
http://www.aimspress.com/journal/MBE

MBE, 18(4): 3144–3159.
DOI: 10.3934/mbe.2021156
Received: 11 January 2021
Accepted: 30 March 2021
Published: 02 April 2021

Research article

Hopf bifurcation in an age-structured prey-predator model with Holling III
response function

Lijun Wang1,2, Chuanjun Dai1,3 and Min Zhao1,3,∗

1 Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources
Protection, Wenzhou University, Wenzhou, Zhejiang, 325035, China

2 School of Mathematics and Physics, Wenzhou University, Wenzhou, Zhejiang, 325035, China
3 School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035,

China

* Correspondence: Email: zmcnzj@sina.com.

Abstract: In this paper, we propose a prey-predator model with age structure which is described
by the mature period. The aim of this paper is to study how mature period affect the dynamics of
interaction between prey and predator. The sufficient condition of the existence of non-negative steady
state is derived. By using integrated semigroup theory, we obtain the characteristic equation, by which
we find that the non-negative steady state will lose its stability via Hopf bifurcation induced by mature
period, and the corresponding periodic solutions emerge. Additionally, some numerical simulations are
provided to illustrate the results predicted by linear analysis. Especially, the numerical results indicate
that both mature period and age can affect the amplitude and period of periodic solutions.
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1. Introduction

Ecosystem consists of varieties of living organisms and nonliving substances where the living or-
ganisms are not independent and have continuous interactions, such as mutualism, competition and
predation [1–3]. It is obvious that the prey-predator interaction is of the greatest attention among other
interactions in an ecosystem because of its universal existence and immense importance [4, 5]. More-
over, due to the complexity of ecosystems, mathematical models have been considered as an alternative
method of improving our knowledge of the ecological processes [6]. Such an approach goes back to
the work of Lotka [7] and Volterra [8], who first proposed a prey-predator model in their pioneer work,
which stimulated considerable theoretical researches on mathematical models of population dynamics.
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Additionally, a growing evidence suggests that the functional response plays a crucial role in the
interaction between the predator and prey. In recent years, various functional response functions,
which describe the number of preys consumed by predator per unit time, have been used considerably
in modelling population dynamics [9, 10], for example, Holling [11] introduced several prey-predator
models with three functional responses (named type I, type II and type III) depending on different
predation pressure. Specifically, the following mathematical model with Holling type III functional
response was analyzed by [12]: dV(t)

dt = rV(t)
(
1 − V(t)

k

)
−

mV2(t)U(t)
b+V2(t) ,

dU(t)
dt = U(t)

(
−d +

cmV2(t)
b+V2(t)

)
,

(1)

where V(t) and U(t) denote the biomass of prey and predator at time t, respectively. Here, r, c, k, d
are positive constants that denote prey logistic growth rate, coefficient for the conversion that predator
intake to per capital prey, carrying capacity of prey and mortality rate of the predator, respectively. The
term mV2(t)

b+V2(t) is Holling type III functional response.
Recently, Holling type III prey-predator models have been widely explored by incorporating some

factors. Some studies have shown that a large refuge of prey can stabilize the positive equilibrium and
protect prey from its extinction [13,14]. Moreover, a number of works have argued that diffusion-driven
spatiotemporal patterns appear in diffusive prey-predator models with Holling type III functional re-
sponse [15–17]. In addition, many researchers are also interested in delay-induced dynamics in Holling
type III prey-predator models, and these studies suggested that delay can destabilize the positive equi-
librium, and then the periodic oscillation occurs [18–20]. Apart from above researches, Holling type
III prey-predator models have been devoted by researchers to investigating the dynamics induced by
other factors such as Allee effects [21, 22] and competition [23, 24].

Although all of above studies provide a better understanding of the dynamics of Holling type III
prey-predator models, they generally consider the fertility rate of a species as a constant for most eco-
models. However, in natural ecosystem, a general mechanism for species is that a new reproducing
generation needs time to mature to gain fertility, which is so called “age-dependent fertility”. Actually,
there exist many instances in real ecosystems which support that the fertility is age dependent, such
as human, temora longicornis, hoverfly in nature [35]. The age-dependent fertility has been widely
explored in prey-predator models, where age-dependent fertility is described by age-structure and there
is a growing result suggested that age structure can influence the population dynamics [25–27]. In order
to investigate the effects on model stability of several specific biological, delay causing mechanisms
related to fertility, Cushing et al. [28–30] presented several prey-predator models and hypothesized age
structure of predator can significantly influence its reproductive ability. These studies focused on the
effects of mature period, of gestation periods and of age-related differentials [30]. In our investigation,
the biological motivation is to understand further how mature period affect the model stability.

The study of the dynamics induced by age structure in prey-predator models is mainly focused on
the boundedness of solutions , the existence and stability of steady states [31–33]. However, due to
some factors such as noise and environmental factors, a constant population density may not exist in
nature [34–36]. In recent years, Liu et al. investigated several prey-predator models with age structure
[37–40], and found that the age-dependent equilibrium may loses its stability via Hopf bifurcation and
a non-trivial periodic oscillation phenomenon appears, which implied that the oscillation behaviors
exists in age-structure models. Here, we are interested in investigating how age structure affect the
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changes of the population density. Motivated by the idea developed in Liu et al. [39], we present the
following prey-predator model with age structure:

dV(t)
dt = rV(t)

(
1 − V(t)

k

)
−

mV2(t)
∫ +∞

0 u(t,a)da
b+V2(t) ,

∂u(t,a)
∂t +

∂u(t,a)
∂a = −du(t, a),

u(t, 0) =
cmV2(t)

∫ +∞

0 β(a)u(t,a)da
b+V2(t) ,

u(0, ·) = u0 ∈ L1((0,+∞),R).

(2)

Here, u(t, a) is distribution function of the predators over age a at time t, and
∫ +∞

0
u(t, a)da denotes the

predator population density at time t. The function β(a) is age-specific fertility function.
In natural ecosystems, predator individuals cannot reproduce in the immature stage, that is, a ∈

(0, τ), so the corresponding fecundity is zero. Obviously, when predator individuals are mature, the
reproduction may occur. Thus, we have the following assumption:

Assumption 1.1. Assume that

β(a) =

β∗, a ≥ τ,0, a ∈ (0, τ),

where τ > 0 , β∗ > 0.
Let R =

∫ +∞

0
β(a)e−dada, where e−da denote the survival probability. According to the results of

ref. [25], the predator population is stable if R ≥ 1, but the predator population tends to be extinct if
R < 1. And the results of refs. [37, 38] show that the results with the condition R = 1 are similar to
ones with R = M, where M > 1 is a constant. Thus, we assume R = 1 in this paper, which implies
β∗ = dedτ.

In this paper, we propose a prey-predator model and investigate how the mature period effects
the interaction dynamics between preys and predators. The rest of paper is organized as follows: In
section 2, we express the model as a non-densely defined abstract Cauchy problem and obtain the
positive equilibrium. The characteristic equation is obtained based on integrated semigroup theory, by
which we derive the existence of Hopf bifurcation in Section 3. Some numerical simulations are given
in Section 4. Finally, the paper ends with the conclusions in Section 5.

2. Preliminaries

2.1. Rescaling time and age

In this subsection, by the time-scaling t̄ = t
τ

and the age-scaling ā = a
τ
, the change of variables

V̄(t̄, ā) = V(τt̄, τā) and ū(t̄, ā) = u(τt̄, τā), we can normalize τ in model (2). Then we have the following
model: 

dV(t)
dt = τ

(
rV(t)

(
1 − V(t)

k

)
−

mV2(t)
∫ +∞

0 u(t,a)da
b+V2(t)

)
,

∂u(t,a)
∂t +

∂u(t,a)
∂a = −dτu(t, a),

u(t, 0) =
τcmV2(t)

∫ +∞

0 β(a)u(t,a)da
b+V2(t) ,

u(0, ·) = u0 ∈ L1((0,+∞),R).

(3)
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and we denote the new function β(a) as

β(a) =

β∗, a ≥ 1,
0, otherwise.

Denote V(t) =
∫ +∞

0
v(t, a)da in model (2), we can rewrite the first equation of model (3) as:

∂v(t,a)
∂t +

∂v(t,a)
∂a = −v(t, a)µτ,

v(t, 0) = N(u, v)τ,
v(0, ·) = v0 ∈ L1((0,+∞),R),

where

N(u, v) = θ

∫ +∞

0
v(t, a)da −

r
(∫ +∞

0
v(t, a)da

)2

k
−

m
(∫ +∞

0
v(t, a)da

)2 ∫ +∞

0
u(t, a)da

b +
(∫ +∞

0
v(t, a)da

)2 ,

and r = θ − µ represents the intrinsic growth rate of the prey, where θ is the birth rate of the prey.

Set χ(t, a) =

(
v(t, a)
u(t, a)

)
, model (2) can be rewritten as follows:


∂χ(t,a)
∂t +

∂χ(t,a)
∂a = −τQχ(t, a),

χ(t, 0) = τF(χ(t, ·)),
χ(0, ·) = χ0 ∈ L1((0,+∞),R2),

(4)

where Q =

(
µ 0
0 d

)
, and F(χ(t, ·)) =

 N(u, v)
cmV2(t)

∫ +∞

0 β(a)u(t,a)da
b+V2(t)

 .
Considering the following Banach space:

X = R2 × L1((0,+∞),R2),

where

∥∥∥∥∥∥
(
α

ψ

)∥∥∥∥∥∥ =‖ α ‖R2 + ‖ ψ ‖L1((0,+∞),R2) .

And we define the linear operator Aτ : D(Aτ)→ X as

Aτ

(
0R2

ψ

)
=

(
−ψ(0)

ψ
′

(a) − τQψ

)
,

with D(Aτ) = ({0R2}) ×W1,1((0,+∞),R2) ⊂ X. The operator H : D(Aτ)→ X is defined by

H
(
0R2

ψ

)
=

(
F(ψ)
0L1

)
.

Due to the fact that X0 := D(Aτ) = {0R2}×L1((0,+∞),R2), the linear operator Aτ is non-densely defined.
Let

x(t) =

(
0R2

χ(t, ·)

)
,
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model (4) can be rewritten as the following non-densely defined abstract Cauchy problem:
dx(t)

dt = Aτ(x(t)) + τH(x(t)),

x(0) =

0R2

χ0

 ∈ D(Aτ),
(5)

model (5) has been studied including global existence and uniqueness of solution by [41, 42].

2.2. Existence of non-negative steady state

Define x(t) =

(
0R2

χ(a)

)
∈ X0 is a steady state of model (5), then we haveAτ(x̄(t)) + τH(x(t)) = 0,

x̄(0) ∈ D(Aτ).

It follows that −χ(0) + τF(χ(a)) = 0,
−χ

′

(a) − τQχ(a) = 0.
(6)

From the first equation of model (6), we get∫ +∞

0
β(a)u(a)da =

cmV
2

b + V
2

∫ +∞

0
β(a)u(a)da,

and ∫ +∞

0
u(a)da =

∫ +∞

0
β(a)u(a)da

d
.

According to the second equation of model (6), we have

rV
1 − V

k

 − mV
2 ∫ +∞

0
uda

b + V
2 = 0.

Obviously, model (5) always has a boundary equilibrium:

x0(a) =

(
0R2

χ0(a)

)
with χ0(a) =

(
0

τµke−τµa

)
,

and the unique positive equilibrium:

xτ(a) =

(
0R2

χτ(a)

)
,

with

χτ(a) =

(
V

uτ(a)

)
=


√

b
cm−1

τdcre−τda

k

√
b

cm−1

(
k −

√
b

cm−1

) ,
if and only if cm > 1, k −

√
b

cm−1 > 0.

In the remainder of our paper we assume that cm > 1, k −
√

b
cm−1 > 0.
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3. Existence of Hopf bifurcation

3.1. linearized equation

Here we will obtain the linearized equation of model (5) around the positive equilibrium x̄τ. Taking
the change of variable x(t) = y(t) + xτ into model (5), we get:

dy(t)
dt = Aτ(y(t) + x̄τ) − τH(xτ),

y(0) =

 0R2

χ0 − χτ

 = y0 ∈ D(Aτ),
(7)

which is equivalent to
dy(t)

dt
= Aτ(y(t)) + τDH(xτ)y(t), f or t ≥ 0, (8)

where

τDH(xτ)
(
0R2

ψ

)
=

(
τDB(xτ)(ψ)

0L1

)
,

(
0R2

ψ

)
∈ D(Aτ),

with

DB(χτ)(ψ) =


θ − 2rV

k −
2bmV(
b+V

2
)2

∫ +∞

0
u(a)da 2cmbV(

b+V
2
)2

∫ +∞

0
β(a)u(a)da

−mV
2

b+V
2 0

 × ∫ +∞

0
ψda

+

0 0

0 cmV
2

b+V
2

 × ∫ +∞

0
β(a)ψda.

(9)

Next we define

Fτ := Aτ + τDH(xτ), M(y(t)) = τH(y(t) + xτ) − τH(xτ) − τDH(xτ)y(t),

satisfying M(0) = 0, and DM(0) = 0.
Therefore the model (7) can be rewritten as:

dy(t)
dt

= Fτ(y(t)) + M(y(t)). (10)

3.2. characteristic equation

In this subsection, we will get the characteristic equation of model (5) around the positive equilib-
rium x̄τ. Denote

s := min{d, µ} > 0, Ω := {λ ∈ C : Re(λ) > −sτ}.

From the results of [43], we derive the following lemma.

Lemma 3.1. For λ ∈ Ω ∩ ρ(Aτ), we can obtain:

(λI − Aτ)−1

(
η

ϕ

)
=

(
0R2

ψ

)
⇔ ψ(a) = ηe−

∫ a
0 (λI+τQ)dl +

∫ a

0
ϕ(s)e−

∫ a
s (λI+τQ)dlds.

(11)
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3150

with
(
η

ϕ

)
∈ X, and

(
0R2

ψ

)
∈ D(Aτ).

Furthermore, Aτ is a Hille-Yosida operator and satisfies

‖(λI − Aτ)−n‖ ≤
1

(Re(λ) + sτ)n , f or ∀λ ∈ Ω.

Denote A0 is the part of Aτ in DA(τ), for
(
0R2

ψ

)
∈ D(A0), we obtain:

A0

(
0R2

ψ

)
=

(
0R2

A0(ψ)

)
,

where A0(ψ) = −ψ
′

(a) − τQψ,D(A0(ψ)) = {ψ ∈ W1,1((0,+∞),R2) : ψ(0) = 0}.

Note that τDH(xτ) : D(Aτ) ⊂ X → X, is a compact bounded linear operator, we get

‖ TA0(t) ‖≤ e−sτt, f or t ≥ 0,

then we obtain
ω0.ess(A0) ≤ ω0(A0) ≤ −sτ,

and from [42], we have

ω0.ess((Fτ)0) = ω0.ess((Aτ + τDH(xτ))0) ≤ −sτ < 0.

Consequently, we derive the following proposition.

Lemma 3.2. The linear operator Fτ is a Hille-Yosida operator, and its part (Fτ)0 in D(Fτ) satisfies
ω0.ess((Fτ)0) < 0.

Set λ ∈ Ω, (λI − Aτ) and (λI − Fτ) are invertible and

(λI − Fτ)−1 = (λI − (Aτ + τDH(xτ)))−1 = (λI − Aτ)−1(1 − τDH(xτ)(λI − Aτ)−1)−1,

then, we have (I − τDH(x̄))(λI − A−1
τ ) is also invertible.

Let

(I − τDH(xτ)(λI − Aτ)−1)
(
η

ψ

)
=

(
χ

ϕ

)
,

which is equivalent to (
η

ψ

)
− τDH(xτ)(λI − Aτ)−1

(
η

ψ

)
=

(
χ

ϕ

)
.

We obtain η − τDB(χτ)
(
ηe−

∫ a
0 (λI+τQ)dl +

∫ a

0
ϕ(s)e−

∫ a
s (λI+τQ)dlds

)
= χ,

ψ = ϕ,
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that is η − τDB(χτ)ηe−
∫ a

0 (λI+τQ)dl = χ + τDB(χτ)
∫ a

0
ϕ(s)e−

∫ a
s (λI+τQ)dlds,

ψ = ϕ.

Taking the formula of DB(χτ) into consideration, we get∆(λ)η = χ + K(λ, ϕ),
ψ = ϕ,

where
∆(λ) = I − τDB(χτ)

(
e−

∫ a
0 (λI+τQ)dl

)
, (12)

and
K(λ, ϕ) = τDB(χτ)

∫ a

0
ϕ(s)e−

∫ a
s (λI+τQ)dlds.

From the proof of Lemma(3.5) in [44], we derive the following lemma.

Lemma 3.3. Under Assumption 1.1, the following results hold

• σ(Fτ) ∩Ω = σp(Fτ) ∩Ω = {λ ∈ Ω : det(∆(λ)) = 0},
• if λ ∈ δ(Fτ) ∩Ω, we can obtain the formula for resolvent

(λI − Fτ)−1
(
η

ψ

)
=

(
0R2

ϕ

)
,

where ϕ(a) = (∆(λ))−1(χ + K(λ, ψ))e−
∫ a

0 (λI+τQ)dl +
∫ a

0
ψ(s)e−

∫ a
s (λI+τQ)dlds. On the other hand, we get∫ +∞

0
e−

∫ a
0 (λI+τQ)dlda =

( 1
λ+µτ

0R
0R 1

λ+dτ

)
,

∫ +∞

0
β(a)e−

∫ a
0 (λI+τQ)dlda =

β∗e−(λ+µτ)

λ+µτ
0R

0R β∗e−(λ+dτ)

λ+dτ

 . (13)

From (9) and (13), the characteristic at the positive equilibrium is:

det(∆(λ)) =
λ2 + τp1λ + τ2 p0 + (τq1λ + τ2q0)e−λ

(λ + dτ)(λ + µτ)
,

f (λ)
h(λ)

, (14)

where

p1 = d + r −
2r
cm
−

2br
cmk

√
cm − 1

b
+

2r
k

√
b

cm − 1
,

p0 = 3dr −
4dr
cm
−

4dbr
cmk

√
cm − 1

b
+

2dr
k

√
b

cm − 1
,

q1 = −d,

q0 = −3dr +
2crd
c2m

−
2bdr
cmk

√
cm − 1

b
−

2dr
k

√
b

cm − 1
.

Let λ = τξ, we get

f (λ) = τ2g(ξ) = τ2
[
ξ2 + p1ξ + p0 + (q1ξ + q0)e−τξ

]
,

and
{λ ∈ Ω : det(∆(λ)) = 0} ⇔ {λ = τξ ∈ Ω : g(ξ) = 0}.
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3.3. the existence of Hopf bifurcation

In this section, we consider the parameter τ as a bifurcation parameter and investigate the existence
of Hopf bifurcation by applying the Hopf bifurcation theory in [43]. We get

g(ξ) = ξ2 + p1ξ + p0 + (q1ξ + q0)e−τξ. (15)

Obviously ξ = 0 is not an eigenvalue of Eq 15 when p0 + q0 , 0, and the real parts of eigenvalues of
Eq 15 are negative for τ = 0 when p1 + q1 > 0.

Suppose that Eq 15 has a pure imaginary root ξ = iω(ω > 0), thus we get

−ω2 + ip1ω + p0 + (iq1ω + q0)e−iτω = 0.

Separating real and imaginary parts of the above equation, we haveω2 − p0 = q1ωsin(ωτ) + q0cos(ωτ),
−p1ω = q1ωcos(ωτ) − q0sin(ωτ).

(16)

It follows that
ω4 + (p2

1 − 2p0 − q2
1)ω2 + p2

0 − q2
0 = 0. (17)

Set θ = ω2, then Eq 17 turns into

θ2 + (p2
1 − 2p0 − q2

1)θ + p2
0 − q2

0 = 0.

Consequently, we can clearly see that Eq 17 has only one positive root ω0 =
√
θ0 when p2

0 − q2
0 < 0.

From Eq 16, one can get that g(ξ) = 0 at τ = τk
0, k = 0, 1, 2 · · · has a pair of purely imaginary roots

±iω0, where

ω0 =


−(p2

1 − 2p0 − q2
1) +

√
(p2

1 − 2p0 − q2
1)2 − 4(p2

0 − q2
0)

2


1
2

, (18)

and

τk
0 =


1
ω0

(arccos (q0−p1q1)ω2
0−p0q0

q2
1ω

2
0+q2

0
+ 2kπ), i f ω0(ω2

0+p1q0−p0q1)
q2

1ω
2
0+q2

0
≥ 0,

1
ω0

(2π−arccos (q0−p1q1)ω2
0−p0q0

q2
1ω

2
0+q2

0
+2kπ), i f ω0(ω2

0+p1q0−p0q1)
q2

1ω
2
0+q2

0
< 0.

(19)

Assumption 3.1. Assume that cm > 1, k −
√

b
cm−1 > 0, and p1 + q1 > 0, p2

0 − q2
0 < 0.

Lemma 3.4. Under Assumptions 1.1 and 3.1, we have that Eq 17 has a simple root ω = ω0, which
given by

dg(ξ)
dξ

∣∣∣∣∣
ξ=iω
, 0,

The proof is similar to [39], and hence we omit it.

Lemma 3.5. Under Assumptions 1.1 and 3.1, Eq 17 has a simple root ξ(τ) = α(τ) + iω(τ) satisfying
α(τ0) = 0 and ω(τ0) > 0, from [39] we have

sign
(
dRe(ξ)

dτ

∣∣∣∣∣
τ=τk

0

)
= sign

(
Re

(
d(τ)
dξ

∣∣∣∣∣
ξ=iω0

))
Mathematical Biosciences and Engineering Volume 18, Issue 4, 3144–3159.
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= sign
(
2ω2

i + p2
1 − 2p0 − q2

1

q2
1ω

2
i + q2

0

)
> 0

Thus we conclude the following results.

Theorem 3.1. Under Assumptions 1.1 and 3.1, a Hopf bifurcation occurs around x̄τ for τ near τ = τ0.

4. Numerical simulations

In this section, we give two examples to illustrate the existence of Hopf bifurcation. The following
parameter set are used

{θ = 1.2, µ = 0.2, r = θ − µ = 1, c = 0.8, d = 0.3,K = 20,m = 3, b = 3}.

The age-specific fertility function becomes

β(a) =

0.5e0.5τ, a ≥ τ,

0, a ∈ (0, τ).

0 60 120

0.8

1.2

1.6

t(a)

V(t)

U(t)

0.7 1 1.3

1.2

1.5

1.8

V(t)

U(t)

(b)

Figure 1. (a) Time series of model (1) and (b) the corresponding phase diagram.

By a simple computation, we can get that model (1) exists a positive equilibrium E0(1.36, 0.89) with
the given parameter set. Based on software Python 2.7.15, we carry out some numerical simulations
for model (1) using of the finite difference methods from [45], and the corresponding time series and
phase diagram are shown in Figure 1, which indicates that the positive equilibrium of model (1) is
stable. Then taking age structure into model (1), that is, the model (3), we can readily get cm−1 = 1.4,

k −
√

b
cm−1 ≈ 18.54, such that there exists a positive steady state E∗(0.54τe−0.5τa, 1.46). Additionally,

we obtain the conditions p1 + q1 ≈ 0.23, p2
0 − q2

0 ≈ −1.01 that guarantee the existence of critical value
τ0 ≈ 3.4 from Eq 19.

Example 4.1. We give out an example corresponding to stability of the age-dependent equilibrium
by choosing τ = 3 in Figure 2. Obviously, the age-dependent equilibrium is locally asymptotically
stable when τ = 3 is below τ0, which is consistent with the theoretical results.
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Example 4.2. In constrast, Figure 3 shows the oscillatory behavior induced by mature period. The
results imply that when τ = 8 is beyond τ0, the age-dependent equilibrium loses its stability via Hopf
bifurcation and the corresponding periodic solution emerges. Under the same parameter set, Figure 1
shows that the positive equilibrium is stable in the absence of age structure. Obviously, the results
shown in Figure 3 are induced by age structure.
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Figure 2. For model (3) with τ = 3: (a) Time series diagram of prey; (b) Time series diagram
of predator; (c) Phase diagram of model (3); (d) Description of the evolution of u(t, a).
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Figure 3. For model (3) with τ = 8. (a) Time series diagram of model (3); (b) Description
of the evolution of u(t, a).
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In addition, we can clearly see that the existence of positive steady state depends on a and τ from
its expression. Figure 4 (a) shows that, under a fixed mature period value, the amplitude and period of
periodic solutions have a decreasing tendency with the increase of age. In contrast, Figure 4 (b) shows
that the mature period can enhance the prey-predator oscillation when the age is identical. Obviously,
the mature period and age of species have a significant impact on the dynamic behavior of the prey-
predator models.
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Figure 4. (a) For τ = 8, phase diagram with different age values; (b) For a = 11, phase
diagram with different mature period values.

5. Conclusions

In this paper, we proposed a prey-predator model with age structure, and studied the effect of mature
period on prey-predator dynamics. Specifically, the condition of the existence of non-negative steady

state was derived, by which we found that the steady state exists whenever cm > 1 and k −
√

b
cm−1 > 0.

According to general results of the non-densely defined abstract Cauchy problem [41,42], we obtained
the global existence, positivity and uniqueness of solution of model (3). By integrated semigroup the-
ory, the characteristic equation is derived, by which we studied the effect of the mature period τ on
stability of the steady state of model (3). Particularly, the theoretical results shown that when bifur-
cation parameter τ passes through the critical value, the age-dependent equilibrium loses its stability
via Hopf bifurcation and the corresponding periodic solutions emerge, which indicates that the oscil-
latory behavior exists in changes of density of prey-predator populations. Actually, in real ecosystems,
population oscillations is likely to be common due to many external factors [36], and the oscillatory
behavior induced by mature period indeed exist in an ecological context.

Additionally, the numerical simulations showed the variation in the amplitude of prey-predator
populations corresponding to the mature period and age. The numerical results suggested that the
positive equilibrium is stable for model (3) in the absence of age structure. However, when age structure
is incorporated, there exists a critical value τ0 such that the positive steady state loses its stability when
mature period τ exceeding τ0, which means prey-predator population produces periodic oscillatory
behaviors. And the numerical analysis shown that the population density tends to zero with the increase
of age, which consist with the natural law of ecosystem. Furthermore, we observed that the mature
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period τ can affect the characteristics of periodic solutions such as amplitude and period. To be specific,
when mature period τ exceeding the critical value τ0, the intensity of prey-predator population biomass
oscillations is positively correlated with the mature period, while there is a negative correlation between
age and the intensity of prey-predator biomass oscillation. The numerical analysis clearly shows that
the mature period is the principle factor giving raise to oscillation, and the amplitude and period of
periodic solution are greatly depending on τ and a.

In fact, there is a growing evidence that a constant population density may not exist due to the ex-
istence of some factors such as noise, physical factors and so on. In addition, the experimental results
and field observation [34, 35] have confirmed the existence of oscillations in reality. In present paper,
we found that prey-predator population exhibits fluctuation under some conditions and mature period
is considered as the factor causing population oscillation, which may be more reasonable compared
with prey-predator model without age structure. Our results not only will help in further investigat-
ing the dynamics of population models but also provide an in-depth understanding of the oscillating
coexistence of populations.
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