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Abstract: Forecast of stock prices can guide investors’ investment decisions. Due to the high-

dimensional and long-memory characteristics of stock data, it is difficult to predict. The fractional grey 

model with convolution (FGMC (1, m)) can be used to predict time series, because of its memory and 

ability to process high-dimensional data. However, the FGMC (1, m) model has some disadvantages, 

including complex calculation, loss of information, and approximate background values. In this paper, 

Hausdorff fractional derivative and Newton-Cotes formula are used to optimize these shortcomings 

and can get a Hausdorff fractional grey model with convolution (HFGMC (1, m)) model. The HFGMC 

(1, m)-LLE-BP model is proposed in this paper. HFGMC (1, m) provides a solution that can reduce 

the complexity of the cumulative generator matrix calculation and preserve the global information of 

the sequence. Newton-Cotes formula is used to calculate the background value, which can solve the 

shortcomings of approximate background values. The HFGMC (1, m) model is used to predict the 

linear component of the sequence, and the BP neural network is used to predict the nonlinear 

component of the sequence. In addition, because of the high-dimensional and nonlinear characteristics 

of stock data, a local linear embedding (LLE) algorithm is used to remove redundant information in 

high-dimensional non-linear data. The experimental results show that the HFGMC (1, m)-LLE-BP 

model is effective for predicting the stock price in different trends. 

Keywords: stock price forecasting; FGMC (1, m); Hausdorff fractional derivative; sewton-cotes 

formula; LLE algorithm; BP neural network  

 

1. Introduction  

The stock price is the primary factor affecting investors. Short-term stock price forecasts have 
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important significance for reference to investors. The factors affecting stock price are very complex, 

which makes it difficult to analyze and predict stock price. The stock market can be seen as a nonlinear 

dynamic system under the action of multiple factors. Time series forecasting models are usually 

adopted for stock price forecasts. There are multiple regression models, exponential smoothing models, 

ARIMA models, neural network models, combined forecasting models, and grey forecasting models. 

Many scholars have conducted a series of studies on stock price prediction. Shi [1] used ARMA 

and BP neural networks to obtain the linear and non-linear components of the stock price sequence 

and then used the Markov model to correct the error of the result. Vijh [2] used the random forest 

algorithm to integrate the indicators of multiple stocks, and then used BP neural network to output the 

predicted observations. Liu [3] proposes a new effective metric, Mean Profit Rate (MPR). The 

effectiveness of metrics is measured based on the correlation between the metric value and profit of 

the model. And, the relationship between the features of Bitcoin and the next day change in the price 

of Bitcoin using an Artificial Neural Network ensemble approach called Genetic Algorithm based 

Selective Neural Network Ensemble [4] is explored by Sin. Zhu [5] proposes an intelligent trading 

system using support vector regression optimized by genetic algorithms (SVR-GA) and multilayer 

perceptron optimized with GA (MLP-GA). And, an improved one-step ahead forecasting system and 

an improved multi-step ahead prediction [6] are proposed by Dong. Zhang [7] uses BP neural network 

to train stock prices in the form of spline division, and then output the predicted observations with data 

independent of the training samples. Teo [8] train the wavelet packet multi-layer perceptron neural 

network (WP-MLP) by backpropagation for time series prediction. Summarizing the above literature, 

using deep learning and machine learning methods to predict stock prices can achieve good prediction 

results. However, most methods do not consider the memory of the sequence when processing the 

original price sequence. Sang [9] studied the characteristics of long-term memory of fluctuations in 

the Chinese stock market, which means that the historical data of the stock market have an impact on 

the stock price at the current time. Since fractional calculus has power-law memory [10], the idea of 

fractional calculus can be used to obtain information about historical data. Based on the characteristics 

of fractional calculus, some models that combined the idea of fractional calculus with traditional time 

series forecasting methods have attracted the attention of many scholars. For example, the ARFIMA 

model, fractional grey model, etc. are the models that combine fractional ideas. Because the grey model 

has good performance in the uncertainty system, the prediction of the stock price is very consistent 

with the grey model. 

The Grey model is an important part of the grey theory, and the most famous one is GM (1, 1) 

model. However, GM (1, 1) has many shortcomings. The background value is based on approximation, 

and it cannot handle high-dimensional data. And the ability of nonlinear fitting is insufficient. Because 

of the shortcomings, many scholars had improved the GM (1, 1) model [11–25]. Tien [13] proposed 

the GMC (1, m) model to solve the shortcomings of traditional GM (1, 1) that cannot handle high-

dimensional data. Literature [14–19] proposed a variety of grey Bernoulli prediction models and grey 

models combined with kernel methods, which solved the shortcomings of insufficient nonlinear fitting 

capabilities. Literature [20,21] had solved the shortcoming that the background value is based on 

approximation. Literature [22–25] combined fractional calculus with the grey model and used 

historical data to solve many practical application problems. 

Since most time series including stock price series usually contain linear and non-linear factors, 

a single forecasting model cannot achieve good results. According to the high-dimensional, memorable, 

and non-linear characteristics of stock data, a Hausdorff fractional grey model with convolution, 
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locally linear embedding, and BP neural network (HFGMC (1, m)-LLE-BP) model is proposed in this 

paper. HFGMC (1, m) model is improved from FGMC (1, m) in literature [25]. The FGMC (1, m) 

model has several disadvantages. There are factorial operators in the elements of the accumulation 

generation matrix in the FGMC (1, m) model. When the data length is long, it will have the 

disadvantages of complex calculation and information loss. The calculation of background value in 

the FGMC (1, m) model is approximately obtained by using the trapezoidal formula between the two 

values in the sequence, which will calculate background value ignore the local change trend of the 

sequence. These shortcomings degrade the prediction performance of FGMC (1, m). The operator 

derived from HFGMC (1, m) model combined with Hausdorff fractional derivative does not contain a 

factorial operator, which solves the shortcomings of complex calculation and information loss. 

Because of the disadvantages of the background value based on approximation, the HFGMC (1, m) 

model uses the Newton-Cotes discrete formula and the Newton mean difference interpolation 

polynomial to optimize. Because the Newton-Cotes discrete formula and the Newton mean difference 

interpolation polynomial consider the changing trend of local data, it can solve the shortcomings of 

approximate background values. HFGMC (1, m) is used to predict the linear component of stock price. 

The BP neural network is used to predict the nonlinear component of stock price. The prediction result 

is obtained by adding a linear component and a nonlinear component. 

This paper uses the stock closing price as the forecast target to verify the performance of HGFMC 

(1, m)-LLE-BP. Compared with FGMC (1, m), the prediction accuracy of HFGMC (1, m) is much 

higher than that of FGMC (1, m). This is because FGMC (1, m) only retains local information, while 

HGFMC (1, m) retains global information. Therefore, the prediction accuracy of HGFMC (1, m) will 

be higher. Besides, thanks to the excellent nonlinear fitting ability of the BP neural network, it can fit 

the nonlinear residuals in the time series. The prediction results show that the BP neural network 

improves the performance of HGFMC (1, m). Finally, compare the HGFMC (1, m)-LLE-BP model 

with the FGMC (1, m)-LLE-BP model, BP neural network model, LSTM model and the ARIMA-BP 

hybrid model. The performance of the HGFMC (1, m)- LLE-BP model is far better than other models. 

The rest of this paper is organized as follows. In Section 2, the specific framework of the proposed 

model is given. In Section 3, the FGMC (1, m) is described. In Section 4, the HFGMC (1, m) is given. 

In Section 5, the LLE algorithm and BP neural network are introduced. In Section 6, experiments have 

verified the effectiveness of the proposed model. In Section 7, the work of this paper is summarized. 

2. Specific frameworks of the proposed model 

In this paper, the HFGMC (1, m) is proposed to predict the linear component of the stock price, 

and then the BP neural network is used to predict the nonlinear component of the stock price. Because 

stock price is affected by nonlinear high-dimensional stock data, this paper used the LLE algorithm to 

reduce the dimensionality of nonlinear high-dimensional stock data. The flow chart of the model 

proposed in this paper is shown in Figure 1. 

The text description of the specific steps is as follows. 

Step 1: Input parameters r, K. The parameter r is used to calculate the r-order accumulative 

generator matrix. The parameter K represents the number of neighboring points of each sample point, 

which is used for the calculation of locally linear embedding. 

Step 2: Input the original data matrix. Suppose the original data matrix  0
'X , ' n mX R  . n is the 

length of the sequence, and m is the m stock indicators including the sequence to be predicted. Select 

the sequence to be predicted (usually the first column of the original data matrix), and the remaining 
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sequences are used as related factors that affect the sequence to be predicted (usually other columns in 

the original data matrix except for the first column, and each column represents a related factor). 

Step 3: Form the correlation factor matrix that affects the sequence to be predicted, and apply the 

locally linear embedding algorithm to reduce the dimension to d dimension. The sequence to be 

predicted and the correlation factor matrix after dimensionality reduction form the input matrix  0
X . 

Then normalize the input matrix. 

Step 4: Perform Hausdorff fractional accumulative generation operation (HFAGO) on the input 

matrix to obtain the Hausdorff fractional accumulative matrix. 

Step 5: Combine the Newton-Cotes formula and use the Hausdorff fractional accumulation matrix 

to calculate the background value. 

Step 6: After obtaining the optimized background value, combine the least square estimation to 

solve the parameters. 

Step 7: Solve the whitening equation and get the time response function. Solve the in-sample time 

response sequence. 

Step 8: Perform the inverse Hausdorff fractional accumulation generation operation (I-HFAGO) 

on the time response sequence within the sample to obtain the in-sample prediction sequence. 

Step 9: Subtract the in-sample prediction sequence and the in-sample true value sequence to 

obtain the in-sample residual sequence. The mean of the sum of the residual sequence elements is the 

mean absolute error (MAE). Update r and K, and then judge whether the parameters r and K exceed the 

search range. If it exceeds the search range, select r, K that minimize MAE to solve the in-sample 

prediction sequence, and then go to step 10. If it does not exceed the search range, repeat Step 2 to 

Step 9. 

Step 10: Input the out-of-sample correlation factor matrix R, and then use the time response 

function to solve the out-of-sample time response sequence. Then the out-of-sample time response 

function obtains the out-of-sample prediction sequence through I-HFAGO as a linear component. 

Step 11: The in-sample residual sequence uses BP neural network to do nonlinear fitting, and then 

the out-of-sample residual sequence is output as the nonlinear component. 

Step 12: Add the linear component and the non-linear component to get the combined prediction 

sequence. 

 

Figure 1. The flow chart of the model proposed in this paper. 

The above steps can be divided into 6 modules. Step 1 to Step 3 is the data preprocessing part. 
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Step 4 to Step 7 is the modeling process of the HFGMC (1, m). Step 8 to Step 9 is the residual 

calculation part. Step 10 is to calculate the linear component through the HFGMC (1, m). Step 11 is to 

calculate the non-linear part through BP neural network. Step 12 gives the prediction result. 

3. The FGMC (1, m) model 

Literature [25] gave the specific derivation process of FGMC (1, m). Let the original data matrix 

be  0
X , n mX R  . n is the length of the sequence, and m is the indicators including the sequence to 

be predicted. Then perform the r-order accumulative generation operation (r-AGO) on each column 

of the original data matrix to obtain the r-order accumulative generation sequence. The mathematical 

form is defined as 
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Then establish the whitening equation. The specific mathematical form is 
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where is the delay period and u is the control coefficient. When and u are equal to 0, the traditional 
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GM (1, m) model can be obtained. But the GM (1, m) had been proved inaccurate in [13]. When is 

equal to 0 and m is equal to 1, it can degenerate into a GM (1, 1) model.  

By integrating the Eq (5) and using the trapezoidal formula in the interval [k -1, k], the discrete 

form of the existing fractional grey model can be obtained as 

              
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where  r

jZ  is called the background values, which are defined as  
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The parameter 1 2, , , ,mb b b u of Eq (5) can be obtained by least square estimation. Then substitute 

it into the whitening equation of Eq (4), and solve the differential equation to obtain the time response 

function. The form of the time response function is 
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The convolution operation of the second term on the right side of the Eq (9) can be discretized using 

the Gaussian formula to obtain the following discrete equation. The specific mathematical form is 
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  . Finally, perform the inverse r-order accumulative generation operation 

(r-IAGO) to obtain the predicted sequence 
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  (11)  

4. The HFGMC (1, m) 

Accumulate generation operation (AGO) is the core step of the grey model, which can eliminate 

the instability caused by fluctuations in the original data. From the r-order accumulation matrix in 

Eq (4), it can be seen that the original sequence needs to be multiplied by a factorial multiplier when 

the accumulation operation is performed. When the length of the sequence is long, the calculation in 

the r-order accumulation matrix will be very complicated. Besides, it can be seen from Eqs (7) and (8) 
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that the calculation of the background value is only obtained by using a simple trapezoidal calculation 

formula. However, most systems do not grow linearly, which leads to calculation errors when using 

FGMC (1, m) models. The error is shown in Figure 2. 

 

Figure 2. The flow chart of the model proposed in this paper. 

4.1. Derivation of Hausdorff Fractional Accumulate Generation Operation (HFAGO) 

The Hausdorff fractional derivative is defined as [26]. 
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1-RAGO is essentially the same as 1-AGO because it just does a simple inverse mapping of the 
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Eq (15) combined with Eq (13) to get 
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In the background of the grey prediction model, the difference and accumulate operation are 

reversible [24]. Eq (16) can be also written as 
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Equation (20) is HFAGO. Compared with Eq (2), HFAGO does not contain a factorial multiplier. 

To understand the difference between r-AGO and HFAGO more intuitively, the next step is to visually 

compare r-AGO and HFAGO. Assuming 
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where t  is equal to 1,2, ,n . The     in Eq (21) is the gamma function. Using Eqs (21) and (22), 

Eq (4) can be rewritten as 
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Assuming that r = 0.5, visualized Eqs (21) and (22). The visual comparison is shown in Figure 3. 

 

Figure 3. Visual comparison chart of Eqs (21) and (22). 

In Figure 3, the solid line represents the change of the multiplier overtime when r-AGO is 

performed. The dotted line represents the change of the multiplier over time when performing HFAGO. 

The analysis shows that the r-AGO is 0 when t > 172. This is because the factorial number is too large, 

so calculate the value of the denominator in matlab2020a will get INF. It will result in the loss of 

subsequent information and make the calculation result inaccurate. The visualization curve of HFAGO 

is very similar to the traditional r-AGO. On this basis, HFAGO can retain global information and 

reduce the amount of calculation. 

4.2. Optimization of background value based on Newton-Cotes formula 

Integrate both sides of Eq (5) on the interval [k-1, k] at the same time. 
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To optimize the error caused by the trapezoidal formula, it is necessary to use the Newton-Cotes 

formula to calculate the optimized background value for the integral term in Eq (25). Assume the 

integration area [a, b] is divided into l equal parts. Select node xi=a+ih to construct a discrete integral 

formula, where h is the step size. Then, the constructed discrete integral formula is called the Newton-
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Cotes formula. The mathematical form is defined as 

     
0

l
l

l i

k

I b a C f x


    (26)  

The C(l) in Eq (26) is called the Cotes coefficient. When l=1, it is a trapezoidal formula. when l=4, 

the corresponding quadrature formula is 

   4

1 1 3
7 32 12 32 7

90 4 2 4
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I f a f a f a f a f b
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      
 (27)  

This paper divided the integration area into 4 equal parts. Then, the integral term in Eq (25) is 

constructed using Eq (27) to obtain the optimized background value. The optimized background value is 

                 
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 (28)  

It can be noticed that   1
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do not exist for discrete data, and the 

Newton means difference interpolation polynomial can be used to solve this problem. The form of the 

Newton means difference interpolation polynomial is 

           0 0 1 0 0 1 0 1, , , ,n n nN x f x f x x x x f x x x x x x x x x         (29)  

where  0 1, , , nf x x x is the (n-1) order mean difference of the function  f x , and n represents the data 

points involved in the construction of the interpolation polynomial. However, the more points 

involved in the construction of the polynomial are not the better. When n>8, the Runge effect usually 

appears [27]. This paper will use every 4 data points to construct a Newton mean difference 

interpolation polynomial. 

5. Local linear embedding algorithm and BP neural network 

In this section, the LLE algorithm [28] and BP neural network [29] are introduced. 

5.1. Local linear embedding (LLE) dimensionality reduction algorithm 

The LLE algorithm was proposed by S.T. Roweis and L.K. Saul in 2000. The LLE algorithm is 

an important dimensionality reduction algorithm in flow learning. The principle is to assume that the 

data in a high-dimensional space is linear in a region, and certain data can be expressed linearly using 

data samples in its neighborhood. Then map the data to a low-dimensional space, and try to keep the 

weight coefficients of the linear relationship before and after the projection the same. 

The algorithm steps are as follows. 

Step 1: Find the K neighboring points of each sample point iX  in the high-dimensional space, 
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and then calculate the Euclidean distance between them. 

Step 2: Solve the covariance matrix between neighboring points. 

Step 3: Solve the weight coefficient vector of each sample point. 

Step 4: The weight coefficient vector forms the weight coefficient matrix W, and then calculates 

the matrix M that can minimize the reconstruction error function. 

Step 5: Solve d+1 smallest eigenvalues in matrix M. The eigenvector corresponding to the 

eigenvalues from 2 to d+1 are the original data matrix X corresponding to the mapping space with the 

smallest reconstruction error. 

5.2. BP neural network 

BP neural network was proposed by Hinton and McClelland in 1986. The core idea is based on 

the multi-layer forward neural network combined with the error loss gradient descent direction. The 

error loss gradient descent direction is combined with the error backpropagation algorithm to update 

the weights of the multilayer neural network. After enough iterations, the error loss converges to the 

minimum and finally can approximate any nonlinear function. 

6. Experiment analysis 

Through the above method and combined with the process in Figure 1, experiments are carried 

out to verify the performance of the model proposed in this paper. The first step is to select 

experimental examples. The second step is to select parameters. The third step is to compare the 

predicted value with the real value. The last step is to evaluate the performance of the model proposed 

in this paper through error indicators. 

6.1. Experimental examples 

This paper selected the stock closing price as the forecast target and forecasted the closing price 

for the next 10 days to verify the performance of the model proposed in this paper. This paper divides 

the predicted stocks into two categories. The first category is stocks with large fluctuations in the 

closing price of the stock. For example, within the range of a given trading day (excluding public 

holidays), The stocks with the highest closing price minus the lowest closing price greater than 5 are 

the first type of stocks. The second category is stocks with small fluctuations in the closing price of 

the stock. For example, within the range of a given trading day, the stocks with the highest closing 

price minus the lowest closing price less than 2 are the second type of stocks. In order to verify the 

effectiveness of this model for the above two types of stocks, this paper selects 6 stocks from the 

Shanghai Stock Exchange (code prefix is SH) and Shenzhen Stock Exchange (code prefix is SZ) as 

prediction objects. The 6 stocks are, SZ002607, SZ002567, SZ000796, SH600586, SZ002770 and 

SZ000573. SZ002607, SZ002567 and SZ000796 belong to the first category of stocks. SH600586, 

SZ002770 and SZ000573 belong to the second category of stocks. Stock data were crawled on NetEase 

Finance and Economics website using a web crawler program. 

Figure 4 shows the stock closing price trend chart for a total of 256 trading days from 2019-1-16 

to 2020-2-10. The closing price of SH600586, SZ002770 and SZ000573 has a small variation range, 

while the closing price of SZ002607, SZ002567 and SZ000796 has a large variation range. 
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Figure 4. Daily closing prices of 6 stocks. 

Table 1. Modeling data of SH600586. 

No. Date Close Date Top_price Low_price Opening_price Pre_price Floor_price 

1 19/1/16 2.95 19/1/2 3.01 2.94 2.96 2.95 -0.01 

          

256 20/2/10 2.52 20/1/17 2.87 2.83 2.86 2.86 -0.02 

   20/1/20 2.85 2.82 2.83 2.84 0.01 

   20/1/21 2.86 2.82 2.84 2.85 -0.01 

          

   20/2/10 2.53 2.43 2.46 2.47 0.05 

 

No. Date Close Date Floor Exchange Volume Amount Total value Circulation value 

1 19/1/16 2.95 19/1/2 -0.339 0.5625 8,122,601 24,196,597 4,287,408,174 4,245,758,958 

           

256 20/2/10 2.52 20/1/17 -0.6993 0.3202 4,574,400 13,015,088 4,057,706,800 4,057,706,800 

   20/1/20 0.3521 0.3255 4,650,641 13,176,695 4,071,994,500 4,071,994,500 

   20/1/21 -0.3509 0.3737 5,339,971 15,129,108 4,057,706,800 4,057,706,800 

           

   20/2/10 2.0243 0.8219 11,743,314 29,233,159 3,600,500,400 3,600,500,400 

Table 1 shows the data used for modeling in SH600586, and the modeling data of the remaining 5 

stocks are shown in the Supplementary. In this paper, the highest price, lowest price, opening price, 

previous closing price, floor change, floor, exchange, trading volume, trading amount, total market 

value and circulating market value are selected as indicators that affect the closing price of stocks. 
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Indicators such as the highest price, lowest price, opening price, previous closing, floor change, floor 

and the exchange can reflect the changing trend of the closing price of stocks in the recent period. 

Indicators such as trading volume, trading amount, total market value and circulating market value can 

reflect the financial status of the stock company corresponding to the stock. Imitating the method of 

literature [30], the above indicators are reduced by dimensionality reduction algorithm, and then input 

into the HGFMC (1, m) model.  

6.2. Discussion of hyperparameters 

First, the delay period parameter is discussed. It can be noted that there are 10 trading days’ 

indicator data after the serial number 256. The indicator data of these 10 trading days is used to predict 

the closing price of the next 10 days. Since the HGFMC (1, m) model is a time series forecasting model 

that processes high-dimensional data, the model needs a priori data of the next 10 days to predict the 

stock closing price in the next 10 days. Considering that investors are not sensitive to changes in stock 

data [31] (except for market crises), this makes investors have a certain delay in responding to stock 

data. In other words, the stock data at the moment will have a time delay to affect investor sentiment, 

and then investor sentiment will affect the stock price. It can be seen from Eq (10) that HGFMC (1, m) 

integrates the delay function and shows the relationship between the stock price and various indicators. 

Therefore, when used Eq (10) to solve the time response function, the delay period is set to 10. The 

setting of the delay period is equal to the amount of prior data required. 

Then the dimension d of the low-dimensional mapping space of the LLE algorithm is discussed. 

Literature [30,32,33] shows that setting the dimension d of the low-dimensional space to 2, 3, and 4 

can well express the feature space of the data. Therefore, this paper uses dimension 3 as the dimension 

of the low-dimensional mapping space of the LLE algorithm. 

6.3. Discussion on the stability of stock prices 

The stationary test of stock prices is discussed in this section. This paper uses the ADF test to test 

the stability of stock prices.  

The ADF test can check whether there is a unit root in the sequence. If there is a unit root, the 

sequence is not stationary. First, ADF test is performed on the original price series. 

Table 2. ADF test of the original sequence. 

Stock code Test statistic 
Significance level 

1% 5% 10% 

SZ000573 -1.34 -3.45 -2.87 -2.57 

SZ000796 -2.22 -3.45 -2.87 -2.57 

SZ002567 -1.62 -3.45 -2.87 -2.57 

SZ002607 -2.10 -3.45 -2.87 -2.57 

SZ002770 -0.75 -3.45 -2.87 -2.57 

SH600586 -1.08 -3.45 -2.87 -2.57 

As shown in Table 2, the original sequence of 6 stocks cannot reject the existence of unit roots at 

the significance levels of 1, 5, and 10%. Therefore, the original sequence of 6 stocks can be considered 
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unstable. Since the stock price series is not stationary, it is necessary to stabilize the series before 

forecasting. 

From Eqs (1) and (20), it can be known that after the original sequence uses HFAGO, the random 

walk of the price appears as the increment between data points on the accumulative generation 

sequence. Therefore, the original sequence can be considered stationary after using HFAGO. 

  

Figure 5. Stabilization of original series. 

Figure 5 shows the stabilization process of SZ002770’s stock price. The left image of Figure 5 

shows the original sequence. The right figure of Figure 5 shows the accumulative generation sequence. 

The stationary test of the accumulative generation sequence of 6 stocks also uses the ADF test for 

further verification. 

Table 3. ADF test of the accumulative generation sequence. 

Stock code Test statistic 
Significance level 

1% 5% 10% 

SZ000573 -5.46 -3.45 -2.87 -2.57 

SZ000796 -2.87 -3.45 -2.87 -2.57 

SZ002567 -6.52 -3.45 -2.87 -2.57 

SZ002607 -6.31 -3.45 -2.87 -2.57 

SZ002770 -3.66 -3.45 -2.87 -2.57 

SH600586 -4.93 -3.45 -2.87 -2.57 

It can be seen from Table 3 that SZ000573, SZ002567, SZ002607, SZ002770 and SH600586 

reject the hypothesis at the significance levels of 1, 5, and 10%, while SZ00796 rejects the hypothesis 

at the significance levels of 5% and 10%. Therefore, it can be considered that the accumulative 

generation sequence obtained by the original sequence after using HFAGO is stationary. 

6.4. Select parameters 

It can be seen from Figure 1 that the establishment of the model requires the selection of 

appropriate parameters r and K. This paper established the contour diagram between the parameters r, 

K and the mean absolute error (MAE), and then found the parameter that could minimize the MAE.  
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(a)SZ000573 

 

(b)SZ000796 

 

(c)SZ002567 

 

(d)SZ002607 

 

(e)SZ002770 

 

(f)SH600586 

Figure 6. Contour diagram of parameters r, K and MAE. 

Figure 6 is a contour diagram between the parameters r, K and MAE. In the figures, the horizontal 

axis represents the order r, and the vertical axis represents the number of K neighboring points of each 

sample point. The bluer the color, the smaller the MAE. The yellower the color, the larger the MAE. 

This paper enumerated the order r in the range of 0 to 1 in steps of 0.1 and enumerated the number of 

neighboring points K of the sample points from 0 to 100 in steps of 5. Then, select the search range 

that minimizes the MAE. Finally, use the exhaustive method within the range to get the relative 

optimal parameters. 

Table 4. Parameter range. 

Stock code r K 

SZ000573  0.25,0.6r  

 45,100K   

SZ000796  0.1,0.45r  

SZ002567  0.35,0.7r  

SZ002607  0.35,0.7r  

SZ002770  0.25,0.6r  

SH600586  0.25,0.6r  
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Table 4 shows the optimal parameter range of each stock. The search step for parameter r is 0.01, 

and the search step for parameter K is 5. For all stocks, the optimal search range of parameter K is 45 

to 100. For SZ000573, SZ002770 and SH60586, the search range of parameter r is 0.25 to 0.6. For 

SZ000796, the search range of parameter r is 0.1 to 0.45. For SZ002567 and SZ002607, the search 

range of parameter r is 0.35 to 0.7. 

Table 5. Result of parameters. 

Stock code r K MAE 

SZ000573 0.30 60 0.6120 

SZ000796 0.14 50 1.2227 

SZ002567 0.35 95 2.4767 

SZ002607 0.35 65 1.1929 

SZ002770 0.44 65 0.8013 

SH600586 0.41 55 0.6336 

Table 5 shows the result of parameters. For SZ000573, when the order r is 0.30 and K is 60, the 

MAE is 0.6120. For SZ000796, when the order r is 0.14 and K is 50, the MAE is 1.2227. For SZ002567, 

when the order r is 0.35 and K is 95, the MAE is 2.4767. For SZ002607, when the order r is 0.35 and 

K is 65, the MAE is 1.1929. For SZ002770, when the order r is 0.44 and K is 65, the MAE is 0.8013. 

For SH600586, when the order r is 0.41 and K is 55, the MAE is 0.6336. 

6.5. Discussion between HFGMC (1, m) and FGMC (1, m) 

To make the distribution of the data input to FGMC (1, m) the same as HGFMC (1, m), the 

parameters of the data input to FGMC (1, m) also need to be set according to Table 5. The comparison 

of HFGMC (1, m) and FGMC (1, m) uses the mean error between the in-sample predicted sequence 

and the real sequence as an indicator. Table 6 shows the MAE comparison between HFGMC (1, m) 

and FGMC (1, m). 

Table 6. The MAE comparison. 

Stock code FGMC (1, m) HFGMC (1, m) 

SZ000573 16.3341 0.6120 

SZ000796 10.2270 1.2227 

SZ002567 11.1814 2.4767 

SZ002607 8.4681 1.1929 

SZ002770 1.9685 0.8013 

SH600586 3.0270 0.6336 

It can be seen from Table 6 that the improvement of FGMC (1, m) by HGFMC (1, m) is very 

obvious, and the average MAE is reduced by 7.3778. 

6.6. Discussion of BP Neural Network 
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In this section, the improvement of the model by the BP neural network is discussed. It can be 

known from Eq (10) that the out-sample forecast data can be regarded as a linear combination of 

various indicators, so a single HGFMC (1, m) can only predict the linear part of the future data. Due 

to the strong nonlinear fitting ability of the BP neural network, it can fit the residual function in the in-

sample prediction sequence. Therefore, using BP neural network can get the nonlinear part of future 

data. Next, compare the model performance of HGFMC (1, m) and HGFMC (1, m) combined with the 

BP neural network. 

Table 7. Comparison of MAE of out-sample forecast sequence. 

Stock code HFGMC (1, m) combined BP HFGMC (1, m) 

SZ000573 0.12 0.64 

SZ000796 0.42 0.37 

SZ002567 0.20 3.66 

SZ002607 0.78 1.12 

SZ002770 0.03 0.89 

SH600586 0.21 0.21 

As shown in Table 7, except for the slight decrease and no change in the forecast accuracy of 

SZ000796 and SH600586, the forecast accuracy of other stocks has been significantly improved. 

6.7. Forecast result 

This paper chose FGMC (1, m)-LLE-BP, long short-term memory neural network (LSTM), BP 

neural network (BP), ARIMA-BP [34] as the comparison model. BPNN and LSTMNN used 10 lagging 

data of the stock closing price to input the neural network in the form of a vector, and output the current 

value. For example, the input and output samples of SH600586 are shown in Table 8. 

Table 8. Input and output samples of SH600586. 

Sample x1 x2   x9 x10 y 

1 2.94 2.98  3.05 3.00 2.98 

2 2.98 3.00  3.00 2.98 2.99 

        

The vector x in Table 8 represents the input vector, and y represents the output. This paper used a 

sliding window method to obtain all training samples. The forecast results of each model are shown in 

Figure 7. 

From the analysis of the prediction results in Figure 7, it is concluded that both SZ000573, 

SZ002770 and SH600586 with a small change in stock trend or SZ000796, SZ002567 and SZ002607 

with a large change in stock trend predicted by the proposed model are very close to the true value. 

However, there are some errors between the predicted results of the comparison models and the true 

values. The specific model performance analysis is given in the error analysis section. 
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Figure 7. Forecast results. 

6.8. Error analysis 

The forecast error analysis in this paper used mean absolute error (MAE), root mean square error 

(RMSE) and mean absolute percentage error (MAPE) as evaluation indicators. 



3341 

Mathematical Biosciences and Engineering  Volume 18, Issue 4, 3323-3347. 

   
1

1
ˆ

n

i

MAE x i x i
n 

   (30)  

    
2

1

1
ˆ

n

i

RMSE x i x i
n 

   (31)  

   

 1

ˆ1
100%

n

i

x i x i
MAPE

n x i


   (32)  

where  x̂ i  is the predicted value, and  x i  is the true value. 

Table 9. Error comparison of SZ000573. 

Indicator Proposed model FGMC (1, m)-LLE-BP  LSTM  BP  ARIMA-BP  

MAE  0.12 0.66 0.37 0.31 0.21 

RMSE  0.13 0.68 0.38 0.34 0.23 

MAPE  4.3% 23% 13.2% 11% 7.4% 

Table 10. Error comparison of SZ000796. 

Indicator Proposed model FGMC (1, m)-LLE-BP LSTM BP ARIMA-BP 

MAE 0.37 1.01 1.29 1.53 1.72 

RMSE 0.48 1.30 1.38 1.73 1.87 

MAPE 4.5% 12.5% 16.3% 19.0% 21.6% 

Table 11. Error comparison of SZ002567. 

Indicator Proposed model FGMC (1, m)-LLE-BP LSTM BP ARIMA-BP 

MAE 0.20 0.91 0.51 0.65 0.91 

RMSE 0.22 1.01 0.60 0.78 0.90 

MAPE 2.6% 11.6% 6.5% 8.0 % 11.4% 

Table 12. Error comparison of SZ002607. 

Indicator Proposed model FGMC (1, m)-LLE-BP LSTM BP ARIMA-BP 

MAE 0.78 3.36 3.23 3.79 1. 90 

RMSE 0.86 3.81 3.39 3.93 1.95 

MAPE 4.1% 17.6% 17.1% 20.0% 10.3% 

From the analysis of Tables 9–14, it can be seen that when the model proposed in this paper 

predicted SZ000573, SZ002770 and SH600586 with small changes in trend, the error between the 

predicted value and the true value is on average below 0.21. When predicted SZ000796, SZ002567 
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and SZ002607 with large changes in trend, the average error between the predicted value and the true 

value is less than 0.78. The performance is stable. 

Table 13. Error comparison of SZ002770. 

Indicator Proposed model FGMC (1, m)-LLE-BP LSTM BP ARIMA-BP 

MAE 0.03 0.05 0.16 0.19 0.14 

RMSE 0.04 0.06 0.22 0.22 0.25 

MAPE 1.7% 2.4% 7.6% 9.0% 6.9% 

Table 14. Error comparison of SH600586. 

Indicator Proposed model FGMC (1, m)-LLE-BP LSTM BP ARIMA-BP 

MAE 0.21 0.49 0.86 0.90 0.48 

RMSE 0.28 0.52 0.89 0. 97 0.51 

MAPE 6.9% 15.5% 26.6% 28.0% 15.1% 

When FGMC (1, m)-LLE-BP predicted SZ000573, SZ002770, and SH600586 with small changes 

in trend, the error between the predicted value and the true value is on average below 0.66. When 

predicted SZ000796, SZ002567 and SZ002607 with large changes in trend, the average errors are 1.01, 

0.91 and 3.36 respectively. The performance is not stable.  

When LSTM neural network model predicted the SZ000573, SZ002770, and SH600586 with 

small trend change, the average errors are 0.37, 0.16 and 0.49 respectively. When predicted the 

SZ000796, SZ002567 and SZ002607 with large changes in trend, the average errors are 1.29, 0.51 and 

3.23 respectively. This shows that LSTMNN has volatility in stocks with large changes in predicted 

trends and stocks with small changes in predicted trends. 

When BP neural network model predicted the SZ000573, SZ002770, and SH600586 with small 

trend change, the average errors are 0.31, 0.19 and 0. 90 respectively. When predicted the SZ000796, 

SZ002567 and SZ002607 with large changes in trend, the average errors are 1.53, 0.65 and 3.79 

respectively. 

When ARIMA-BP predicted the SZ000573, SZ002770, and SH600586 with small trend change, 

the average errors are 0.21, 0.14 and 0. 48 respectively. When predicted the SZ000796, SZ002567 and 

SZ002607 with large changes in trend, the average errors are 1.72, 0.91 and 1. 90 respectively.  

Combining the analysis of three error indicators, the model proposed in this paper performs best, 

followed by ARIMA-BP and FGMC (1, m)-LLE-BP. However, neither the LSTM nor the BP neural 

network model of a single prediction model can achieve the desired effect. This shows that when 

predicting time series with linear and non-linear factors, the combined model can achieve good results. 

From Figure 8, it can be seen that the model proposed in this paper has stable and excellent 

performance for 6 stocks with different trends, while the performance of the other 4 comparison models 

is only good in some stocks. Combining the analysis of three evaluation indicators, the model proposed 

in this paper performed best on the MAE, RMSE, and MAPE indicators when predicted SZ002607, 

SZ002567, SZ000796, SH600586, SZ002770 and SZ000573. Besides, the model proposed in this 

paper performs better than FGMC (1, m)-LLE-BP, which shows that the HFGMC (1, m) has a certain 

improvement in the accuracy of prediction. 
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Figure 8. Error comparison of 6 stocks. 

6.9. Limitations and future works 

In the discussion in Section 6.2, it is pointed out that a model that deals with high-dimensional 

data requires certain prior data. However, it is very difficult to obtain real-time a priori data for 

forecasting objects with very high real-time requirements such as stock data. Generally, the high-

dimensional grey model obtains the prior data by staggering the time axis of the prediction object 

(closing price) and prior data (indicators) (as shown in Figure 9). Therefore, the practice of staggering 
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the time axis determines that the model cannot be used for long-term forecasting. When the time axis 

is staggered longer, the error may increase significantly. In addition to staggering the time axis, the use 

of sliding time windows to obtain prior data is also widely used in deep learning time series 

forecasting [2,3,30] (as shown in Table 8). In addition, the price of individual stocks (the experimental 

case of this paper) is different from stock indexes (Dow Jones, Nasdaq, Shanghai Composite Index, 

etc.). The price of individual stocks is usually predicted for about 10 days or 10 units of time [4,30,35], 

and the stock index reflects the general laws of the market, so long-term forecasts are feasible [36–39]. 

However, whether it is individual stock prices or stock indexes, the problem of prior data cannot be 

solved when using high-dimensional models. This is a limitation of high-dimensional models. 

 

Figure 9. The relationship between the sequence to be predicted and the prior data. 

Since directly staggering the time axis may lose the information of various indicators in the time 

axis, the next step can consider using the maximum entropy model to integrate all the information in 

the time axis as the prior information of the prediction object. Through the above work, the accuracy 

of the model may be more accurate. 

7. Conclusions 

Because the stock price is affected by many factors, the stock market can be regarded as a non-

linear dynamic and grey system under the action of many factors. It is very difficult to predict stock 

price. There are many time series forecasting methods, but many methods do not consider that the 

stock market has long-term memory. 

According to the characteristics of the stock market, the HFGMC (1, m)-LLE-BP is proposed. 

The HFGMC (1, m) is based on the FGMC (1, m) model, and combined the Hausdorff fractional 

derivative and Newton-Cotes formula. The HFGMC (1, m) model is used to solve the linear component 

in the prediction sequence. Then, the BP neural network is used to extract the non-linear component 

in the prediction sequence. Besides, in order to compress the redundant information in high-

dimensional data, the HFGMC (1, m) model combined the locally linear embedding algorithm to 

reduce the dimensionality of factors that affect the stock price. Finally, the linear component and the 

non-linear component are added to obtain the combined prediction sequence. In the experimental part, 

the model proposed in this paper predicts the closing price of 6 stocks with different trends in the next 
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10 days. Based on the above experimental results and discussion, the following conclusions are drawn: 

(i) FGMC (1, m) model has some shortcomings. Hausdorff fractional derivative and Newton-

Cotes formula can improve FGMC (1, m) model. The HFGMC (1, m) model improves the prediction 

accuracy of time series. 

(ii) Because the stock price is affected by a variety of linear and nonlinear factors, a single time 

prediction model cannot accurately predict the stock price. A combined forecasting model has 

advantages in forecasting time series affected by complex factors. 

(iii) The model proposed in this paper is very stable and accurate in predicting the stock price 

with different historical trends. Results show that the model proposed in this paper can be widely used 

in the prediction of simple or complex time series. 
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