature map. The Normal Cells are stacked between Reduction Cells as shown in Figure 8.
Each cell in Normal / Reduction Cell is composed of a number of blocks. Each block is built from
the set of popular operations in Deep CNNs with various kernel size e.g.: convolutions, max pooling,
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Figure 6. The InceptionV3 basic structure used for deep glaucoma feature learning.
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Figure 7. The InceptionResNetV?2 network implemented for Deep spatial feature extraction.

average pooling, dilated convolution, depth-wise separable convolutions. Finding best architecture for
Normal Cell and Reduction Cell with 5 blocks is described in [50]. NASNet-Large with N equals to
6 aims to get maximum possible accuracy. With the help of this arrangement, the network is able to
learn rich feature representations for a wide range of images [51]. This network has an image input

size of 331 x 331.
Mloe@e e

Input

|@ Convolution layer

Reduction cell
@ Normal cell

Figure 8. The structure of the NasNet-Large architecture considered for glaucoma diagnosis.

It is to note that the inputs in the above mentioned Deep CNN architectures are pre-processed color
fundus images with centered at ONH . The region of interest is also kept same for all the models
while the last FC layer is modified with softmax classifier to study only two classes, i.e., normal and
glaucoma.
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2.4. Ensemble (4x Deep CNNs)

In case of an ensemble framework, a set of diverse classifiers are aggregated and are trained to
solve the same problem. All the above mentioned architectures are combined in one classifier as
presented in Figure 9. The final decision is given by any of the five voting techniques, i.e., Majority
Voting (MV), Proportional Voting (PV), Averaging (AV), Accuracy based Weighted Voting (AWYV),
and Accuracy/Score based Weighted Averaging (ASWA).

AlexNet InceptionV3 InceptionResNetV2 NASNet-Large

P1 P2 P3
Wi w2 w3 P4 w4

Ensemble

[ |
o

Final Decision

Figure 9. The proposed ensemble classifier for automatic glaucoma classification.

In MV [52], each model makes a prediction (vote) for each test instance and the final output
prediction is the one that receives more than half of the votes. Here V;; is the vote for jth class with
reference to ith classifier and N(V;) is the total number of votes for jth class. We predict the class
label, O, via highest number of votes. Mathematically, it is written as

N
N(Vj) = Z V,'j (21)
i=1
O = Max{N(V)),N(V2), cuueve..... SN(V))} 2.2)
where N(Vy), N(V,), and N(V3) are the total number of votes for class 1, class 2, and class 3,

respectively.

In PV, the training accuracy of each classifier are summed-up with respect to their prediction and the
maximum result will be the final outcome. A;; is the accuracy for jth class with respect to ith classifier
and T'(A)) is the sum of training accuracies for jth class. We can write as

N
T(A) = ZAij (2.3)

i=1
O = Max{T(A), T(Ay), .ccoue...... ,T(A))) 2.4)
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where T'(A),T(A,), and T(A3) are the sum of training accuracies for class 1, class 2, and class 3,
respectively.

However, in case of equal votes, the AV is considered. The score vector for each predicted class are
summed-up and averaged. S ;; is the score for jth class according to ith classifier and S ; is the average
score for jth class. The output class, O, is the one corresponding to the highest value, such as

1 N
Sj:N;Sij (25)
O=Max{S1,S2, ccceeeee... S5} (2.6)

where S, S,, and S 5 are the averaged score for class 1, class 2, and class 3, respectively.
In AWY, accuracy of each classifier is modified according to the following relation,

e—lO(]—ACCi)

(2.7)

a; =
k ,—10(1-ACCi
Zi:] e ( i)

where «; is the updated accuracy of ith classifier, i.e., ACCi. The final decision, O, is assigned to the
maximum value, given as

N
AWV); = > a;x W, (2.8)
i=1
0 = Max{(AWV);, (AWV),, cooooeo.. L(AWY);} (2.9)

where W;; is the weight of jth class with reference to ith classifier and (AWV),, (AWV),, and (AWV);3
are the accuracy based weighted votes for class 1, class 2, and class 3, respectively.

In ASWA, the probabilities / Scores are used to calculate the weighted average based on accuracy.
Mathematically, it is written as

N
(ASWA); = > @i x S} (2.10)
i=1

O = Max{(ASWA), ............. ,(ASWA);} (2.11)
where q; is already calculated from Eq (2.7), and §;; is the probability / score of jth class with respect
to ith classifier. The final output decision is evaluated according to the Eq (2.11).
(ASWA),(ASWA),, and (ASWA); are the accuracy/score based weighted averaging of class 1,

class 2, and class 3, respectively.

2.5. Classification/diagnosis

The classification task is performed by the Softmax layer. During training a network, this layer
updates the weights through back propagation. This process is based on the loss function used in the
training stage. Keeping in view the underlying binary classification problem, the Cross Entropy (C.E)
has been used as a loss function, as shown in Eq (2.12).

Cc=2
C.E == ) (1log(S) 2.12)

= —t;log(S1) — (1 — 1) log(l - S)
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where 7; and S; are the ground truth and the Deep CNNs score for each class i in C.

We have analyzed the fundus images in two stages. In stage one, the performance of each Deep
CNN has been evaluated for glaucoma diagnosis. In stage two, all four Deep CNNs are grouped
together as a single classifier to further improve the accuracy of the system. Five voting schemes with
two newly proposed techniques are considered to calculate the final decision.

3. Experiments and results

3.1. Experimental protocols

First, all fundus images are divided into three groups, training, validation and testing images. The
sixty percent of all is for training while thirty percent of remaining for validation and rest for testing
purpose. Table 2 shows the distribution of images in each group.

Table 2. Distribution of the fundus images for training, validation and testing sets.

Class Training Validation Testing
Normal 706 141 330
Glaucoma 487 98 227

The validation group is selected to monitor the number of epochs in the training process of different
deep architectures. All the images used in validation, shared with the training set after selecting hyper-
parameters and cross validation experiments. Thus, the training set has 847 normal and 585 glaucoma
images. But, the testing sets are kept same during all experiments. The distribution of test images in
different datasets is presented in Table 3.

Table 3. The distribution of test images in each datasets.

Dataset Normal Glaucoma
ACRIMA 87 110
ORIGA-Light 135 47
RIM-ONE 73 55
AFIO 24 11
HMC 11 4

Commonly, the transfer learning strategy is applied in Deep CNNs to use the knowledge learned
while classifying natural images to classify retinal images with glaucoma. Hence, the transfer learning
has been employed in this work that involves, replacing and retraining the softmax layer and also fine-
tuning the weights of the pre-trained network. We have carried out several experiments to achieve the
optimal performance of each Deep CNNs with different number of fine-tuned layers and number of
epochs. Initially, we have considered the last weighted layers of Deep CNNs for the number of fine-
tuned layers, while keeping the initial layers in a freezing state. After that, the number of fine-tuned
layers is increased until updating all the remaining layers in the Deep CNNs. Secondly, the effect
of number of epochs have been evaluated for the best performance of each model. It is to note that
we get maximum performance for each Deep CNNs for 30 epochs. The Stochastic Gradient Descent
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(SGD) is used as the optimizer. The other hyper-parameters, the learning rate, the batch size, and the
momentum are optimally selected to get the best results in different sets of experiments. The objective
of optimal setting is to adjust the weights of each Deep CNN such that the training loss is minimum. By
minimizing the loss, we can achieve the optimal parameters resulting in the best model performance.
Batch size is the number of training examples used in the estimation of error gradient for the learning
algorithm. We take its value smaller because smaller batch size make it easier to fit one batch worth of
training data in memory, offering a regularizing effect and lower the generalization error. The learning
rate decides how far to move the weights in the direction of gradient to get the minimum loss. However,
an optimal value is required to reach a minimum loss quickly. This is because smaller learning rate will
take tiny steps to and hence a large time is required to reach the minimum loss function. While, the
higher learning rate will result in overshooting the minimum loss and the Deep CNN may not converge.
Besides, momentum is another parameter used to optimize the learning rate. It aims to calculate the
weighted average of weights between the average of previous values and the current value. Thus, we
have set the batch size to 6, the learning rate to 1 X e~* and the momentum to 0.9 for all the networks.

Centet ed at ONH Augmentation ﬂ (Glaucoma)

Re-sized 1mages

(a) Original image (b) Pre-processing (c) ImageNet Pre-trained model

Figure 10. The flowchart of training process for Deep CNNs.

/

Glaucoma
Centered at ONH I
n . m . Nnrmal

Re-sized images

(a) Test image (b) Pre-processing (c) Trained Deep CNN model

Figure 11. The flowchart of testing process for Deep CNNs.

We have also assessed the performances of Deep CNNs using 10 cross validation technique. Due
to limited training data, over-fitting is a well-known problem, occurred in Deep CNNs. To avoid over-
fitting and increase the robustness of the architectures, we have pondered the dropout technique as
proposed in [53] that temporally remove units along with all its incoming and outgoing connections in
deep neural networks. Similarly, we have also employed data augmentation technique during training
of all the networks. The fundus images are augmented by using random rotations between 0 to 360
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degrees, and random translation of maximum 10 pixels in both x and y direction of the image. The
input images are also resized according to the default input size of each Deep CNNs. Hence, we have
evaluated the performance of each Deep CNNs using all datasets and experiments have been carried
out to compare the best of the above mentioned four Deep CNNs. The training and testing procedures
are displayed in Figures 10 and 11, respectively.

3.2. Experimental results and evaluation
3.2.1. Deep CNNs learning results

The number of epochs has been evaluated for each of the selected Deep CNN during the training
process. The validation accuracy/loss during fine-tuning process of all four Deep CNNs for ACRIMA
dataset are illustrated in Figure 12. It is observed that after 30 epochs, the validation accuracy reaches
its maximum values, i.e., 99.10, 99.28, 94.72 and 100% for AlexNet, InceptionV3, InceptionResNetV?2
and NasNet-Large, respectively. Similarly, the validation accuracy/loss results for other Deep CNNs
are also evaluated.

B R RS ERERE _ e S R S By e e
/ == f

ORISR Ik Ak AR Ak S AL .

(a) (b)

(© (d)

Figure 12. Fine-tunning process of Deep CNNs for ACRIMA dataset (a) AlexNet (b)
InceptionV3 (c)InceptionResNetV?2 (d) NasNet-Large.

It is observed that the NasNet-Large has maximum accuracy, i.e., 100% for ACRIMA dataset while
for ORIGA-Light it has minimum value, i.e., 87.10% as compared with other networks. On average,
all Deep CNNs perform well on ACRIMA dataset and the lowest results have been considered on
ORIGA-Light dataset. This is because ACRIMA is a newly developed dataset for classification of
glaucoma images while ORIGA-Light is designed for the segmentation of optic cup and optic disc. The
superiority of the NasNet-Large model has also been observed during training for all other datasets.
The training accuracy based comparison among 4x Deep CNNs for ACRIMA dataset is illustrated in
Figure 13. It is investigated that the NasNet-Large outperforms all other networks during training. It is
also applicable for other datasets.

Furthermore, Deep CNNss training time has been reduced through transfer learning. The weights in
pre-trained networks are used as the starting point for the training process. Hence, we have minimized
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Training Accuracy Comparison

JURMAAEANE

e
(a) Training accuracy comparison chart

0
0
w0

gr

w0
i
§o
in
01
101
ol

1 1 13 1

6 15
Epochs

(b) Zoom area for last 3 epochs

Figure 13. The training accuracy based comparison among 4x Deep CNNs for ACRIMA

dataset.

the training epochs, i.e., 30 for all Deep CNNs and achieved best validation results, as displayed in

Table 4.
Table 4. The training accuracies of Deep CNNss for all the datasets.
Deep CNNs ACRIMA ORIGA-Light RIM-ONE AFIO HMC
AlexNet 99.10 75.50 86.70 90.90 98.50
InceptionV3 99.28 78.50 86.40 84.50 90.50
InceptionResNetV?2 94.72 76.50 90.60 85.50 95.50
NasNet-Large 100.00 87.10 94.70 97.70 98.60

3.2.2. Deep CNNss testing results

Commonly, a single evaluation metric is not appropriate to evaluate the performance of a given
algorithm due to the presence of some imbalanced classes in the dataset or a large number of training
labels [54]. Therefore, the performance of Deep CNNs are reported in terms of five distinct metrics
including Accuracy (ACC), Sensitivity (SEN), Specificity (SP), F1 score and Area Under the Curve
(AUC) as proposed in the previous studies [55]. These performance parameters are calculated using

the following equations:

TP+TN
ACC =
TP+ FP+TN+FN

TP
SEN = ——
TP+ FN

TN
SP=———
TN+ FP

Fle> precision.recall

precision + recall

where the precision and recall are expressed as

TP

Precision = ————
TP+ FP
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Recall = L (3.6)
TP+ FN

In the above equations, the True Positive (TP) is defined as the number of glaucoma images classified
as glaucoma and True Negative (TN) is the number of normal images classified as normal. False
Positive (FP) is the number of normal images identified as glaucoma images and False Negative (FN)

is the number of glaucoma images classified as normal.
AUC is the area under the Receiver Operating Curve (ROC) and it provides the probability that
the model ranks a positive example more highly than a negative example. ROC is a plot between two
parameters, i.e., True Positive Rate (TPR) and False Positive Rate (FPR). TPR is synonym for recall

while FPR can be calculated as
FPR = _Fr (3.7
FP+TN
The confusion matrices of each Deep CNNs have been evaluated for the test images in each
dataset. Figures 14 and 15 show the confusion matrices for ACRIMA test images and total test
images, respectively. Similarly, for other test images, ACC, SEN and SP results are also calculated

according to Eqgs (3.1), (3.2) and (3.3).

Actual class Actual class
Ed G N Total predicted Ei G N Total predicted
% G 110 1 111 % G 109 2 111
= N 0 86 86 S N 1 85 86
T T
e Totalactual | 110 87 | Accuracy: 99.5% = Totalactual (| 110 87 | Accuracy: 98.5%
(a) (b)
Actual class Actual class
2 G N | Total predicted 2 G N | Total predicted
= G 110 2 112 = G 109 0 109
= N 0o | 8s 85 = N 1 | 87 88
= =
= =
Ay =

Totalactual | 110 87 | Accuracy: 99.0% Totalactual | 110 87 | Accuracy: 99.5%

(©) (d

Figure 14. The test results of Deep CNNs for ACRIMA dataset (a) AlexNet (b) InceptionV3
(c) InceptionResNetV2 (d) NasNet-Large.

It is observed that NasNet-Large achieves best results over ACRIMA dataset, i.e., ACC (99.5%), SP
(100%) and SEN (99%). The InceptionResNetV2, gives ACC (99%), SP (97.7%) and SEN (100%).
Now for ORIGA-Light test images, it can be seen that all the Deep CNNs show poor performance
except NasNet-Large with ACC (88%), SP (91%) and SEN (79%). The AlexNet, InceptionV3, and
InceptionResNetV?2 achieve worst results in the range of 60—66% SEN.

All the Deep CNNs perform well on RIM-ONE test images. Like, NasNet-Large again gives better
results in terms of ACC (94.5%), SP (96%) and SEN (92.7%). While, the AlexNet shows lowest results
with ACC (87.5%), SP (90.4%) and SEN (83.6%) as compared with other networks.

The performance metrics are also evaluated for both the local datsets, i.e., AFIO and HMC. It is
noticed that NasNet-Large provides maximum results in terms of ACC, SP, and SEN for AFIO test
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Actual class Actual class
2 G N | Total predicted 2 G N | Total predicted
= G 221 9 230 = G 218 10 228
& N 6 321 327 & N 9 320 329
% %
& |Totalactual| 227 | 330 | Accuracy: 97.3% & |Totalactual [ 227 | 330 | Accuracy: 96.6%
(2) (b)
Actual class Actual class
2 G N | Total predicted 2 G N | Total predicted
= G 220 9 229 = G 225 2 227
E N 7 |3 328 E N R 330
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e Totalactual | 227 | 330 | Accuracy: 97.1% o Totalactual | 227 | 330 | Accuracy: 99.3%
(©) (d

Figure 15. The test results of Deep CNNs for total test images (a) AlexNet (b) InceptionV3
(c) InceptionResNetV2 (d) NasNet-Large.

images while InceptionResNetV2 has 88.6% ACC, 83.3% SP, and 100% SEN. Similarly, NasNet-
Large gives maximum results, i.e., 100% in all performance metrics while AlexNet has 93.3% ACC,
100% SP, and 75.0% SEN with HMC test images.

In case of total test set of images, the NasNet-Large again performs well as compared to other
networks. It provides 99.3% ACC, 99.4% SP, and 99.1% SEN, while InceptionV3 shows lowest results
in terms of ACC, SP, and SEN. These results are displayed in Table 5.

Table S. The test results of the Deep CNNss for all the test images selected from each dataset.

Deep CNNs Datasets
ACRIMA ORIGA-Light RIM-ONE

ACC SP SEN ACC SP SEN ACC SP SEN
AlexNet 995 989 1000 758 815 60.0 87.5 904 83.6
InceptionV3 98.5 977 99.1 786 830 66.0 922 945 89.1
InceptionResNetV2 99.0 97.7 100.0 769 822 61.7 90.6 945 855
NasNet-Large 99.5 100.0 99.1 879 91.1 787 945 959 0927

AFIO HMC TOTAL

ACC SP SEN ACC SP SEN ACC SP SEN
AlexNet 914 958 81.8 933 1000 750 973 973 974
InceptionV3 914 917 910 86.7 100.0 50.0 96.6 97.0 96.0
InceptionResNetV2 88.6 83.3 100.0 933 91.0 100.0 97.1 97.3 969
NasNet-Large 943 91.7 100.0 999 100.0 100.0 993 99.4 99.1

3.2.3. Deep CNNs ensemble results

It is noted that the classification accuracies have been improved using an ensemble of all four
Deep CNNs. For ACRIMA dataset, NasNet-Large and AlexNet give 99.5% accuracy while ensemble
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with AWV provides 99.6% accuracy. In case of ORIGA-Light, the accuracy has been increased from
87.9 to 88.3% with ASWA. Similarly, for RIM-ONE, AFIO, and HMC datasets, the results have been
improved. Now, if we consider total test set of images, the result is increased from 99.3 to 99.5% with
ASWA. The AV provides lowest results. This is because it is simple averaging. However, the AWV
and ASWA provide better results. This is because the weights are updated according to the accuracy
and score of each Deep CNNs. The results of five voting schemes are displayed in Table 6. Figure 16
also provides an overview of newly developed AWV and ASWA schemes that makes it different from
MYV, PV, and AV.

Table 6. The accuracies of Deep CNNs ensemble framework for different voting schemes.

Dataset MV PV AV AWV ASWA
ACRIMA 99.5 99.4 99.1 99.6 99.5
ORIGA-Light 87.9 88.0 79.8 88.2 88.3
RIM-ONE 94.5 94.5 91.2 95.1 95.2
AFIO 94.3 94.3 91.4 96.1 96.2
HMC 99.9 99.9 96.3 99.8 99.9
Total 99.3 99.3 98.5 99.4 99.5

Ensemible

AlexNet InceptionV3 Predictiom

Train : 97.30 Train : 96.60 .97310. 1 X

Class 1 Prob. 058 Class 17r0b. 0.58 i =2.96 Class 22/({>)
0.75 0.25)

Class 2 Prob. 0.42 Class 2 Prob. 0.42

Updated Accuracy 24.20 Updated Accuracy 2252 verag 0.5840.58+0.5440.14 0.4240.42+0.46+0.86 Class 2({3)
2236 184

; i 0.60x0.24+0.62x0.23+ 0.40X0.28+0.38K0.25+
Train :97.10 Train :99.30 ting (AWV, 0.59X0.2440.15%0.29 0.41X0.24+0.85%0.29

Class 1 Prob. 054 Class 1Prob. 014

(Class 2 Prod. 0.46 Class 2 Prod. 0.86

Updated Accuracy 23.77 Updated Accuracy 2949 uracy / Score ba: 0.58x0.24+0.58x0.23+ 0.42x0.24+0.42x0.23+
ighted Ay 0.54x0.24+0.14x1 16X0.24+0.86X0.

(a) 4x classifiers (b) Voting results (c) Final predictions
Figure 16. Illustration of five voting techniques with test instance of class 2.

Besides, we have also considered the combinations of two and three Deep CNNs to increase the
persuasiveness of the proposed ensemble framework. The results of different voting schemes with
ensemble of 2x, 3x, and the proposed 4x Deep CNNs for total test set of images are presented in
Table 7. It is observed that the AlexNet and NasNet-Large provide better results as comapred to
other networks in 2x Ensemble framework. While, in the case of 3x Ensemble network, AlexNet,
InceptionResNetV2 and NasNet-Large show superior results with other combinations. However, our
proposed 4x Ensemble framework outperforms in all five voting schemes as compared to 2x, and 3x
Deep CNNs ensemble.

The evaluation parameters of classification performance, i.e., sensitivity, specificity, accuracy, and
AUC of the ImageNet trained Deep CNNs have been displayed in Table 8, where the performance
comparison of proposed work with [22,26,37], and [56-61] is presented. In [57—60], the authors have
used CNN based architectures for the classification of glaucoma using RIM-ONE, and ORIGA-Light
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Table 7. The accuracies of various combinations of Deep CNNss for five voting schemes with
total test set of images.

Deep CNNs MV PV AV AWV ASWA

A+B 98.70 98.60 97.80 99.00 98.80

A+C 98.80 98.50 97.60 99.00 98.90

2x Ensemble A+D 99.00 98.90 97.80 99.20 99.00
B+C 98.80 99.00 96.90 98.90 98.80

B+D 98.80 98.70 97.50 98.90 98.90

A+B+C 98.90 98.80 98.10 98.80 98.90

3x Ensemble A+B+D 98.80 99.00 98.10 98.80 99.00
A+C+D 99.00 99.10 98.20 99.00 99.00

B+C+D 98.90 99.10 98.10 98.80 98.90

4x Ensemble A+B+C+D 99.30 99.30 98.50 99.40 99.50
A = AlexNet, B = InceptionV3, C = InceptionResNetV2, & D = NasNet-Large

images. Similarly, in another study proposed by [61], the authors have considered newly developed
ACRIMA dataset for the glaucoma classification and achieved highest 96.0% AUC. While, in our
study, the NasNet-Large performed well and gives 99.1% sensitivity, 99.4% specificity, 99.3%
accuracy and 97.8% AUC for the total test set of images. This is because the cropped images centered
at ONH are to be more effective as compared to whole image as well as computational cost is reduced
during network learning. It is also helpful in improving the identification of glaucomatous damages in
early stages. Furthermore, a data augmentation technique is also considered during training of Deep
CNNss to increase the training images and minimize over-fitting problem. The classification accuracy
has been further increase from 99.3 to 99.5% with ensemble framework. The results show that AWV
and ASWA provide better results as compared with other voting techniques. This is because weights
are updated according to accuracy and scores of each Deep CNNs. These results indicate that the
proposed study provides better performance than its previous state-of-the-art. To the best of our
knowledge, there is no existing related Deep CNNs based ensemble framework for the diagnosis of
glaucoma using fundus images.

4. Results related discussion

The experimental results presented in this study suggest the following key observations:

e From the above mentioned results, the proposed automatic glaucoma diagnosis system is more
useful and effective. This is because Deep CNNs have the ability to learn glaucoma specific
features automatically. While in traditional methods, the feature extraction strategies are manual
that limit the success of overall system. Moreover, the illumination and textural variations in
retinal fundus images are also the problems in classification of glaucoma. Conversely, the
presented work uses automatic glaucoma features extraction and thus achieve superior
classification accuracy across a wide range of publicly and locally available datasets. Hence, the
results are generalized for diverse set of images.
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Table 8. The comparison of proposed work with existing state-of-the-art.

Systems Methods Dataset Sensitivity (%) Specificity (%) Accuracy (%)

[22] CNN Public & Private 84.5 98.0 99.0

[26] Multi-branch NN Private 92.0 90.0 91.0

[37] Deep CNNs Public 93.4 85.8 96.0 (AUC)

[56] CNN Private 98.0 98.0 98.0

[57] CNN RIM-ONE 80.0 88.0 85.0

[58] RCNN ORIGA-Light NR NR 87.4 (AUC)

[59] GoogleNet HRF & RIM-ONE NR NR 87.6

[60] AlexNet RIM-ONE 87.0 85.0 88.0

[61] Deep Models Public & Private NR NR 85.0 (AUC)ACRIMA
[62] InceptionV3 Private NR NR 84.5 & 93.0 (AUC)
[63] Ensemble Classifier Private 86.0 90.0 88.0 & 94.0 (AUC)
Our NasNet-Large: Public & Private 99.1 99.4 99.3 & 97.8% (AUC)
Our Ensemble Classifier= Public & Private 99.1 99.7 99.5

In pre-processing step, the region ONH has been extracted and used as the input image to Deep
CNNs models. This is due to the fact that most of the initial changes have been occurred in ONH
during early stage of glaucoma. Hence, the cropped images centered at ONH are to be more
effective as compared to whole image as well as computational cost is reduced during network
learning. It is also helpful in improving identification of glaucomatous damages in early stages.
Furthermore, a data augmentation technique is also considered during training of Deep CNNs to
increase the training images and minimize over-fitting problem.

Transfer learning generally refers to a process where a model trained on one problem is used in
some way on a second related problem. In our study, Deep CNNss training time has been reduced
through transfer learning. The weights in pre-trained networks are used as the starting point for
the training process. Hence, we have minimized the training epochs, i.e., 30 for all Deep CNNss
and achieved best validation results, as displayed in Table 4. Additionally, a graphical comparison
is also being presented among these models during the training process. It is examined that our
proposed model, i.e., NasNet-Large achieves best results as compared to other Deep CNNs. These
results are displayed in Figure 13.

Generally, a single performance metrics can lead to inappropriate classification results due to
some imbalance classes in the dataset or too small or large number of training subjects. From the
literature survey of the existing methods on fundus images such as [37,58,61] show classification
performance in terms of AUC only. In contrast, we have evaluated four distinct metrics including
SEN, SP, ACC, and AUC. The results show the steady performance in glaucomatous classification
across different metrics.

We have also performed extensive experiments to evaluate the performance of four Deep CNN's
(AlexNet, InceptionV3, InceptionResNetV2 and NasNet-Large). Comparing the results of these
architectures, it is noted that NasNet-Large is significantly better than that of others networks.
The results are consistent with the relative performance of these architectures on wide range of
public and private fundus images. The AlexNet also provides better results as compared with
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other networks. However, it shows lower performance on ORIGA-Light and RIM-ONE datasets
as compared with others. From the results, it is observed that ORIGA-Light is more challenging
dataset for each type of network. On the contrary, all the networks provide good results for
ACRIMA dataset because it is a newly developed dataset for Deep learning classification tasks.

e We have also presented an ensemble classifier to further improve the classification accuracy. The
final results have been evaluated with five voting techniques. Two newly developed voting
schemes, i.e., AWV and ASWA provide the better results as compared with others as presented
in Table 6. Moreover, we have also carried out ablation experiments to increase the
persuasiveness of the experimental results as well as the validation of four Deep CNNs
combination. The experimental results are displayed in Table 7. It is clearly observed that
ensemble of four networks show better results as compared to ensemble of 2x and 3x networks.
These results clearly demonstrate the effectiveness of the proposed ensemble framework to
diagnose the glaucoma.

e The experimental results are also compared with other deep learning based diagnostic systems
developed by other researchers. In [57-60], the authors have used CNN based architectures for
the classification of glaucoma using RIM-ONE, and ORIGA-Light images. Similarly, in another
study proposed by [61], the authors have considered newly developed ACRIMA dataset for the
glaucoma classification and achieved highest 96.0% AUC. In [62], the authors have
implemented InceptionV3 architecture for glaucoma detection and achieved maximum 84.5%
accuracy with 93% AUC. More recently, an ensemble of AlexNet, ResNet-50, and ResNet-152
have investigated in [63] and achieved the highest accuracy of 88% with 0.94 AUC. However,
our proposed ensemble framework have achieved superior results as compared with previously
proposed methods. The results of SEN, SP, and ACC proposed in this study are displayed in
Table 5. A detailed comparisons with existing state-of-the-art has been presented in Table 8.

5. Conclusions and future works

In this work, we have proposed an ensemble framework based on pre-trained Deep CNNs for
glaucoma classification using fundus images. At first, four Deep CNNs, i.e., AlexNet, InceptionV3,
InceptionResNetV2, and NasNet-Large are tested on five different datasets, three publicly
available,i.e., ACRIMA, ORIGA-Light, and RIM-ONE, and others two collected from the local
hospitals. Dropout and data augmentation techniques are also considered to improve the performance
of Deep CNNs models. NasNet-Large is the best option with transfer learning and fine-tuning, with
AUC (97.8%), SEN (99.1%), SP (99.4%) and ACC (99.3%). Secondly, for even better results, we also
proposed an ensemble framework for automatic glaucoma classification. The AWV and ASWA based
ensembling methods improve the accuracy with all datasets and total test images to 0.3%. Moreover,
the proposed ensemble classifier has considerably better accuracy and robustness than the individual
optimized Deep CNN models for automatic glaucoma diagnosis.

As a future work, the new architectures with more data can be explored and assessed to confirm the
presented line of work. The performance of Deep CNNs can also be enhanced to extract deep features
for the classification tasks. In this way, we can train even more robust glaucoma classifiers.
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