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Abstract: We propose and study computationally a novel non-local multiscale moving boundary
mathematical model for tumour and oncolytic virus (OV) interactions when we consider the go or grow
hypothesis for cancer dynamics. This spatio-temporal model focuses on two cancer cell phenotypes
that can be infected with the OV or remain uninfected, and which can either move in response to
the extracellular-matrix (ECM) density or proliferate. The interactions between cancer cells, those
among cancer cells and ECM, and those among cells and OV occur at the macroscale. At the micro-
scale, we focus on the interactions between cells and matrix degrading enzymes (MDEs) that impact
the movement of tumour boundary. With the help of this multiscale model we explore the impact
on tumour invasion patterns of two different assumptions that we consider in regard to cell-cell and
cell-matrix interactions. In particular we investigate model dynamics when we assume that cancer cell
fluxes are the result of local advection in response to the density of extracellular matrix (ECM), or of
non-local advection in response to cell-ECM adhesion. We also investigate the role of the transition
rates between mainly-moving and mainly-growing cancer cell sub-populations, as well as the role of
virus infection rate and virus replication rate on the overall tumour dynamics.

Keywords: multiscale cancer modelling; non-local cell adhesion; tumour-oncolytic viruses
interactions; go or grow hypothesis; migration-proliferation dichotomy

1. Introduction

The go or grow (GOG) hypothesis or the migration-proliferation dichotomy, proposes that cell
proliferation and cell migration are two temporally exclusive events: cells either migrate or proliferate
and they can periodically switch between proliferative and migratory states [1]. Studies on the GOG
hypothesis are conflicting, with some studies supporting and confirming this hypothesis in vitro for
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different cancer cell types (e.g., glioma, melanoma, or breast cancer) [2–9] and other studies
challenging this hypothesis [1, 10, 11]. For example, Tektonidis et al. [9] presented a computational
data-driven study of in vitro glioma invasion based on three experimental papers, and concluded that
the GOG mechanism combined with self-repulsion and a density-dependent phenotypic switch is
mandatory to duplicate the experimental results [7, 12]. On the other hand, Corcoran et al. [1] used
time-lapse video-microscopy to monitor directional migration, invasion and mitosis of cancer cells,
and concluded that in medulloblastoma cell lines there is no evidence to support the GOG hypothesis.
More precisely, their results suggested that migrating and non-migrating cell lines have similar
mitotic activities. Similarly, Garay et al. [10] tested this hypothesis on 12 mesothelioma, 13
melanoma and 10 lung cancer cell lines using time-lapse video-microscopy, and their results also
contradicted the concept of GOG hypothesis.

Over the last decades, mathematical models have been used in addition to experimental studies to
shed some light on this go or grow hypothesis. Many of these models are discrete models of cellular
automata (CA) type or lattice gas cellular automata (LGCA) type [7, 13–17]. There are also various
continuum models described by partial differential equations [11, 18–25]. These continuum models
can either model separately the migrating and proliferative cancer cell sub-populations [20–22, 24], or
can model them via a single equation for one cancer population that can move for some time instances
and proliferate for other time instances [11, 18]. Those models that consider separate sub-populations
of migrating and proliferative cancer cells incorporate also transition (i.e., switching) rates between
these two sub-populations. These transition rates can be either constant [20, 26] or density dependent:
they can depend for example on the total density of cells [20, 22], on the concentration of integrins
bound to extracellular matrix (ECM) fibres [23], on the density of ECM fibres [25], on the level of
oxygen [19, 24].

It should be mentioned here that some GOG models have been reduced to simpler forms; for
example, in [20] the authors assumed that proliferating cell sub-population could stop proliferating
and thus their go-or-growth model was reduced to a go-or-rest model.

The majority of continuum mathematical models in the literature for the GOG hypothesis focus
mainly on local interactions between cells. However, it is known that cells can mechanically sense
and react to the presence of other cells up to 100µm away [27], and thus more and more mathematical
models have been recently developed to consider such non-local cell-cell and cell-ECM
interactions [28–31]. Nevertheless, these nonlocal models do not usually incorporate the GOG
hypothesis.

In this study we plan to investigate (for the first time – to our knowledge) the impact of the GOG
hypothesis on oncolytic virotherapies. These oncolytic virotherapies are cancer therapies that use
oncolytic viruses (OVs), i.e., viruses that replicate inside and destroy cancer cells. Despite some
clinical successes with these oncolytic virotherapies (currently a few such viruses are in the late
stages of various clinical trials [32]) there are still many open questions related to the interactions
between oncolytic viruses and tumour cells [33]. And, to our knowledge, it is not clear at this moment
how the spread of oncolytic viruses through the solid tumours is affected by the GOG hypothesis. In
this study, we investigate this particular aspect using a modelling and computational approach, which
allows us to test numerically various hypotheses related to cancer-OV interactions.

To this end, we extend our previous non-local multi-scale mathematical model for
cancer-oncolytic viruses (OV) interactions [34], by considering also the GOG hypothesis. We
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consider distinct proliferative and migrating cancer cell subpopulations, and assume that they can
become infected with an oncolytic virus (see Figure 1). With the help of this new model, we explore
numerically different aspects of the GOG hypothesis, as well as the possibility of having local vs.
non-local cell interactions and their impact on cancer invasion in the context of oncolytic
virotherapies. We need to emphasise here that with the help of this new model we investigate (for the
first time – to our knowledge) the impact of the GOG hypothesis on oncolytic virotherapies.

We describe the new multiscale model in Section 2. The computational approach used to simulate
numerically this model is described briefly in Section 3. Then, numerical simulations are presented in
Section 4. We conclude in Section 5 with a brief summary and discussion of the results.

2. Mathematical model

Adopting the multiscale moving boundary modelling approach introduced initially in [35], in the
following we explore the dynamic interaction between an invading heterotypic tumour and an oncolytic
virus. Indeed, considering here the go or grow hypothesis [1], the invading tumour is assumed to
consist of two subpopulations of cancer cells, namely migrating and proliferative, which exercise their
dynamics within the surrounding ECM and that can become infected by an oncolytic virus over a time
interval [0,T ]. For t ∈ [0,T ], denoting by Ω(t) the spatial support of the progressing tumour that
evolves inside a maximal tissue cube Y (i.e., Ω(t) ⊂ Y), for any x ∈ Ω(t), let cm(x, t), cp(x, t), and e(x, t)
represent the spatial densities of the migrating cancer cells subpopulation, the proliferating cancer cells
subpopulation, and the ECM, respectively. Furthermore, denoting here the oncolytic virus density by
v(x, t), ∀x ∈ Ω(t), as both the migrating and the proliferating cancer cells can become infected by the
oncolytic virus v(x, t), let im(x, t) and ip(x, t) represent the densities of infected migrating cancer cells
and proliferating cancer cells, respectively (see Figure 1).

OV

OV

Figure 1. Schematic diagram illustrating the splitting of the overall cancer cells population
into the migrating and proliferative subpopulations (according to GOG hypothesis), with
each of these subpopulations further branching into corresponding infected and uninfected
sub-subpopulations.
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By incorporating here the GOG hypothesis, we expand and generalise the modelling framework
for tumour-OV interaction proposed in [29, 34]. Indeed, building on the multiscale framework
introduced in [35], we explore these complex cancer-OV interactions by accounting for the
interlinked two-scale dynamics that connects the tissue-scale (macro-scale) tumour macro-dynamics
with the cell-scale (micro-scale) proteolytic activity of MDEs that occurs along the invasive edge of
the tumour. In the following we describe in detail the macro-dynamics, the micro-dynamics, as well
as the double feed-back loop that connects the two scales of activity in our new model.

2.1. Tumour−OV interacting macro-dynamics

For each t ∈ [0, t], and each x ∈ Ω(t), denoting the total cancer cell population by ctotal(x, t)

ctotal(x, t) = cp(x, t) + ip(x, t) + cm(x, t) + im(x, t), (2.1)

and defining the total tumour vector to be u (x, t) = (cp(x, t), ip(x, t), cm(x, t), im(x, t), e(x, t))T , the
volume fraction of space occupied by the tumour can therefore be expressed mathematically as

ρ(u) = νee(x, t) + νc(ctotal(x, t)), (2.2)

where νe represents the fraction of physical space occupied by the ECM and νc is the fraction of
physical space occupied collectively by all cancer subpopulations.

For the tumour dynamics, we assume that the motility of each of the cancer cells subpopulations is
due to a combination of random movement (described by linear diffusion term) and a directed
migration due to cell-cell and cell-ECM adhesion. The spatial fluxes triggered by cell adhesion that
cause the directed cells migration are considered here both from a local and non-local perspective
[36–41], and in following we will detail their mathematical formulation. For convenience, for each
cancer cell subpopulation c ∈ {cp, cm, ip, im}, we consider a global notation ϕc(u) describing the effect
of the cell adhesion processes either locally, through adhesive interactions between cancer cells and
ECM (whereby the tumour cells exercise haptotactic movement [42] towards higher levels of ECM),
or non-locally, where both cell-cell and cell-ECM adhesive interactions are accounted for within an
appropriate cell sensing region. Thus, ϕc(u) is mathematically formalised as

ϕc(u) :=

ηc∇·
(
c∇e

)
, local haptotactic interactions between cancer cells and ECM,

∇·
(
cAc(·,·,u(·,·))

)
, non-local cell−cells and cell−ECM interactions on a cell sensing region,

(2.3)
where, for any given subpopulation c ∈ {cp, cm, ip, im}, we have that ηc > 0 is a constant haptotactic
rate associated to c, while Ac(x, t,u(·, t)) is a non-local spatial flux term that is detailed as follows.
Indeed, following a similar approach as in [28, 43, 44], ∀c ∈ {cp, cm, ip, im}, at each spatio-temporal
point (x, t) the cell adhesion fluxAc(x, t,u(·, t)) cumulates the strengths of the cell-cell and cell-matrix
adhesion junctions that cells from cancer subpopulation c that distributed at (x, t) establish with the
other cell subpopulations and the ECM distributed within an appropriate maximal sensing region
B(x,R) of radius R > 0. This is formulated mathematically as

Ac(x, t,u(·, t)) =
1
R

∫
B(0,R)

n(y)K(‖y‖2)[S ccc(x + y, t)dy + S ce e(x + y, t)] (1 − ρ(u))+ χ
Ω(t)(x + y, t)dy. (2.4)
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here, χ
Ω(t)(·) is the characteristic function of Ω(t), while the term (1 − ρ(u))+ := max{(1 − ρ(u)), 0}

enables the avoidance of local overcrowding. Further, for any y ∈ B(0,R), n(y) denotes the unit radial
vector originating from x and pointing to x + y ∈ B(x,R), which is given by

n(y) :=


y
‖y‖2

if y ∈ B(0,R) \ {(0, 0)},

(0, 0) otherwise.
(2.5)

with ‖ · ‖2 being the usual Euclidean norm. Moreover, K(·) : [0,R] → [0, 1] is a radially symmetric
kernel that explores the dependance of the strengths of the established cell adhesion junctions on the
radial distance from the centre of the sensing region x to ζ ∈ B(x,R). Since these adhesion junction
strengths are assumed to decrease as the distance r :=‖ x − ζ ‖2 increases, K therefore is taken here of
the form

K(r) :=
3

2πR2

(
1 −

r
2R

)
, ∀r ∈ [0,R]. (2.6)

Furthermore, since in this study we focus only on self-adhesion and we do not consider
cross-adhesion bonds between four cancer cells subpopulation, in Eq (2.4) we have that S cc and S ce

for any given cancer cell subpopulation c ∈ {cp, cm, ip, im} represent the adhesive interaction strengths
for the self−cell−cell adhesion and cell-ECM, respectively. While the cell-ECM adhesion strength
S ce is considered to be a positive constant, the cell-cell adhesion strength S cc explores here the fact
that the ability of the cell distributed at x to establish cell-cell adhesive junctions with the cells
distributed at the other locations y ∈ B(x,R) depends on the amount of intercellular Ca2+ ions
available within the ECM [45, 46]. As a consequence, adopting a similar approach to the one in [47],
we assume here that S cc is dependent on the ECM density and it takes the form

S cc(e) = S max
cc exp

(
1 −

1
1 − (1 − e(x, t))2

)
, (2.7)

with S max
cc representing the maximum strength of cell-cell adhesive junctions established by the cancer

cells subpopulation c ∈ {cp, cm, ip, im} . Therefore, the adhesive strengths for cell-cell and cell-ECM
adhesion for all four cancer subpopulation can be compactly expressed via the diagonal matrices

Scell−cell =


S cpcp 0 0 0

0 S ipip 0 0
0 0 S cmcm 0
0 0 0 S imim

 and Scell−ECM =


S cpe 0 0 0

0 S ipe 0 0
0 0 S cme 0
0 0 0 S ime

 , (2.8)

respectively.
Finally, in the context of the GOG hypothesis, another important aspect that occurs during the

tumour dynamics is the transitions between from the proliferative cancer subpopulation and the
migrating one. Adopting a similar form to the one proposed in [15, 16, 26], the transition from
proliferative to migrating cancer cells is captured here through the switching term λcp,cm that is given
by

λcp,cm = ω2cm − ω1cp, (2.9)

where ω1 is the rate of switching from proliferative state cp to migration state cm, and ω2 is the rate
of switching from migration to proliferative state. On the other hand, the transition from migrating to
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proliferative cancer cells is expressed through the switching term λcm,cp defined as

λcm,cp = −λcp,cm . (2.10)

Thus, for each of the cancer cells subpopulation c ∈ {cp, cm, ip, im}, the spatial transport is a
combination of random movement (expressed through diffusion) and directed movement due adhesion
(explored either locally or non-locally, and represented compactly through ϕc(u)). Furthermore, for
the particular case of the migrating and proliferative cells subpopulation cp, and cm, besides the spatial
transport and in addition to their own proliferation (considered here of logistic type [48, 49]), their
dynamics is also affected by the cell population “exchanges” due to proliferative-migrating transitions
(i.e., transitions between proliferative and migrating subpopulations) as well as by the presence of the
oncolytic virus that is able to infect cells from both populations. Finally, for their part, the infected
cancer cells subpopulations, while exercising a spatial transport of the type described above, they
contribute to virus replication and die. Therefore, the dynamics for each cancer cell population can be
expressed mathematically as follows.

First, the governing equation for the uninfected proliferative cancer cell subpopulation is given by

∂cp

∂t
= Dcp∆cp − ϕcp(u) + µpcp(1 − ρ(u)) − %pcpv + λcp,cm , (2.11)

where Dcp > 0 is a constant diffusion coefficient, the term ϕcp(u) represents the directed movement
triggered by cell-adhesion processes that corresponds to cp and is described in Eq (2.3) for c = cp.
Further, µp > 0 is an intrinsic constant proliferation rate, %p > 0 is the rate at which the oncolytic
virus infects the proliferative cancer cell population, and λcp,cm is the switching term given in (2.9),
representing the process through which migrating cancer cells transition towards proliferative state
during the tumour dynamics.

The infected proliferative cancer cell population, ip(t, x), which emerges within this dynamics due
to the OV infection of cp, also exercises a spatio-temporal dynamics that is governed by the following
equation

∂ip

∂t
= Dip∆ip − ϕip(u) + %pcpv − δipip, (2.12)

where Dip > 0 is a constant random motility coefficient, and ϕip(u) is the spatial influence of the cell-
adhesion processes that is described in Eq (2.3) and corresponds to ip. The cancer cell population
increases with at rate %p due to the new infections of the proliferative cancer cells, and decreases at rate
δip > 0 due to infected cell death.

Further, since for the migrating cancer cell population we always take into account not only cell-
ECM adhesion but also cell-cell self-adhesion, the directed cell migration term ϕcm(u) that is defined
in Eq (2.3) and corresponds to cm is in this case constantly of the non-local form

ϕcm(u) = ∇·
(
cmAcm(·,·,u(·,·))

)
,

where the spatial flux Acm(·,·,u(·,·)) is the one defined in Eq (2.4) for c = cm. As a consequence, the
governing equation for the uninfected migrating cell population is

∂cm

∂t
= Dcm∆cm − ∇ · (cmAcm) + µmcm(1 − ρ(u)) − %mcmv + λcm,cp , (2.13)
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where Dcm > 0 is a constant diffusion coefficient, µm > 0 is a constant proliferation coefficient, %m > 0 is
a constant rate at which the uninfected migrating population diminishes due infection by the oncolytic
virus v. Further, λcm,cp is the switching term given in Eq (2.10) that represents the net transition from the
proliferative into the uninfected migrating state that occurs per unit time during the tumour dynamics.

The fourth tumour cell population is the infected migrating cancer cell subpopulation im(t, x) that
emerges within this dynamics due to infections by the OV, and its spatio-temporal dynamics is governed
by the following equation

∂im

∂t
= Dim∆im − ϕip(u) + %mcmv − δimim. (2.14)

where Dim > 0 is a constant random motility coefficient, and ϕim(u) represents the directed migration
induced by the cell-adhesion processes that corresponds to im and is described in Eq (2.3) for c = im

Further, the infected migrating population expand at a rate %m due to new infections occurring among
the uninfected migrating cells, and they also die at rate δim > 0.

At the same time, the ECM is degraded by both uninfected and infected cancer cell populations and
is remodelled within the limit of available space. Thus, its governing dynamics is given mathematically
by

∂e
∂t

= −e(αcpcp + αipip + αcmcm + αimim) + µ2e(1 − ρ(u)), (2.15)

where αcp > 0, αip > 0, αcm > 0, and αim > 0 are the ECM degradation rates caused by cancer cells
subpopulation cp, ip, cm, and im, respectively. Further, µ2 > 0 is a constant ECM remodelling rate.

Concerning the oncolytic virus spatio-temporal dynamics, we adopt here a similar reasoning as
in [34], and we assume that the OV motion is described by a random movement that is biased by a
”haptotactic-like” spatial transport towards higher ECM levels. Thus, the dynamics of the oncolytic
virus that we consider here is governed by

∂v
∂t

= Dv∆v − ηv∇ · (v∇e) + bmim + bpip − (%mcm + %pcp)v − δvv, (2.16)

where Dv > 0 is a constant random motility coefficient, ηv > 0 is a constant haptotactic coefficient,
bm, bp > 0 are a viral replication rates within infected proliferating and infected migrating cancer cells,
respectively, and δv > 0 is the viral decay rate.

Finally, the coupled interacting tumour − OV macro-dynamics is governed by Eqs (2.11)–(2.16) in
the presence of initial conditions

cp(x, 0) = c0
p(x), ip(x, 0) = i0

p(x), cm(x, 0) = c0
m(x), and im(x, 0) = i0

m(x), ∀x ∈ Ω(0), (2.17)

while assuming zero-flux boundary conditions at the moving tumour interface ∂Ω(t).

2.2. Micro-scale dynamics

During their macro-scale dynamics, the four cancer cells subpopulations that get near the tumour
interface (i.e., within the outer proliferating rim of the tumour) are able to secrete matrix degrading
enzymes (such as the matrix metalloproteinases [50, 51]), providing this way a source of MDEs for a
cell-scale (micro-scale) proteolytic micro-dynamics that takes place along the invasive edge of the
tumour. Indeed, in the presence of this source of MDEs (induced by the tumour macro-dynamics), a
cross-interface micro-scale MDEs spatial transport occurs within a micro-scale neighbourhood of the
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tumour boundary of an appropriate cell-scale thickness ε > 0, denoted here simply by Nε(∂Ω(t)). The
areas of significant ECM degradation caused by the pattern of propagation of the advancing front of
MDEs within the peritumoural region Nε(∂Ω(t)) \ Ω(t) will ultimately be explored by the cancer cells
that will progress in those regions [51], and so precisely these boundary regions (affected by
significant ECM degradation) will shape the pattern of tumour progression. Thus, following the
modelling approach introduced in [35] we depict these regions of significant ECM degradations by
exploring the MDEs micro-dynamic processes within Nε(∂Ω(t)), which enables us ultimately to
determine the law of the macro-scale tumour boundary movement.

To formalise these laws of macro-scale boundary movement induced by the boundary MDEs
micro-dynamics, we adopt here the approach introduced in [35]. Therefore, the micro-scale
neighbourhood Nε(∂Ω(t)) is given here as a union of a covering bundle of ε − size overlapping
micro-domains {εY}εY∈Pε (t), namely,

Nε(∂Ω(t)) :=
⋃

εY∈P(t)

εY.

This enables us to decompose the MDEs micro-dynamics on Nε(∂Ω(t)) by exploring this as a union
of micro-dynamic processes occurring on each εY ∈ Pε(t). At any instance in time t0 > 0, on each
micro-domain εY ∈ Pε(t0), a source of MDEs appears at every micro-scale location z ∈ εY ∩Ω(t0) as a
collective contribution of all the cells (both infected and uninfected) from the tumour outer proliferating
rim that arrive during their dynamics within a distance ρ > 0 from z. Thus, over any small time interval
of length ∆t > 0, [t0, t0 + ∆t] and at any micro-scale spatial location z ∈ εY , this MDEs source is
therefore given as

fεY(z, τ) =


∫

B(z,ρ)∩Ω(t0)
(γcpcp + γipip + γcmcm + γimim)(x, t0 + τ)dx

λ(B(z, ρ) ∩Ω(t0))
, z ∈ εY ∩Ω(t0),

0, otherwise,

(2.18)

where λ(·) is the standard Lebesgue measure on RN , the ball B(z, r) := {x ∈ Y : ‖z − x‖∞ ≤ ρ} is
the maximal outer proliferating rim region from where cells that get to contribute to the formation of
MDEs source at (z, τ) ∈ εY × [t0, t0 + ∆t], and γcp , γip , γcm ,γim are all positive constants representing
the contributions of the cancer subpopulations of uninfected proliferative cells, infected cancer cells,
uninfected migrating cells, and infected migrating cells, respectively.

In the presence of the micro-scale source of MDEs induced from the macro-dynamics on each
micro-domain εY , these matrix degrading enzymes exhibits a diffusion transport process within the
entire εY . Thus, denoting the MDEs distribution at (z, τ) ∈ εY × [0,∆t] by m(z, τ), the MDEs micro-
dynamics on each εY is given by

∂m
∂τ

= Dm∆m + fεY(z, τ) (2.19)

where z ∈ εY , τ ∈ [0,∆t]. Furthermore, since we assume no pre-existing MDEs within εY prior to
the initiation of the proteolytic micro-dynamics, the MDEs micro-dynamics Eq (2.25g) takes place in
the presence of zero initial conditions. Furthermore, we assume the presence of zero-flux boundary
condition, namely

m(z, 0) = 0,

n · ∇m |∂Ω = 0,
(2.20)
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where nεY is the outward unit normal on the frontier of the micro-domain ∂εY .

2.3. Bottom-up feedback: the macro-scale tumour boundary movement induced by the boundary
MDEs micro-dynamics

During the micro-dynamics Eqs (2.19) and (2.20), the MDEs transported across the interface in the
peritumoural region εY \ Ω(t0) interact with ECM distribution that they encounter, resulting in
degradation of ECM constituents.The advancement of MDEs within the peritumoural region εY \Ω(t)
lead to a degradation of the ECM in that cell-scale region, and determines the way the macroscopic
tumour boundary evolves, leading to the establishment of a boundary movement law. Indeed,
following the derivation in [35], the MDEs micro-dynamics on each micro-domain εY enables us to
derive the movement characteristics for the relocation of the macro-scale tumour boundary
∂Ω(t)∩ εY , expressing these through the derivation of a direction of movement ηεY and a displacement
magnitude ξεY in that direction for the advancement of ∂Ω(t) ∩ εY within the peritumoural region
Nε(∂Ω(t)) \ Ω(t). To simplify the representation, the choreographic movement exercised by the
∂Ω(t) ∩ εY over a given time span [t0, t0 + ∆t] is represented back at macro-scale through the
movement of the associated boundary midpoint x∗

εY
of εY (defined topologically with full details

in [35], and which can be regarded as “the center of ∂Ω(t) ∩ εY”), as illustrated in Figure 2. For
completeness, we briefly outline below the main steps involved in deriving the boundary relocation
characteristics that were introduced in [35].

On the cell-scale neighbouring bundleNε(∂Ω(t0)) of the tumour interface, for each of the boundary
micro-domains εY ∈ P(t0) at a given a time instance t0 > 0, we use the regularity property of Lebesgue
measure [52] to depict the first dyadic decomposition {Dk}k∈I

εY
of εY that has the property that the

union of those dyadic cubes Dk included in the complement of Ω(t0) approximate to a given global
micro-scale accuracy δ

Ω(·) > 0. This is schematically illustrated by the small green squares in Figure 2
that are situated outside the black tumour boundary ∂Ω(t0)∩ εY . Further, denoting by yk the barycenter
of Dk, we sub-select a sub-family of dyadic cubes {Dk}k∈I∗

εY
⊂ {Dk}k∈I

εY
that consists only of those

dyadic cubes that are situated furthest away from the boundary midpoint x∗
εY

(corresponding to εY) with
the property that they carry an amount of MDEs above the mean of MDEs transported within the entire
preritumoural region εY \ Ω(t0), hence covering precisely the region of significant ECM degradation
caused by MDEs within εY \ Ω(t0), as illustrated in Figure 2. Thus, by cumulating the contribution to
the significant ECM degradation within εY \ Ω(t0) of all the dyadic cubes {Dk}k∈I∗

εY
while accounting

on both their relative spatial location with respect to x∗
εY

and the amount of MDEs that they get to carry
at time τ f := t0 + ∆t, we obtain the direction of choreographic boundary relocation (exercised by the
∂Ω(t) ∩ εY) due to micro-scale MDEs degradation. Therefore, this boundary movement direction is
given by the positive direction of the emerging line defined by the position vectors involved

{−−−→
ykx∗

εY

}
k∈I∗

εY

magnified accordingly by the MDEs mass that each dyadic cube in {Dk}k∈I∗
εY

, carries, namely

ηεY = x∗
εY

+ ν
∑

k∈I∗
εY

( ∫
Dk

m(z, τ f )dz
)
(yk − x∗

εY
), ν ∈ [0,∞). (2.21)

Furthermore, the magnitude of the actual boundary movement in direction ηεY is appropriately given as
a weighted sum of the Euclidean magnitudes of the position vectors {‖ ykx∗

εY
‖2}k∈I∗

εY
, with the weights
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Figure 2. Illustration of the two-scale dynamics with the links between the tumour macro-
dynamics and the boundary MDEs micro-dynamics that triggers the macro-scale cancer
boundary movement. In orange we have the peritumoural region of significant degradation
of ECM caused by the MDEs transported on εY \ Ω(t0) during the micro-dynamics, which
ultimately determines the direction and magnitude of tumour boundary movement at macro-
scale.

accounting on the relative contribution brought to the ECM degradation of each of the corresponding
dyadic cubes. Thus the movement magnitude in direction ηεY is given by

ξεY(x) :=
∑

k∈I∗
εY

∫
Dk

m(z, τ f ) dz∑
k∈I∗

εY

∫
Dk

m(z, τ f ) dz
‖
−−→xyk ‖2 . (2.22)

Therefore, as the tumour boundary relocation induced by the micro-dynamics on each εY is represented
at macro-scale through the movement of the boundary midpoint x∗

εY
, in the context that enough but not

complete ECM degradation occurs within εY \ Ω(t0) (tissue condition that is detailed and explored in
full in [35]), we have that x∗

εY
exercises a relocation to a new position x̃∗

εY
that is given by

x̃∗
εY

= x∗
εY

+ ξεY(x)
η̃εY

‖ η̃εY ‖2
, (2.23)

where
η̃εY :=

∑
k∈I∗

εY

( ∫
Dk

m(z, τ f )dz
)
(yk − x∗

εY
), (2.24)

and is illustrated through the dark blue arrow in Figure 2. Thus, a law for macro-scale tumour boundary
movement is this way induced by the MDEs micro-dynamics, enabling us to capture the evolution

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5252–5284.



5262

of the tumour boundary over the time interval [t0, t0 + ∆t] from its state Ω(t0) at t0 to a new spatial
configuration at Ω(t0 + ∆t) at t0 + ∆t. This relocated domain Ω(t0 + ∆t) allows the initiation of the
dynamics on the next time interval [t0, t0 + ∆t] where the tumour-oncolytic virus interaction continues
its proceedings.

2.4. Brief summary of the multiscale model

In summary, the multiscale moving boundary model that we obtained for the tumour−OV
interaction (schematically illustrated in Figure 2) is structured as follows,

the tumour-OV
macro-dynamics:

∂cp

∂t
= Dcp∆cp − ϕcp(u) + µpcp(1 − ρ(u)) − %pcpv + λcp,cm , (2.25a)

∂ip

∂t
= Dip∆ip − ϕip(u) + %pcpv − δipip, (2.25b)

∂cm

∂t
= Dcm∆cm − ∇ · (cmAcm) + µmcm(1 − ρ(u)) − %mcmv + λcm,cp , (2.25c)

∂im

∂t
= Dim∆im − ϕip(u) + %mcmv − δimim, (2.25d)

∂e
∂t

= −e(αcpcp + αipip + αcmcm + αimim) + µ2e(1 − ρ(u)), (2.25e)

∂v
∂t

= Dv∆v − ηv∇ · (v∇e) + bmim + bpip − (%mcm + %pcp)v − δvv, (2.25f)

boundary MDEs
micro-dynamics:

∂m
∂τ

= Dm∆m + fεY(z, τ) (2.25g)

The macro-dynamics and micro-dynamics are connected through a double feedback loop enabled by:

• a top-down link by which the macro-dynamics induces the source for the micro-dynamics given
in Eq (2.18).
• a bottom-up link by which the MDEs micro-dynamics induces and determines the law for the

macro-scale tumour boundary movement.

3. Computational approach

The numerical approach and computational implementation of the novel multiscale moving
boundary model require a number of steps that build on the multiscale moving boundary
computational framework initially introduced by [35] and further expanded in [34, 47].

3.1. Brief overview of the multiscale computational approach

Macro-scale computations. The maximal macro-scale tissue domain Y ⊂ R2, where the tumour-OV
interacting macro-dynamics Eq 2.25(a)–(f) takes place, is considered here to be Y := [0, 4] × [0, 4]
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and is discretised uniformly using a spatial step size ∆x = ∆y := h, with h > 0. Let’s denote by Yd

the discretised Y , i.e., Yd := {(x1
i , x

2
j)}i, j=1...N , with N = [4/h] + 1. Further, as the macro-dynamics Eq

2.25(a)–(f) is addressed only on the expanding tumour domain Ω(t) ⊂ Y , for convenience, for any t > 0,
we denote the discretised tumour domain by Ωd(t) (i.e., Ωd(t) = Yd ∩ Ω(t)) and the discretised tumour
boundary by ∂Ωd(t) (i.e., the frontier of Ωd(t) is ∂Ωd(t)). To carry out the computations exclusively on
the expanding tumour, the numerical scheme that we developed here involves a method of lines-type
approach combined with a non-local predictor corrector time-marching method introduced in [47] (and,
for completeness, summarised also in Appendices A and B). Finally, as the tumour progresses, Ωd(t) is
appropriately expanded by activating and including within tumour domain the new points invaded by
cancer within Yd.

Approximating the micro-dynamics and its top-down and bottom-up links with the tumour−OV
macro-dynamics. At any instance of time t0, we consider that the cell-scale covering bundle
{εY}εY∈Pε (t0) of the discretised tumour interface ∂Ωd(t0) consists of overlapping squares εY of
micro-scale size ε := 2h, which are centred at each of the tumour interface spatial node
(x1

s , x
2
p) ∈ ∂Ωd(t0), i.e.,

{εY}εY∈Pε (t0) =
{
B
‖·‖∞

((x1
s , x

2
p), ε/2) | (x1

s , x
2
p) ∈ ∂Ωd(t0)

}
where ‖ · ‖∞ is the usual∞−norm, and B

‖·‖∞
((x1

s , x
2
p), ε/2) := {(z1, z2) ∈ R2 | ‖ (x1

s , x
2
p) − (z1, z2) ‖∞≤ ε/2}

is the closed ball of radius ε/2. By adopting a similar approach to the one introduced in [35], we use
using bilinear shape functions to calculate the MDE source given by Eq (2.18) on each micro-domain
εY . To solve MDEs micro-dynamics Eq (2.25g), we use backward Euler in time combined with central
differences for the spatial discretisation. After finding the MDE distribution m(z, τ), with (z, τ) ∈
εY × [0,∆t], we follow the modelling and computational approach introduced in [35] to determine the
direction ηεY and displacement magnitude ξεY for the movement of the tumour boundary ∂Ω(t0) ∩ εY
that is captured by each micro-domain εY := B

‖·‖∞
((x1

s , x
2
p), ε) and is represented trough the movement

of its midpoint (x1
s , x

2
p) ∈ ∂Ωd(t0) . Finally, we use these movement characteristics induced from the

micro-dynamics (i.e., ηεY and ξεY , ∀ εY ∈ Pε(t0)) to proceed with the corresponding global relocation of
the macro-scale tumour boundary ∂Ωd(t0) to its new spatial configuration ∂Ωd(t0 + ∆t), which emerges
due to the multiscale tumour evolution over the time interval [t0, t0 + ∆t].

3.2. Local vs non-local directed migration due to cell adhesion

In our numerical experiments, we explore the multiscale model dynamics on three distinct local
and non-local scenarios that we consider within the macro-dynamics Eq 2.25(a)–(f) for the directed
migration due to cell adhesion for cancer cell subpopulations cp, ip, and im. Specifically, we consider
the following cases:

1. The cell-adhesion interactions for both the uninfected proliferative subpopulation cp and for the
infected subpopulations ip, and im are considered to be local of haptotactic type, i.e., in the coupled
macro-dynamics in Eq 2.25(a)–(f) we have ϕcp(u) = ηcp∇·

(
cp∇e

)
, ϕip(u) = ηip∇·

(
ip∇e

)
, and ϕim(u) =

ηim∇·
(
im∇e

)
. Thus, the macro-dynamics Eq 2.25(a)–(f) is in this case of the form:

∂cp

∂t
= Dcp∆cp − ηcp∇·

(
cp∇e

)
+ µpcp(1 − ρ(u)) − %pcpv + λcp,cm , (3.1a)
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∂ip

∂t
= Dip∆ip − ηip∇·

(
ip∇e

)
+ %pcpv − δipip, (3.1b)

∂cm

∂t
= Dcm∆cm − ∇ · (cmAcm) + µmcm(1 − ρ(u)) − %mcmv + λcm,cp , (3.1c)

∂im

∂t
= Dim∆im − ηim∇·

(
im∇e

)
+ %mcmv − δimim, (3.1d)

∂e
∂t

= −e(αcpcp + αipip + αcmcm + αimim) + µ2e(1 − ρ(u)), (3.1e)

∂v
∂t

= Dv∆v − ηv∇ · (v∇e) + bmim + bpip − (%mcm + %pcp)v − δvv, (3.1f)

with results for this case shown in Figure 4.

2. The cell-adhesion interactions for the uninfected proliferative subpopulation cp are considered
now to be non-local, while the infected subpopulations ip, and im are still considered to be local
of haptotactic type. Hence, in the coupled macro-dynamics in Eq 2.25(a)–(f) we have ϕcp(u) =

∇·
(
cpAcp(·,·,u(·,·))

)
, while ϕip(u) = ηip∇·

(
ip∇e

)
, and ϕim(u) = ηim∇·

(
im∇e

)
. Thus, the macro-dynamics

Eq 2.25(a)–(f) is in this case of the form:

∂cp

∂t
= Dcp∆cp − ∇·

(
cpAcp(·,·,u(·,·))

)
+ µpcp(1 − ρ(u)) − %pcpv + λcp,cm , (3.2a)

∂ip

∂t
= Dip∆ip − ηip∇·

(
ip∇e

)
+ %pcpv − δipip, (3.2b)

∂cm

∂t
= Dcm∆cm − ∇ · (cmAcm) + µmcm(1 − ρ(u)) − %mcmv + λcm,cp , (3.2c)

∂im

∂t
= Dim∆im − ηim∇·

(
im∇e

)
+ %mcmv − δimim, (3.2d)

∂e
∂t

= −e(αcpcp + αipip + αcmcm + αimim) + µ2e(1 − ρ(u)), (3.2e)

∂v
∂t

= Dv∆v − ηv∇ · (v∇e) + bmim + bpip − (%mcm + %pcp)v − δvv, (3.2f)

with results for this case shown in Figure 5(a).

3. Finally, all the cell-adhesion interactions for both the uninfected proliferative subpopulation cp

and for the infected subpopulations ip, and im are considered to be non-local, i.e., in the coupled
macro-dynamics in Eq 2.25(a)–(f) we have ϕcp(u) = ∇·

(
cpAcp(·,·,u(·,·))

)
, ϕip(u) = ∇·

(
ipAip(·,·,u(·,·))

)
,

and ϕim(u) = ∇·
(
imAim(·,·,u(·,·))

)
. Thus, the macro-dynamics Eq 2.25(a)–(f) is in this case of the

form:
∂cp

∂t
= Dcp∆cp − ∇·

(
cpAcp

)
+ µpcp(1 − ρ(u)) − %pcpv + λcp,cm , (3.3a)

∂ip

∂t
= Dip∆ip − ∇·

(
ipAip

)
+ %pcpv − δipip, (3.3b)

∂cm

∂t
= Dcm∆cm − ∇ · (cmAcm) + µmcm(1 − ρ(u)) − %mcmv + λcm,cp , (3.3c)

∂im

∂t
= Dim∆im − ∇·

(
imAim

)
+ %mcmv − δimim, (3.3d)
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∂e
∂t

= −e(αcpcp + αipip + αcmcm + αimim) + µ2e(1 − ρ(u)), (3.3e)

∂v
∂t

= Dv∆v − ηv∇ · (v∇e) + bmim + bpip − (%mcm + %pcp)v − δvv, (3.3f)

with results for this case shown in Figure 5(b).

3.3. Initial conditions

The initial conditions for the uninfected proliferative cancer cell population, cp(x, 0) is chosen to
describe a small localised pre-existing tumour aggregation. This is given by the following equations:

c0
p(x) = 0.5

(
exp

(
−
‖x − (2, 2)‖22

2h

)
− exp (−3.0625)

) (
χB((2,2),0.5−γ) ∗ ψγ

)
, ∀ x ∈ Y, (3.4)

whose plot is shown in Figure 3(a). Here ψγ : RN → R+ is the usual standard mollifier of radius
γ << ∆x

3 given by

ψγ(x) :=
1
γNψ

(
x
γ

)
, (3.5)

where ψ is the smooth compact support function given by

ψ(x) :=

exp 1
‖x‖22−1

if ‖x‖2 < 1,

0 otherwise.
(3.6)

Moreover, we assume that the tumour is detected early enough so that migration is not initiated at the
start of these simulations, and thus

c0
m(x) = 0, ∀ x ∈ Y. (3.7)

Also, since there is no infection at this stage, we assume that both infected proliferative (ip(x, 0)) and
migrating (im(x, 0)) cancer cells are zero:

i0
p(x) = 0, and i0

m(x) = 0, ∀ x ∈ Y. (3.8)

Furthermore, the initial condition for the ECM density, e(x, 0), is represented by an arbitrarily chosen
heterogeneous pattern described by the following equations (as in [47])

e(x, 0) =
1
2

min{h(ζ1(x), ζ2(x)), 1 − c0
p(x)}, (3.9)

and is shown in Figure 3(b). Here, we have

h(ζ1(x), ζ2(x)) := 1
2 + 1

4 sin(ξζ1(x)ζ2(x))3 · sin
(
ξ
ζ2(x)
ζ1(x)

)
,

(ζ1(x), ζ2(x)) := 1
3 (x + 3

2 ) ∈ [0, 1]2, ∀x ∈ Y, and ξ = 7π.
(3.10)

While other types of heterogeneous ECM patterns could be considered (see [53]), here we focus our
attention to explore cancer-viral dynamics on this particular ECM pattern.
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Figure 3. Initial conditions used for the numerical simulations: (a) proliferative uninfected
cancer cells density cp, as described by Eq (3.4); (b) ECM density, as described by Eq (3.9);
(c) OV density, as described by Eq (3.11). The white curve indicates the tumour boundary.
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Finally, the initial conditions for the OV population, v(x, 0) is chosen to describe one single injection
in the middle of the tumour aggregation, as in [34]. This is described by the equation

v0(x) = Φ(x) · θ(v), (3.11)

where

Φ(x) = 1
8

(
exp

(
−
‖x − (2, 2)‖22

2h

)
− exp (−1.6625)

)
,

and

θ(v) =

1 if Φ(x) > 5 × 10−5,

0 otherwise.

(3.12)

In computations, the initial condition is smoothed out on the frontier of the viral density support Γv :=
∂{x ∈ Y | v0(x) > 0} via the averaging

v(x1, x2) =
1
8

−v(x1, x2) +
∑

i, j∈{−1,0,1}

v(x1 + ih, x2 + jh)

 , ∀(x1, x2) ∈ Γv. (3.13)

4. Results

The numerical results presented in this Section are obtained with the parameter values described in
Table 1 which, for convenience we call them ‘baseline parameters’. Whenever we vary these
parameters, we state clearly the new values we use for those simulations. Note that these baseline
parameters are based on other papers or on our own estimates. For instance, using the GOG
hypothesis, we estimated that Dcp is likely much smaller than Dcm . Since we could not find an exact
value for Dcp (Dcm was assumed to be 0.00035, as in [43]), we arbitrarily estimated Dcp = 10−5.

We start in Section 4.1 by investigating numerically the impact of local vs. nonlocal approaches used
to describe the cell-cell and cell-matrix adhesion flux. Then, in Section 4.2, we investigate the impact
of varying the adhesion strength in the non-local cell flux. Following that we focus on the system of Eq
(3.1) without haptotaxis for cp (i.e., ηcp = 0), to investigate the impact of varying different parameters:
in Section 4.3 we vary the impact of transition rate between migrating and proliferative cells, in Section
4.4 we vary the impact of OVs infection rate, and in Section 4.5 we vary the impact of OVs replication
rate.

4.1. The importance of cell-cell and cell-matrix adhesion: Local vs non-local approaches

First, we focus on model (3.1), described in detail in Section 3.2. In Figure 4(a) we show the
dynamics of our multiscale model in the absence of haptotactic terms for the proliferative uninfected
cells (ηcp = 0), while in Figure 4(b) we show the dynamics of this model in the presence of such
haptotactic terms (where ηcp = 0.00285, as given in Table 1). We can see that, for the parameter values
used in these simulations, there is no difference in the spatial distribution of migrating uninfected
or infected cancer cells between panels (a) and (b). However, the addition of haptotactic movement
impacts the spatial distribution of proliferative uninfected cancer cells, leading to a more localised
cancer cells distribution.
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Table 1. Baseline parameters values used for our multiscale computations.

Param. Value Description Reference
Dcm 0.00035 Uninfected migrating cancer cell diffusion coefficient [43]
Dim 0.0054 Infected migrating cancer cell diffusion coefficient [54]
Dip 0.00054 Infected proliferative cancer cell diffusion coefficient Estimated
Dcp 10−5 Uninfected proliferative cancer cell diffusion coefficient Estimated
Dv 0.0036 Constant diffusion coefficient for OV [54]
ηcp 0.00285 Infected proliferative cancer cell haptotaxis coefficient Estimated
ηim 0.0285 Infected migrating cancer cell haptotaxis coefficient [29]
ηip 0.00285 Infected proliferative cancer cell haptotaxis coefficient Estimated
ηv 0.0285 OV haptotaxis coefficient [29]
µm 0.5 Proliferation rate for uninfected migrating cancer cells [41]
µp 0.75 Proliferation rate for uninfected proliferative cancer cells [41]
S cmcm 0.1 Maximum rate of cell-cell adhesion strength [44]
S cpcp 0.05 Maximum rate of cell-cell adhesion strength Estimated
S imim 0.1 Maximum rate of cell-cell adhesion strength Estimated
S ipip 0.05 Maximum rate of cell-cell adhesion strength Estimated
S cme 0.5 Rate of Cell-ECM adhesion strength [55]
S cpe 0.001 Rate of Cell-ECM adhesion strength Estimated
S ime 0.5 Rate of Cell-ECM adhesion strength Estimated
S ipe 0.001 Rate of Cell-ECM adhesion strength Estimated
ω1 0.1 Rate of switching from proliferative state (cp) to migration state (cm) Estimated
ω2 0.4 Rate of switching from migration (cm) to proliferative state (cp). Estimated
αcm 0.075 ECM degradation rate by uninfected cancer cells Estimated
αim

αcm
2 ECM degradation rate by infected cancer cells [29]

αcp 0.075 ECM degradation rate by uninfected cancer cells Estimated
αip

αcm
2 ECM degradation rate by infected cancer cells Estimated

µ2 0.02 Remodelling term coefficient [34]
%m 0.079 Infection rate of cm cells by OV [29]
%p 0.079 Infection rate of cells by OV Estimated
δim 0.05 Death rate of infected cancer cells [54]
δip 0.05 Death rate of infected cancer cells Estimated
bm 40 Replicating rate of OVs in infected cancer cells cm Estimated
bp 40 Replicating rate of OVs in infected cancer cells cp Estimated
δv 0.05 Death rate of OV [54]
νe 1 The fraction of physical space occupied by the ECM [47]
νc 1 The fraction of physical space occupied by cancer cells [47]
γcm 1.5 MDEs secretion rate by uninfected cancer cell [56]
γim 1 MDEs secretion rate by infected cancer cell [56]
γcp 1 MDEs secretion rate by uninfected cancer cell Estimated
γip 1.5 MDEs secretion rate by infected cancer cell Estimated
Dm 0.004 MDE diffusion coefficient [57]
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Figure 4. Simulations of system (3.1) using the parameters in Table 1. Here we show cell
and virus distributions at micro-macro stage 75. (a) cp without haptotaxis (ηcp = 0), (m)
migrating cells; (p) proliferative cells. (b) and cp with haptotaxis (ηcp = 0.00285).

Next, we investigate numerically the dynamics of models (3.2) and (3.3). In Figure 5(a) we show
the dynamics of our multi-scale model (3.2) that has two non-local fluxes cm and cp, while in Figure
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5(b) we show what happens when we consider non-local fluxes for all cancer cells subpopulations (i.e.,
model (3.3)). Clearly there is a difference between these results and the previous one. The cancer
cells for the case with two non-local fluxes (i.e., for proliferative cp and migrating cm cells) are more
invasive, but have lower densities compared to the case where we assume four non-local adhesion
fluxes. We can also see that the OV density for the case described by model (3.2) (with two nonlocal
fluxes) is almost double compared to the OV density for the case described by model (3.3) (with four
nonlocal fluxes).

4.2. The impact of adhesion strength

In this subsection we investigate the effect of cell-cell and cell-matrix adhesion strengths for the
two non-local subpopulations (i.e., model (3.2)) versus the four non-local subpopulations (i.e., model
(3.3)). In [34] the authors studied the impact of different adhesion strengths in a model with one
homogeneous cancer population and showed that when cell-cell adhesion strength was lower than cell-
matrix adhesion strength it led to larger tumour spread. Since here we focus on two different cancer cell
sub-populations (i.e., migrating and proliferative), we assume that cell-cell adhesion strength is lower
than cell-matrix adhesion strength for the migrating cancer cells cm, im (to allow for cell migration),
and the other way around for the proliferative cancer cells cp, ip (to reduce cell migration). The results
of numerical simulations with these different adhesion strengths are shown in Figure 5. In this case we
see relatively similar tumour spread patterns for (a) model (3.2) with two non-local sub-populations
and for (b) model (3.3) with four non-local sub-populations. The only difference is a slight increase
in the density for uninfected cancer cells and a decrease in the density of infected cancer cells for the
model in sub-panels (b).

Since it is difficult to measure the adhesion strengths for cells with different phenotypes, in Figure 6
we also investigate numerically what happens with tumour and virus spread patterns when we assume
that all cancer subpopulations have similar cell-cell adhesion strengths that are lower than their cell-
matrix adhesion strengths. In this case we see that the cancer cells show less spatial spread compare
to the case in Figure 5. Moreover, the OV (which has the highest density in the middle of the tumour
mass) cannot destroy the tumour in that region; this is more evident in sub-panels (b) (for model (3.3)
with four non-local sub-populations), where the level of the virus is also very reduced. In sub-panels
(a) (for model (3.2) with two non-local sub-populations) we still see a bit of reduction in tumour size
in the middle of the tumour region where the level of OV is similar as in Figure 5.

We conclude from these two numerical studies that the magnitudes of cell-cell and cell-matrix
adhesion strengths for different cancer cell phenotypes (here migrating and proliferative cells),
combined with their local/non-local character, influence significantly the spread of the virus through
the tumour.

In the next three sub-sections we return to model (3.1) without haptotaxis for cp cells (i.e., ηcp = 0),
and investigate the impact of transition rates between migrating and proliferative cell sub-populations,
as well as the impact of virus infection and replication rates.

4.3. The impact of transition rates

We return now to model (3.1) without haptotaxis for cp (i.e., ηcp = 0), and investigate numerically
the impact of varying the transition rates between migrating and proliferating cancer cells, and the
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Figure 5. Simulations of systems (3.2) and (3.3) using the parameters in Table 1. Here
we show the cell and virus distribution at micro-macro stage 75. Moreover “m” denotes
migrating cells, while “p” denotes proliferative cells. (a) Model (3.2): two non-local
subpopulation cm, cp. (b) Model (3.3): four non-local subpopulations cm, im, cp, ip.
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Figure 6. Simulations of systems (3.2) and (3.3) using the parameters in Table 1. Here we
show cell and virus distributions at the micro-macro stage 75 with S cpcp = S ipip = S cmcm= 0.1
and S cpe = S ipe = S cme= 0.5. Moreover “m” denotes migrating cells, while “p” denotes
proliferative cells. (a) Model (3.2): two non-local sub-population cm, cp. (b) Model (3.3):
four non-local sub-population cm, cp, ip, im.
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differences from the baseline results shown before in Figure 4(a). In Figure 7 we investigate the spatial
spread of tumour and virus populations when (a) ω2 = ω1 = 0.1, and (b) ω2 =

ω1

4
= 0.025. We see that

decreasing ω2 leads to an increase in the density of migrating cells (cm, im, in sub-panel (b)) compared
to the case in Figure 4(a). Moreover, we see an increase in the spatial spread of the tumour between
sub-panel (a) and sub-panel (b) where there are more migrating cancer cells.

4.4. The impact of infection rate

In Figure 8 we investigate the impact of the infection rates of cancer cells by the virus particles
for the model (3.1) when we ignore the haptotaxis for cp (i.e., ηcp = 0); we compare the results with
those in Figure 7(b). In Figure 8(a) we assume that the proliferating cells have a faster infection rates
compared to the migrating cells: %p = 3%m = 0.316. In Figure 8(b) we assume that the migrating cells
have a faster infection rates compared to the proliferating cells: %m = 3%p = 0.316. We see that by
increasing the OV infection rate for any cancer subpopulation it leads to an increase viral density, better
viral spread and better killing of cancer cells. This cancer-killing effect is slightly more pronounced in
sub-panels (a) where %p > %m.

4.5. The impact of replicating rate of OVs

In Figure 9 we investigate the impact of varying the OV replication rate for model (3.1) without cp

haptotaxis (i.e., ηcp = 0), and the results are compared to Figure 7(b). When (a) bp = 50 ≥ bm = 40,
the impact of increasing bp by a small amount is more evident on the proliferative cancer population

cp and on the virus density. When (b) bp =
bm

8
= 5 and bm = 40, it is clear that decreasing bp while

keeping bm fixed leads to a very low OV density and a higher density of proliferative cells cp in the
middle of the tumour mass compared to the case (a) when bp > bm. Compared to the results in Figure
7(b) we deduce that increasing bp leads to a reduction in cp but not cm and an increase in virus v levels,
while decreasing bp leads to an increase in both cp and cm and a drastic reduction in virus v levels.

5. Conclusions

In this study we proposed a new multiscale moving boundary model that considers the
local/non-local interactions between cancer cells and ECM, as well as the infections of cancer cells
with oncolytic viruses (OV), all in the context of the go or grow hypothesis. This model generalises
the previous studies in [34] (that focused on nonlocal multi-scale moving boundary models for
oncolytic virotherapies in the context of a homogeneous cancer population) and [29, 58] (that focused
on local multiscale moving boundary models for oncolytic virotherapies in the context of a
homogeneous cancer population). Here, we consider a heterogeneous cancer cell population formed
of two sub-populations: mainly-migrating and mainly-proliferative cells.

Using this new model, we investigated not only the impact of different cell-cell and cell-ECM
interaction strengths on the overall spread of cancer cells and OVs (see Figures 4–6), but also the effect
of changes in the transition rates between the migrating and proliferative cells (see Figure 7), as well
as the effects of varying the infection rates of different cancer cells (Figure 8), and the proliferation
rates of viruses inside different cancer cells (Figure 9). First, we have seen that the magnitudes of
cell-cell and cell-matrix adhesion strengths for different cancer cell phenotypes (i.e., migrating and
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m

Uninfected Cancer Cells 

p

Infected Cancer Cells OV(a)

(b)

ECM

m

p

Figure 7. Simulations of system (3.1) using the parameters in Table 1 without haptotaxis for
cp (i.e., ηcp = 0). Here we show the cell and virus distributions at the micro-macro stage 75.
We denote by “m” the migrating cells, and by “p” the proliferative cells. (a) ω2 = ω1 = 0.1.
(b) ω2 =

ω1

4
= 0.025.
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m

Uninfected Cancer Cells 

p

Infected Cancer Cells OV(a)

(b)

ECM

m

p

Figure 8. Simulations of system (3.1) without haptotaxis for cp (i.e., ηcp = 0), using the

parameters in Table 1 and ω2 =
ω1

4
= 0.025 (to compare the results with those in Figure

7(b)). Here we show the cell and virus distribution at micro-macro stage 75. Also, we denote
by “m” the migrating cells, and by “p” the proliferative cells. (a) %p = 3%m. (b) %m = 3%p.
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m

Uninfected Cancer Cells 

p

Infected Cancer Cells OV(a)

(b)

ECM

m

p

Figure 9. Simulations of system (3.1) without haptotaxis for cp (i.e., ηcp = 0), using the

parameters in Table 1 and ω2 =
ω1

4
= 0.025. Here we show the cell and virus distributions at

micro-macro stage 75. Also we denote by “m” the migrating cells and by “p” the proliferative

cells. (a) bp = 50 and bm = 40; (b) bp =
bm

8
and bm = 40.
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proliferative cells), combined with their local/non-local character, influence significantly the spread
of the virus through the tumour. Second, we have seen that the killing of cancer cells by the OVs
is slightly more pronounced when the proliferating cells have a faster infection rate compared to the
migrating cells (i.e., %p > %m). This suggests that giving the virus during a certain time interval, when
the majority of cells in the solid tumour are in a proliferative phase, might eventually lead to better
cancer killing. Finally, we have seen that viral replication inside proliferating cells (and viral burst
size from these cells) might affect in some cases not only the density of proliferative cells but also the
density of migrating cells. For example, when bp > bm, the migrating cells do not seem to be greatly
impacted; however, for bp < bm, the migrating cells are impacted.

To conclude, we emphasise that the heterogeneity of solid cancers (formed of sub-populations of
cells with different phenotypes; e.g., mainly-migrating and mainly-proliferative cells) might impact
the success of oncolytic therapies, where the virus needs to spread throughout the tumour to be able
to eliminate it. We would also like to suggest that one possible explanation for the contradictory
experimental results in regard to validity of the go or grow hypothesis for various cancer cell lines (see
our discussion in the Introduction) might be related to the differences in the heterogeneity of tumours
for these different cell lines. However, this hypothesis will have to be tested experimentally in the
future.
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Appendix

A. Indicator functions enabling computations exclusively on the tumour moving domain

In order to carry out the macro-scale computation exclusively on the developing tumour Ω(t0), for
any t0 > 0, we define the spatial cancer indicator function I(·, ·) : {1, ...,M} × {1, ...,M} → {0, 1} given
by

I (s, p) :=

1 if (xs, xp) ∈ Ω(t0),
0 if (xs, xp) < Ω(t0).

(A.1)

Further, in order to identify the immediate outside nodes that are neighbours to the tumour boundary
(which are needed during the computation), we define the spatially closest outside neighbour indicator
functionsHx,+1(·, ·),Hx,−1(·, ·),Hy,+1(·, ·),Hy,−1(·, ·) : {2, ...,M − 1} × {2, ...,M − 1} → {0, 1}, defined by

Hx,±1(s, p) := |I(s, p) − I(s, p ± 1)| · I(s, p),
Hy,±1(s, p) := |I(s ± 1, p) − I(s, p)| · I(s, p).

(A.2)

These enable us to exercise the computations for the cancer cells dynamics only on the expanding
cancer region Ω(t0). Indeed, these indicator functions allow us to take advantage of the zero-flux

conditions at the moving boundary ∂Ω(t0) and appropriately assign density values that are required
in computations (and that are dictated by the boundary conditions) at each of these closest outside
points to the tumour boundary (along each spatial direction). Finally, these closest outside points to the
tumour boundary are given by the union of pre-imagesH−1

x,−1({1})∪H−1
x,+1({1})∪H−1

y,−1({1})∪H−1
y,+1({1}).

B. Finite difference-midpoint involving indicator function

This section explain finite difference-midpoint method used through the paper, into two subsections
local flux and non-local flux to accounts for all fluxes considered in this paper.

B.1. Non-local flux

At any spatial discretised spatial location (x1
s , x

2
p) ∈ Ω(t0), and any discretised time tt := t0 + lδt,

∀l ∈ {0, . . . , [∆t/δt]}, we denote by cl
s,p the discretised densities at the ((x1

s , x
2
p), tl) for each of the

subpopulations c ∈ {cp, ip, cm, im}. Similar notations we adopt also for the discretised adhesion fluxes
at ((x1

s , x
2
p), tl), namely Al

c,s,p stands for the discretised adhesion flux for each of the subpopulations
c ∈ {cp, ip, cm, im}. In this context, using the zero-flux conditions across the tumour’s moving boundary
(accounted here for via the indicators in equations Eqs (A.1) and (A.2)), we are able to cary out
computations on the expanding spatial mesh by involving midpoint approximations for the cancer
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subpopulation densities

cl
s,p± 1

2
:=

cl
s,p +

[
Hx,±1(s, p)cl

s,p + I(s, p ± 1)cl
s,p±1

]
2

,

cl
s± 1

2 ,p
:=

cl
s,p +

[
Hy,±1(s, p)cl

s,p + I(s ± 1, p)cl
s±1,p

]
2

,

(B.1)

as well as for the adhesion fluxes

Al
c,s,p± 1

2
:=
Al

c,s,p +
[
Hx,±1(s, p)Al

c,s,p + I(s, p ± 1)Al
c,s,p±1

]
2

,

Al
c,s± 1

2 ,p
:=
Al

c,s,p +
[
Hy,±1(s, p)Al

c,s,p + I(s ± 1, p)Al
c,s±1,p

]
2

,

(B.2)

while the central differences at the virtual midpoint nodes (s, p ± 1
2 ) and (s ± 1

2 , p) are given by:

for c:

[cx]l
s,p+ 1

2
:=

[
Hx,+1(s, p)cl

s,p + I(s, p + 1)cl
s,p+1

]
− cl

s,p

∆x
,

[cx]l
s,p− 1

2
:=

cl
s,p −

[
Hx,−1(s, p)cl

s,p + I(s, p − 1)cl
s,p−1

]
∆x

,

[
cy

]l

s+ 1
2 ,p

:=

[
Hy,+1(s, p)cl

s,p + I(s + 1, p)cl
s+1,p

]
− cl

s,p

∆y
,

[
cy

]l

s− 1
2 ,p

:=
cl

s,p −
[
Hy,−1(s, p)cl

s,p + I(s − 1, p)cl
s−1,p

]
∆y

,

(B.3)

Hence, the discretisation of the spatial operator ∇ · [Dc∇c − cAc(t, x,u(t, ·))] in Eq (2.25c) is obtained
by

(∇ · [Dc∇c − cA(t, x,u(t, ·))])l
s,p ≈

Dc

(
[cx]l

s,p+ 1
2
− [cx]l

s,p− 1
2

)
− cl

s,p+ 1
2
· Al

c,s,p+ 1
2

+ cl
s,p− 1

2
· Al

c,s,p− 1
2

∆x

+

Dc

([
cy

]l

s+ 1
2 ,p
−

[
cy

]l

s− 1
2 ,p

)
− cl

s+ 1
2 ,p
· Al

c,s+ 1
2 ,p

+ cl
s− 1

2 ,p
· Al

c,s− 1
2 ,p

∆y
.

(B.4)
Denoting now by F l

c,s,p the discretised value of the flux Fc := Dc∇c − cAc(t, x,u(t, ·)) at the spatio-
temporal node ((xs, xp), tl), we observe that the discretisation of ∇ · Fc = ∇ · [Dc∇c − cAc(t, x,u(t, ·))]
given in Eq (2.25c) can therefore be equivalently expressed in a compact form as

(∇ · Fc)l
s,p '

F l
c,s,p+ 1

2
− F l

c,s,p− 1
2

+ F l
c,s+ 1

2 ,p
+ F l

c,s− 1
2 ,p

h
, (B.5)

where

F l
c,s,p± 1

2
= Dc [cx]l

s,p± 1
2
− cl

s,p± 1
2
· Al

c,s,p± 1
2
,

F l
c,s± 1

2 ,p
= Dc

[
cy

]l

s± 1
2 ,p
− cl

s± 1
2 ,p
· Al

c,s± 1
2 ,p
.
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B.2. Local flux

For the case when the spatial flux is given through the local operator Fc := Dc∆c − ηc∇·c∇e) where
c ∈ {cp, ip, im}, we have the discretisation

(Fc)l
s,p ≈

Dc

(
[cx]l

s,p+ 1
2
− [cx]l

s,p− 1
2

)
− ηccl

s,p+ 1
2
· [ex]l

s,p+ 1
2

+ ηccl
s,p− 1

2
· [ex]l

s,p− 1
2

∆x

+

Dc

([
cy

]l

s+ 1
2 ,p
−

[
cy

]l

s− 1
2 ,p

)
− ηccl

s+ 1
2 ,p
· [ey]l

s+ 1
2 ,p

+ ηccl
s− 1

2 ,p
· [ey]l

s− 1
2 ,p

∆y
,

(B.6)

where

cl
s,p± 1

2
:=

cl
s,p +

[
Hx,±1(s, p)cl

s,p + I(s, p ± 1)cl
s,p±1

]
2

,

cl
s± 1

2 ,p
:=

cl
s,p +

[
Hy,±1(s, p)cl

s,p + I(s ± 1, p)cl
s±1,p

]
2

,

(B.7)

and

[cx]l
s,p+ 1

2
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[
Hx,+1(s, p)cl

s,p + I(s, p + 1)cl
s,p+1

]
− cl
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∆x
,
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s,p− 1

2
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cl
s,p −

[
Hx,−1(s, p)cl

s,p + I(s, p − 1)cl
s,p−1

]
∆x

,

[
cy

]l

s+ 1
2 ,p

:=

[
Hy,+1(s, p)cl

s,p + I(s + 1, p)cl
s+1,p

]
− cl

s,p

∆y
,

[
cy
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2 ,p
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cl

s,p −
[
Hy,−1(s, p)cl

s,p + I(s − 1, p)cl
s−1,p

]
∆y

,

(B.8)

and for e:

[ex]l
s,p+ 1

2
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el
s,p+1 − el

s,p

h
, and [ex]l

s,p− 1
2
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el

s,p − el
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h
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ey

]l
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2 ,p
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s+1,p − el
s,p

h
, and

[
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s− 1
2 ,p
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el
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h
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(B.9)

Finally, for the haptotactic-like virus spatial operator ηv∇·(v∇e) is discretised as

(−ηv∇·(v∇e))l
s,p ≈

−ηvvl
s,p+ 1

2
· [ex]l

s,p+ 1
2

+ ηvvl
s,p− 1

2
· [ex]l

s,p− 1
2

∆x

+

−ηvvl
s+ 1

2 ,p
· [ey]l

s+ 1
2 ,p

+ ηvvl
s− 1

2 ,p
· [ey]l

s− 1
2 ,p

∆y
,

(B.10)

C. The predictor-corrector

We denote by Hc(·, ·, ·) the right-hand side spatial operatorfor each of the tumour subpopulations Eq
2.25(a)–(d), with the non-transport part of this operator further denoted by fc(u, v). Then, maintaining
the same notation style, at any discretised spatio-temporal node ((xs, xp), tl), we have that

Hc(F l
c,s,p, c

l
s,p,u

l
s,p) := (∇ · Fc)l

s,p + fc(ul
s,p, v

l
p). (C.1)
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On the time interval [tl, tl+1], we first predict c at tl+ 1
2

using an explicit method as follows

c̃l+ 1
2

s,p = cl
s,p +

∆t
2

Hc(F l
c,s,p, c

l
i, j,u

l
s,p). (C.2)

Further, using c̃l+ 1
2

s,p we calculate the corresponding predicted flux F̃ l+ 1
2

c,s,p at tl+ 1
2
. Then, we construct a

non-local corrector that involves the average of the flux at the active neighbouring spatial locations

{(xs, xp±1)}, {(xs±1, xp)}, {(xs±1, xp−1)}, {(xs±1, xp+1)} ∩Ω(t0). (C.3)

Denoting the set of indices corresponding to these active locations by N , we we establish a corrector
for the spatial flux, given by

F
∗l+ 1

2
c,s,p =

1
card(N)

∑
(σ,ζ)∈N

F̃
l+ 1

2
c,σ,ζ , (C.4)

which ultimately enables us to use a trapezoidal-type approximation and obtain a corrected value for c
at tl+ 1

2
as

cl+ 1
2

s,p = cl
s,p +

∆t
4

[
Hc(F l

s,p, c
l
i, j,u

l
s,p) + Hc(F

∗l+ 1
2

s,p , c̃l+ 1
2

s,p , ũ
l+ 1

2
s,p )

]
, (C.5)

Here, ũl+ 1
2

s,p is the ”half-time predicted” tumour vector obtained for the current subpopulation c given by

the half-time predicted value c̃l+ 1
2

s,p , while all the other tumour subpopulations and the ECM (that enter
as components of u) being given by their accepted values at ((xs, xp), tl).

Then, using

c̄l+ 1
2

s,p :=
cl+ 1

2
s,p + cl

s,p

2
, (C.6)

to calculate the flux F l+ 1
2

c at tl+ 1
2
, we initiate the predictor-corrector steps described above on the second

half of this time interval, which we now repeat on [tl+ 1
2
, tl+1], and we finally obtain cl+1

s,p given through
the analogue of Eq (C.5) that results (through the same procedure, described in Eqs (C.2)–(C.5)) on
this second half-interval (i.e., on [tl+ 1

2
, tl+1]. Finally, the same time-marching steps are adopted also for

virus equations Eq (2.25f).
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