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Abstract: In order to study the impact of the incubation periods of humans and vectors on diseases
transmission, a novel vector-borne diseases model with two time delays on bipartite networks is pro-
posed. The formula of the basic reproduction number R0 is given, which is dependent on time delays.
Moreover, the globally asymptotic stability of the disease-free equilibrium and the endemic equilib-
rium is proved by constructing appropriate Lyapunov functions. Finally, numerical simulations are
carried out to verify the analysis results and reveal the influence of the structure of bipartite networks
on the basic reproduction number.
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1. Introduction

In history, vector-borne diseases such as malaria, yellow fever, plague, Lyme disease and dengue
fever caused a large number of human diseases and deaths. In the early to mid-20th world, people con-
trolled most of the vector-borne diseases through measures such as improving sanitation and reducing
the number of vectors. However, over the past four decades, due to climate change and other rea-
sons, many vector-borne infectious diseases that have been ”eliminated” have shown a resurgence [1].
According to statistics, nearly half of the world’s population has been infected with at least one vector-
borne pathogen [2]. Considering that vector-borne infectious diseases pose a huge threat to human
health and social economy, it is urgent to study the characteristics of their transmission and how to
prevent and control them.

Mathematical models of vector-borne diseases play an important role in understanding and studying
epidemiological characteristics and transmission laws. In 1911, Ross-Macdonald first established a
model of malaria disease, which used differential equations to describe mosquitoes and humans [3], and
his study methods laid the foundation for subsequent research. In recent years, many research results in
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this area have continuously emerged. For example, Traoré [4] proposed a vector-borne disease model
with human and vectors immigration, which considered the influence of long-distance migration of
wind-borne vector and the influence of human migration. Nyang’inja et al. [5] and Abiodun et al. [6]
investigated the impact of vaccination and climate change on the vector-borne disease, respectively.

It is worth noting that above researches for vector-borne diseases were based on the assumption
that the contact between humans and vectors is uniformly homogeneous. In fact, real networks un-
derlying disease transmission are highly heterogeneous [7–9]. Similarly, due to the heterogeneity of
the population and the distribution of vectors in different regions, the contact between humans and
vectors is also heterogeneous [10–12]. To study this spreading characteristic, many researchers have
been studying vector-borne diseases model on bipartite networks. Yang et al. [13] studied a modified
susceptible–infected–susceptible model with an infective medium on bipartite networks, and compared
it with the standard SIS model. Wang et al. [14] established a modified SIS model with an infective
vector on complex networks, which included not only transmission through the vectors, but also trans-
mission through direct contact between people. Wang et al. [15] proposed a more concise method to
investigate the global dynamics of a mean-field vector-borne diseases model on bipartite networks. It
is worth noting that in 2020, Zhang [16] established the following malaria disease model on bipartite
networks, 

dyk(t)
dt

=
abVk
N〈k〉y

(1 − yk) Θx − γyk, k = 1, 2, . . . , n,

dxl(t)
dt

= acl (1 − xl) Θy − µxl, l = 1, 2, . . . ,m,
(1.1)

where yk and xl represent the relative density of infected humans with degree k and infected mosquitoes
with degree l respectively, Θy =

∑n
k=1 kp(k)ykN∑n

k=1 kp(k)N and Θx =
∑m

l=1 lq(l)xlV∑m
l=1 lq(l)V represent the probabilities rate that any

link points to an infected human and an infected mosquito respectively, 〈k〉y is the average degree of
humans, γ is recovery rate of humans, µ represents mortality rate of mosquitoes, a is the biting rate on
humans by a single mosquito, b and c represent probabilities of infected bites that produce an infected
human and an infected mosquito respectively, N and V are the total number of human population and
mosquito population respectively. According to the description of the parameters, abV

N〈k〉y
can be regarded

as the linear transmission rate from infected mosquitoes to susceptible humans, and ac represents the
linear transmission rate from infected humans to susceptible mosquitoes. The author obtained the basic
reproduction number R0 and studied dynamical behaviors of the above model.

Most of researches for vector-borne disease model on bipartite networks only consider the two
states of humans and vector populations: susceptibility and infected. In reality, many vector-borne
diseases have incubation periods in both vectors and humans. For malaria [17], during the incubation
period of mosquitoes, there are no sporozoites in the salivary glands of the ”infected” mosquitoes, and
the disease cannot be transmitted to humans through bites. Similarity, during the incubation period of
humans, the malaria parasites lie dormant in the liver or there are not enough malaria gametocytes in
the human blood. At this time, mosquito cannot take up the gametocytes by sucking up blood and be-
come infected. Furthermore, due to the incubation period of different forms of parasites, the feedback
dynamics from mosquito to human to mosquito has a considerable time delay. The prolonged delayed
onset of the disease brings huge risks to the prevention and control of the disease [18]. However, there
are few researches about vector-borne disease model on bipartite networks with time delay [19].

Based on Zhang’s work [16], to study the impact of the incubation periods of humans and
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Table 1. Description of parameters.

Parameter Description

a The biting rate on humans by a single vector
b The probability of infected bites that produce an infected human
c The probability of infected bites that produce an infected vector
d The mortality and birth rate of humans
µ The mortality and birth rate of vectors
γ The recovered rate of humans
τ The disease incubation period of humans
ω The disease incubation period of vectors
N The total number of human population
V The total number of vector population
〈k〉k The average degree of humans
〈l〉l The average degree of vectors

mosquitoes, we construct a novel vector-borne diseases model with two time delays on bipartite net-
works. In this paper, we will study the effect of the incubation periods on the basic reproduction
number and the dynamical behaviors of the novel model.

The remaining parts of this paper are organized as follows: The vector-borne diseases model with
two time delays on bipartite networks is presented in Section 2. The dynamical behaviors of the model
are discussed in Section 3. Numerical simulations are offered to demonstrate the main results in Section
4. The conclusion is given in Section 5.

2. Model

vectors

humans

Figure 1. The bipartite network between humans and vectors.

We suppose the contact patterns between humans and vectors form the bipartite network. The edge
between a human and a vector represents contacts between the human and the vector. Since the adding
and removal nodes and edges only take a small proportion in the network and will slightly change the
structure of the network [20], we assume the human birth rate is equal to the human mortality rate,
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denoted by d, and the birth rate of vectors is equal to the mortality rate of vectors, denoted by µ. Thus,
the total number of human population is a constant N, and the total number vector population is also
a constant V . Therefore, we construct the bipartite network between humans and vectors, as shown in
Figure 1.

Let p(k) (k = 1, 2, ..., n) and q(l) (l = 1, 2, ..., h) represent the human degree distribution and vector
degree distribution respectively, which can reflect contact patterns between humans and vectors. n and
h are the maximum number of vectors contacted by humans and the maximum number of humans con-
tacted by vectors respectively. Nk = N p(k) are the human groups in which each human contacts with
k vectors. Vl = Vq(l) are the vector groups in which each vector contacts with l humans. Suppose the
degree of each human and each vector is time invariant. Human population are divided into four cate-
gories: susceptible, exposed (infected but unable to to spread disease when in contact with susceptible
vectors), infected (infected and able to spread disease when in contact with susceptible vectors) and
recovered (recovered and acquired full immunity). Vector population are divided into three categories:
susceptible, exposed (infected but unable to to spread disease when in contact with susceptible hu-
mans), infected (infected and able to spread disease when in contact with susceptible humans). Then,
S k(t), Ek(t), Ik(t) and Rk(t) represent the relative density of susceptible, exposed, infected and recovered
humans with degree k (k = 1, 2, ..., n) at time t respectively. S m

l (t), Em
l (t) and Im

l (t) represent the relative
density of susceptible, exposed and infected vectors with degree l (l = 1, 2, ..., h) at time t respectively.

In order to reflect the impact of incubation periods in disease transmission. Let τ and ω represent
the disease incubation period of humans and the disease incubation period of vectors respectively. That
is, the exposed human becomes an infected human after τ, and the exposed vector becomes an infected
vector after ω. Thus we can establish the following vector-borne diseases model with two delays on
bipartite networks:

dS k(t)
dt

= d −
abVk
N〈k〉k

S k(t)Θm(t) − dS k(t),

dEk(t)
dt

=
abVk
N〈k〉k

S k(t)Θm(t) −
abVk
N〈k〉k

S k(t − τ)Θm(t − τ)e−dτ − dEk(t),

dIk(t)
dt

=
abVk
N〈k〉k

S k(t − τ)Θm(t − τ)e−dτ − (d + γ)Ik(t),

dRk(t)
dt

= γIk(t) − dRk(t),

dS m
l (t)
dt

= µ − aclS m
l (t)Θ(t) − µS m

l (t),

dEm
l (t)
dt

= aclS m
l (t)Θ(t) − aclS m

l (t − ω)Θ(t − ω)e−µω − µEm
l (t),

dIm
l (t)
dt

= aclS m
l (t − ω)Θ(t − ω)e−µω − µIm

l (t),

(2.1)

in which the descriptions of parameters γ, a, b and c are consistent with the system (1.1). 〈k〉k =∑n
k=1 kp(k) and 〈l〉l =

∑h
l=1 lq(k) are average degree of humans and vectors respectively. Therefore,

N〈k〉k is the total number of edges of humans, furthermore, we obtain abV
N〈k〉k

represents the infection
probability of each edge from infected humans to susceptible vectors, and ac represents the infection
probability of each edge from infected vectors to susceptible humans. Θ(t) and Θ(t)m are the probability
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rate that any link points to an infected human and an infected vector respectively, and

Θ(t) =
1
〈k〉k

n∑
k=1

ϕ(k)p(k)Ik(t), Θm(t) =
1
〈l〉l

h∑
l=1

ψ(l)q(l)Im
l (t),

where ϕ(k) and ψ(l) are infectious of occupied edges which can transmit the disease from the infected
human with degree k and the infected vector with degree l, respectively. There are many forms of
ϕ(k). The simple forms are ϕ(k) = Ck [21] (0 < C ≤ 1), which represent the infectivity of each
node is proportional to its degree, and ϕ(k) = A [21] (A is a positive constant), which represents each
node generate A contacts. The more suitable form is nonlinear infectivity ϕ(k) = akc/ (1 + bkc) [22]
(0 ≤ c ≤ 1, a > 0, b ≥ 0), which can be divided into different cases: when c = 1 and b = 0, ϕ(k) = ak;
when c = 0, ϕ(k) = a/(1 + b); when b , 0, ϕ(k) = akc/ (1 + bkc) is monotonically increasing with k,
and it has an upper bound, limk→+∞ ϕ(k) = a/b, which means that the infectivity of the node reaches the
maximum. The form of ψ(l) is similarly to the form of ϕ(k). For clarity, we introduce the description
of the parameters in Table 1 and the disease transmission diagram in Figure 2.

ES I R

S E I

after τ

after ω

d

µ

γ

µ µ

d d dd

µ

Figure 2. Flowchart of the vector-borne diseases model.

It is clearly that the normalization condition of system (2.1) is

S k(t) + Ek(t) + Ik(t) + Rk(t) = 1, k = 1, 2, . . . , n, S m
l (t) + Em

l (t) + Im
l (t) = 1, l = 1, 2, . . . , h. (2.2)

S k(η) = φk
1(η), Ek(η) = φk

2(η), Ik(η) = φk
3(η), Rk(η) = φk

4(η), S m
l (η) = φl

5(η),
Em

l (η) = φl
6(η), Im

l (η) = φl
7(η), η ∈ [−T, 0],T = max{τ, ω}, k = 1, ..., n, l = 1, ..., h,

(2.3)

where φ = (φ1
1(η), ..., φn

1(η), φ1
2(η), ..., φn

2(η), φ1
3(η), ..., φn

3(η), φ1
4(η), ..., φn

4(η), φ1
5(η), ..., φh

5(η), φ1
6(η), ..., φh

6(η),
φ1

7(η), ..., φh
7(η)) ∈ C([−T, 0],R4n+3h

+ ) are non-negative continuous on interval [−T, 0].
C([−T, 0],R4n+3h

+ ) denotes the Banach space of continuous functions mapping the interval [−T, 0] into
R4n+3h

+ , and it equipped with the norm

||φ|| =

 n∑
k=1

(|φk
1(η)|2 + |φk

2(η)|2 + |φk
3(η)|2 + |φk

4(η)|2) +

h∑
l=1

(|φl
5(η)|2 + |φl

6(η)|2 + |φl
7(η)|2)

1/2

,

where |φ(η)| = sup−T≤η≤0 |φ(η)|. We can prove through the fundamental theory of functional differential
equations [23] that system (2.1) has a unique solution satisfying the initial condition (2.3).
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3. Dynamics

Note that the second and sixth equations of system (2.1) can be further transformed into the follow-
ing integral equations.

Ek(t) =
abVk
N〈k〉k

∫ t

t−τ
S k(s)Θm(s)e−d(t−s)ds,

Em
l (t) = acl

∫ t

t−ω
S m

l (s)Θ(s)e−µ(t−s)ds.

Thus, in order to study the dynamical behaviors of system (2.1), we only need to study the following
system: 

dS k(t)
dt

= d −
abVk
N〈k〉k

S k(t)Θm(t) − dS k(t),

dIk(t)
dt

=
abVk
N〈k〉k

S k(t − τ)Θm(t − τ)e−dτ − (d + γ)Ik(t),

dRk(t)
dt

= γIk(t) − dRk(t),

dS m
l (t)
dt

= µ − aclS m
l (t)Θ(t) − µS m

l (t),

dIm
l (t)
dt

= aclS m
l (t − ω)Θ(t − ω)e−µω − µIm

l (t).

(3.1)

Now, we mainly analyze system (3.1).

Theorem 3.1. If any solution (S 1(t), ..., S n(t), I1(t), ..., In(t),R1(t), ...,Rn(t), S m
1 (t), ..., S m

h (t), Im
1 (t), ..., Im

h (t))
of system (3.1) satisfies the initial condition (2.3), then all solutions of system (3.1) are non-negative
for t > 0.

Proof. Firstly, we prove S k(t) > 0 for t > 0. Suppose it is not true, there would be at time T such that
S k(t) = 0. From the first equation of (3.1),

dS k(t)
dt

= d > 0.

This means that there is a positive constant ε such that S k(t) < 0 when t ∈ (T − ε,T ). This leads to a
contradiction, i.e., S k(t) is always positive. Similarly, S m

l (t) has the same conclusion.
Secondly, we consider Ik(t) and Im

l (t). From the second and forth equations of (3.1),

Ik(t) = Ik(0)e−(d+γ)t +

∫ t

0

abVk
N〈k〉k

e−dτS k(s − τ)Θm(s − τ)e−(d+γ)sds,

and

Im
l (t) = Im

l (0)e−µt +

∫ t

0
acle−µωS m

l (s − ω)Θ(s − ω)e−µsds.

It is easy to see that Ik(t) and Im
l (t) are non-negative.

Finally, from the third equation of (3.1),

Rk(t) ≥ Rk(0)e−dt ≥ 0.
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Therefore, this completes the proof.
From Theorem 3.1 and the normalization condition (2.2), the following set Ω is the positive invariant

for system (3.1),

Ω =
{(

S 1, ..., S n, I1, ..., In,R1, ...,Rn, S m
1 , ..., S

m
h , I

m
1 , ..., I

m
h
)
∈ R3n+2h

+ : 0 ≤ S k, Ik,Rk ≤ 1,

k = 1, 2, ..., n, 0 ≤ S m
l , I

m
l ≤ 1, l = 1, 2, ..., h

}
.

Now, we consider that dynamics of system (3.1) on the region Ω.

Theorem 3.2. Denote

R0 =
a2bcV〈kϕ(k)〉k〈lψ(l)〉le−dτe−µω

N〈k〉2k〈l〉lµ(d + γ)
,

where 〈kϕ(k)〉k =
∑n

k=1 kϕ(k)p(k), 〈k〉k =
∑n

k=1 kp(k), 〈lψ(l)〉l =
∑h

l=1 lψ(l)q(l) and 〈l〉l =
∑h

l=1 lq(l).
Then, we have the following assertions.
(1) System (3.1) always has a disease-free equilibrium E0, where

E0 =
(
S 0

1, ..., S
0
n, I

0
1 , ..., I

0
n ,R

0
1, ...,R

0
n, (S

m
1 )0, ..., (S m

h )0, (Im
1 )0, ..., (Im

h )0
)

= (1, ..., 1, 0, ..., 0, 0, ..., 0, 1, ..., 1, 0, ..., 0) .

(2) System (3.1) has a endemic equilibrium E∗ when R0 > 1, where

E∗ =
(
S ∗1, ..., S

∗
n, I
∗
1, ..., I

∗
n,R

∗
1, ...,R

∗
n, (S

m
1 )∗, ..., (S m

h )∗, (Im
1 )∗, ..., (Im

h )∗
)
.

Proof. Obviously, system (3.1) always has a disease-free equilibrium

E0 =
(
S 0

1, ..., S
0
n, I

0
1 , ..., I

0
n ,R

0
1, ...,R

0
n, (S

m
1 )0, ..., (S m

h )0, (Im
1 )0, ..., (Im

h )0
)

= (1, ..., 1, 0, ..., 0, 0, ..., 0, 1, ..., 1, 0, ..., 0) .

Then, we suppose that system (3.1) has a endemic equilibrium

E∗ =
(
S ∗1, ..., S

∗
n, I
∗
1, ..., I

∗
n,R

∗
1, ...,R

∗
n, (S

m
1 )∗, ..., (S m

h )∗, (Im
1 )∗, ..., (Im

h )∗
)
,

and E∗ satisfies the following equations

d −
abVk
N〈k〉k

S ∗k(Θm)∗ − dS ∗k = 0,

abVk
N〈k〉k

S ∗k(Θm)∗e−dτ − (d + γ)I∗k = 0,

γI∗k − dR∗k = 0,
µ − acl(S m

l )∗Θ∗ − µ(S m
l )∗ = 0,

acl(S m
l )∗Θ∗e−µω − µ(Im

l )∗ = 0,

(3.2)

where

(Θm)∗ =
1
〈l〉l

h∑
l=1

ψ(l)q(l)(Im
l )∗, Θ∗ =

1
〈k〉k

n∑
k=1

ϕ(k)p(k)I∗k . (3.3)
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By a simple calculation,

S ∗k =
dN〈k〉k

abVk(Θm)∗ + N〈k〉kd
, I∗k =

dabVk(Θm)∗e−dτ

N〈k〉k(abVk(Θm)∗ + N〈k〉kd)(d + γ)
,

R∗k =
γabVk(Θm)∗e−dτ

N〈k〉k(abVk(Θm)∗ + dN〈k〉k)(d + γ)
, (S m

l )∗ =
µ

aclΘ∗ + µ
, (Im

l )∗ =
µaclΘ∗e−ωµ

aclΘ∗ + µ
.

(3.4)

From (3.4) and (3.3), we obtain

(Θm)∗ =
1
〈l〉l

h∑
l=1

ψ(l)q(l)
µaclΘ∗e−ωµ

aclΘ∗ + µ
, Θ∗ =

1
〈k〉k

n∑
k=1

ϕ(k)p(k)
dabVk(Θm)∗e−dτ

N〈k〉k(abVk(Θm)∗ + N〈k〉kd)(d + γ)
.

Substitute (Θm)∗ into Θ∗,

Θ∗ =
1
〈k〉k

n∑
k=1

ϕ(k)p(k)
dabVke−dτ ∑h

l=1 ψ(l)q(l)
µaclΘ∗e−ωµ

aclΘ∗ + µ

N〈k〉k

abVk
∑h

l=1 ψ(l)q(l)
µaclΘ∗e−ωµ

aclΘ∗ + µ
+ N〈k〉kd〈l〉l

 (d + γ)

= F(Θ∗). (3.5)

Obviously, Θ∗ = 0 is a solution of equation (3.5), i.e., system (3.1) always has a disease-free equilib-
rium E0. Then, we take Θ∗ > 0 to ensure equation (3.5) has a nontrivial solution. Taking the derivative
of F(Θ∗), we get

Ḟ(Θ∗) =
1
〈k〉k

n∑
k=1

ϕ(k)p(k)
N2〈k〉2kdabVke−dτ(d2 + dγ)〈l〉l

∑h
l=1 ψ(l)q(l)

aclµe−ωµ

(aclΘ∗ + µ)2N〈k〉k abVk
∑h

l=1 ψ(l)q(l)
µaclΘ∗e−ωµ

aclΘ∗ + µ
+ N〈k〉kd〈l〉l

 (d + γ)

2 > 0.

Denote

F1(Θ∗) =

h∑
l=1

ψ(l)q(l)
aclµe−ωµ

(aclΘ∗ + µ)2,

F2(Θ∗) = N〈k〉k

abVk
h∑

l=1

ψ(l)q(l)
aclΘ∗e−ωµ

aclΘ∗ + µ
+ N〈k〉kd〈l〉l

 (d + γ) .

Since Ḟ1(Θ∗) < 0 and Ḟ2(Θ∗) > 0,

F̈(Θ∗) =
1
〈k〉k

n∑
k=1

ϕ(k)p(k)
N2〈k〉2kdabVke−dτ(d2 + dγ)〈l〉l(Ḟ1(Θ∗)F2(Θ∗) − 2F1(Θ∗)Ḟ2(Θ∗))

(F2(Θ∗))3 < 0.

Thus, equation (3.5) has a nontrivial solution if and only if

Ḟ(0) =
a2bcV〈kϕ(k)〉k〈lψ(l)〉le−dτe−µω

N〈k〉2k〈l〉lµ(d + γ)
> 1.
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Therefore, we define the basic reproduction number

R0 =
a2bcV〈kϕ(k)〉k〈lψ(l)〉le−dτe−µω

N〈k〉2k〈l〉lµ(d + γ)
. (3.6)

Based on the above analysis, when R0 > 1, system (3.1) has a endemic equilibrium E∗. �

Remark 3.1. Zhang has obtained the basic reproduction number from the model in Ref. [16] formed

R′0 =
a2bcV〈k2〉y〈l2〉x

Nγµ〈k〉2y〈l〉x
.

In our work, when ϕ(k) = k and ψ(l) = l, the basic reproduction number R0 of system (3.1) becomes

R̄0 =
a2bcV〈k2〉k〈l2〉le−dτe−µω

N〈k〉2k〈l〉lµ(d + γ)
.

Comparing the two basic reproduction numbers, we find that

R̄0 = R′0e−dτe−µω.

That is, the influence of time delays causes a change in the basic reproduction number, and R0 decreases
as time delays increase.

Theorem 3.3. If R0 < 1, the disease-free equilibrium E0 of system (3.1) is globally asymptotically
stable for τ ≥ 0 and ω ≥ 0.

Proof. Denote the following Lyapunov function

V(t) = µΘ(t) + µ

n∑
k=1

ηk

∫ t

t−τ
S k(s)Θm(s)ds +

n∑
k=1

ηkΘ
m(t) +

n∑
k=1

ηk

h∑
l=1

ξl

∫ t

t−ω
S m

l (s)Θ(s)ds, (3.7)

where
ηk =

ϕ(k)p(k)abVk
N〈k〉2k

e−dτ, ξl =
ψ(l)q(l)
〈l〉l

acle−µω.

Taking the derivative of V(t) along the solution of system (3.1), we obtain

dV(t)
dt

∣∣∣∣∣
(3.1)

=µ

n∑
k=1

ϕ(k)p(k)
〈k〉k

(
abVk
N〈k〉k

S k(t − τ)Θm(t − τ)e−dτ − (d + γ)Ik(t)
)

+ µ

n∑
k=1

ηk (S k(t)Θm(t) − S k(t − τ)Θm(t − τ))

+

n∑
k=1

ηk

h∑
l=1

ϕ(l)q(l)
〈l〉l

(
aclS m

l (t − ω)Θ(t − ω)e−µω − µIm
l (t)

)
+

n∑
k=1

ηk

h∑
l=1

ξl
(
S m

l (t)Θ(t) − S m
l (t − ω)Θ(t − ω)

)
=µ

n∑
k=1

ηkS k(t)Θm(t) − µ(d + γ)Θ(t) +

n∑
k=1

ηk

h∑
l=1

ξlS m
l (t)Θ(t) −

n∑
k=1

ηkµΘm(t).

(3.8)
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Note that 0 ≤ S k(t) ≤ 1 and 0 ≤ S m
l (t) ≤ 1,

µ

n∑
k=1

ηkS k(t)Θm(t) − µ(d + γ)Θ(t) +

n∑
k=1

ηk

h∑
l=1

ξlS m
l (t)Θ(t) −

n∑
k=1

ηkµΘm(t)

≤

 n∑
k=1

ηk

h∑
l=1

ξl − µ(d + γ)

 Θ(t)

=µ(d + γ)(R0 − 1)Θ(t).

(3.9)

Thus, R0 < 1 follows that dV(t)
dt |(3.1)≤ 0. Simultaneously, dV(t)

dt |(3.1)= 0 if and only if Ik(t) = 0. From (3.1),
we have limt→+∞ S k(t) = 1, limt→+∞ Rk(t) = 0, limt→+∞ S m

l (t) = 1 and limt→+∞ Im
l (t) = 0. According

to the LaSalle Invariance Principle [24], we conclude that E0 is globally asymptotically stable when
R0 < 1. �

Theorem 3.4. If R0 > 1, the endemic equilibrium E∗ of system (3.1) is globally asymptotically stable
for τ ≥ 0 and ω ≥ 0.

Proof. Define the following Lyapunov function

V(t) =
1
〈l〉l

h∑
l=1

ψ(l)q(l)acle−µω(S m
l )∗Θ∗V1(t) +

1
〈k〉k

n∑
k=1

ϕ(k)p(k)
abVk
N〈k〉k

e−dτS ∗k(Θm)∗V2(t), (3.10)

where

V1(t) =
1
〈k〉k

n∑
k=1

ϕ(k)p(k)e−dτWS k(t) + WΘm(t) +
1
〈k〉k

n∑
k=1

ϕ(k)p(k)
abVk
N〈k〉k

e−dτU1(t), (3.11)

V2(t) =
1
〈l〉l

h∑
l=1

ψ(l)q(l)e−µωWS m
l
(t) + WΘ(t) +

1
〈l〉l

h∑
l=1

ψ(l)q(l)acle−µωU2(t), (3.12)

in which

U1(t) =

∫ t

t−τ

(
WS kΘm(s)

)
ds, U2(t) =

∫ t

t−ω

(
WS m

l Θ(s)
)

ds,

Wx(t) = x(t) − x∗ − x∗ ln x(t).

It is obviously that Wx(t) ≥ 0 for x(t) > 0, and Wx(t) = 0 if and only if x(t) = x∗.
From the first equation of (3.2), we get d = abVk

N〈k〉k
S ∗k(Θm)∗ + dS ∗k. Differentiating WS k(t) along the

solution of (3.1), we obtain

dWS k(t)
dt

=

(
1 −

S ∗k
S k(t)

)
dS k(t)

dt

=

(
1 −

S ∗k
S k(t)

) [
abVk
N〈k〉k

(
S ∗k(Θm)∗ − S k(t)Θm(t)

)
− d(S k(t) − S ∗k)

]
=

abVk
N〈k〉k

S ∗k(Θm)∗
(
1 −

S k(t)Θm(t)
S ∗k(Θm)∗

−
S ∗k

S k(t)
+

Θm(t)
(Θm)∗

)
−

d
S k(t)

(
1 −

S ∗k
S k(t)

)2

.

(3.13)
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From the second equation of (3.2),

(d + γ)Θ∗ =
1
〈k〉k

n∑
k=1

ϕ(k)p(k)
abVk
N〈k〉k

S ∗k(Θm)∗e−dτ.

Differentiating WΘ(t) along the solution of (3.1), we have

dWΘ(t)
dt

=

(
1 −

Θ∗

Θ(t)

)
dΘ(t)

dt

=

(
1 −

Θ∗

Θ(t)

)
1
〈k〉k

n∑
k=1

ϕ(k)p(k)
abVk
N〈k〉k

e−dτ

(
S k(t − τ)Θm(t − τ) − S ∗k(Θm)∗

Θ(t)
Θ∗

)
=

1
〈k〉k

n∑
k=1

ϕ(k)p(k)
abVk
N〈k〉k

S ∗k(Θm)∗e−dτ

(
S k(t − τ)Θm(t − τ)

S ∗k(Θm)∗
−

Θ(t)
Θ∗
−

S k(t − τ)Θm(t − τ)Θ∗

S ∗k(Θm)∗Θ(t)
+ 1

)
.

(3.14)
Moreover,

dU1(t)
dt

= S ∗k(Θm)∗
(
S k(t)Θm(t)
S ∗k(Θm)∗

−
S k(t − τ)Θm(t − τ)

S ∗k(Θm)∗
+ ln

S k(t − τ)Θm(t − τ)
S k(t)Θm(t)

)
. (3.15)

Combining (3.13), (3.14) and (3.15), we obtain

dV1(t)
dt

∣∣∣∣∣
(3.1)

= −
1
〈k〉k

n∑
k=1

ϕ(k)p(k)e−dτ d
S k(t)

(
1 −

S ∗k
S k(t)

)2

+
1
〈k〉k

n∑
k=1

ϕ(k)p(k)
abVk
N〈k〉k

S ∗k(Θm)∗e−dτ

[
−G

(
S ∗k

S k(t)

)
−G

(
S k(t − τ)Θm(t − τ)Θ∗

S ∗k(Θm)∗Θ(t)

)
+ ln

(Θm)∗

Θm(t)
+

Θm(t)
(Θm)∗

−
Θ(t)
Θ∗
− ln

Θ(t)
Θ∗

]
,

(3.16)
where G(x) = x − 1 − ln x.
Through the above similar deduction process, calculate the derivative of V2(t) along solution of (3.1)

dV2(t)
dt

∣∣∣∣∣
(3.1)

= −
1
〈l〉l

h∑
l=1

ψ(l)q(l)e−µω
d

S m
l (t)

(
1 −

(S m
l )∗

S m
l (t)

)2

+
1
〈l〉l

h∑
l=1

ψ(l)q(l)acl(S m
l )∗Θ∗e−µω

[
−G

(
(S m

l )∗

S m
l (t)

)
−G

(
S m

l (t − ω)Θ(t − ω)(Θm)∗

(S m
l )∗Θ∗Θm(t)

)
− ln

(Θm)∗

Θm(t)
−

Θm(t)
(Θm)∗

+
Θ(t)
Θ∗

+ ln
Θ(t)
Θ∗

]
.

(3.17)
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Combining (3.16) and (3.17),

dV(t)
dt

∣∣∣∣∣
(3.1)

=
1
〈l〉l

h∑
l=1

ψ(l)q(l)acle−µω(S m
l )∗Θ∗

dV1(t)
dt

+
1
〈k〉k

n∑
k=1

ϕ(k)p(k)
abVk
N〈k〉k

e−dτS ∗k(Θm)∗
dV2(t)

dt

= −
1
〈l〉l

h∑
l=1

ψ(l)q(l)acle−µω(S m
l )∗Θ∗

1
〈k〉k

n∑
k=1

ϕ(k)p(k)e−dτ d
S k(t)

(
1 −

S ∗k
S k(t)

)2

−
1
〈k〉k

n∑
k=1

ϕ(k)p(k)
abVk
N〈k〉k

e−dτS ∗k(Θm)∗
1
〈l〉l

h∑
l=1

ψ(l)q(l)e−µω
d

S m
l (t)

(
1 −

(S m
l )∗

S m
l (t)

)2

+
1
〈l〉l

h∑
l=1

ψ(l)q(l)acle−µω(S m
l )∗Θ∗

1
〈k〉k

n∑
k=1

ϕ(k)p(k)
abVk
N〈k〉k

S ∗k(Θm)∗e−dτ

[
−G

(
S ∗k

S k(t)

)
−G

(
S k(t − τ)Θm(t − τ)Θ∗

S ∗k(Θm)∗Θ(t)

)]
+

1
〈k〉k

n∑
k=1

ϕ(k)p(k)
abVk
N〈k〉k

e−dτS ∗k(Θm)∗
1
〈l〉l

h∑
l=1

ψ(l)q(l)acl(S m
l )∗Θ∗e−µω

[
−G

(
(S m

l )∗

S m
l (t)

)
−G

(
S m

l (t − ω)Θ(t − ω)(Θm)∗

(S m
l )∗Θ∗Θm(t)

)]
.

(3.18)
Note G(x) = x − 1 − ln x ≥ 0 for all x > 0 and G(x) = 0 if and only if x = 1. Thus, dV(t)

dt |(3.1)≤ 0, and
dV(t)

dt |(3.1)= 0 if and only if S k(t) = S k(t − τ) = S ∗k, S m
l (t) = S m

l (t −ω) = (S m
l )∗, Θ(t) = Θ(t − τ) = Θ∗ and

Θm(t) = Θm(t − ω) = (Θm)∗. According to (3.1), we obtain limt→+∞ Ik(t) = I∗k , limt→+∞ Rk(t) = R∗k and
limt→+∞ Im

l (t) = (Im
l )∗. By the LaSalle Invariance Principle [24], the endemic equilibrium E∗ of system

(3.1) is globally asymptotically stable when R0 > 1. �

4. Simulations

In this section, we present some numerical simulations to verify the correctness of our main results,
discuss the impact of the incubation periods on transmission scale and reveal the influence of network
structure on the basic reproduction number R0.

Since the model (2.1) is suitable for malaria, the vector population is mainly mosquito population,
and we select the following parameter values based on the pioneers’ research. The biting rate on human
by a vector a is about 0.193 to 0.421 per day [25]. The probability of being bitten by an infected human
is equal to the probability of being bitten by an infected vector, i.e., b = c = 0.5 [26]. The recovered
rate of human γ is about 0.01 to 0.05 per day [26]. The mortality rate of vectors µ is about 0.006
to 0.1588 per day [25]. According to the World Health Organization, the average life expectancy of
Africans in 2019 is 56.4 years [27]. Since most malaria outbreaks occur in Africa [28], wo choose
the mortality rate of humans d = 1/(56.4 × 365) ≈ 0.000048 per day. Similar to the assumption in
Ref. [15], the total number of human population is N = 109 and the total number of vector population
is V = 7.0 × 108. The disease incubation period of humans τ is about 10 to 100 days [26], and the
disease incubation period of vectors ω is about 6 to 19 days [25]. For clarity, the parameter values are
listed in Table 2.
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Table 2. Values of parameters.

Parameter Value Reference

a 0.193-0.421 [26]
b 0.5 [26]
c 0.5 [26]
d 0.000048/day [27]
µ 0.0006-0.1588/day [25]
γ 0.01-0.05/day [26]
τ 10-100 days [26]
ω 6-19 days [25]
N 109 [15]
V 7.0 × 108 [15]

Assume that the bipartite network is a finite network. The degree of humans and degree of vectors
in the network are k = 1, 2, ..., n and l = 1, 2, ..., h, respectively. The power-law distribution of the
human population and vector population are p(k) = C1k−α1 and q(l) = C2l−α2 respectively, where α1 ∈

[2, 3), α2 ∈ [2, 3), and C1, C2 are both positive constants satisfying
∑n

k=1 C1 p(k) =
∑h

l=1 C2q(l) = 1. The
nonlinear infectivity ϕ(k) and ψ(l) have the same form, and ϕ(k) = akc/ (1 + bkc), ψ(l) = alc/ (1 + blc),
in which a = 0.5, c = 0.75, b = 0.02. Denote I(t) is the average density of the infected humans at time
t, and Im(t) is the average density of the infected vectors at time t,

I(t) =

n∑
k=1

p(k)Ik(t), Im(t) =

h∑
l=1

q(l)Im
l (t).

First, we perform some numerical simulations to illustrate our theoretical results. We choose the
initial values are Ik(0) = 0.01, k = 1, ..., 100 and Im

l (0) = 0.01, l = 1, ..., 100. Let a vary, the other
parameters are µ = 0.08, γ = 0.04, τ = 20, ω = 10 and α1 = α2 = 2.8. When a = 0.2, the basic
reproduction number R0 ≈ 0.8370 < 1. Figure 3 shows the time evolution of I(t), I20(t), I50(t), I80(t),
and Figure 4 shows the time evolution of Im(t), Im

20(t), Im
50(t), Im

80(t). We find that the infected humans
and vectors are both tend to zero, i.e., the infection eventually disappears, which is consistent with
Theorem 3.3. When a = 0.4, the basic reproduction number R0 ≈ 3.3482 > 1. From Figure 5 and
Figure 6, the infected humans and vectors are all converge to positive constants as t → +∞, which is
consistent with Theorem 3.4.

Next, we focus on the influence of the two time delays on the scale of disease spread. Let τ and ω
change separately, the other parameters are fixed as a = 0.4, µ = 0.08, γ = 0.04 and α1 = α2 = 2.8.
Figure 7 and Figure 8 demonstrate that as τ increases, both I(t) and Im(t) decrease. We also find that
as ω increases, both I(t) and Im(t) decrease in Figure 9 and Figure 10. Moreover, Figure 11 shows the
influence of τ and ω to the basic reproduction number R0. It can be seen that R0 decreases as τ and ω
increase, which is consistent with Remark 3.1. From these phenomena, we obtain that the larger the
two delays, the slower and less widely the spread of disease.

Last, we concentrate on the relationship between the basic reproduction number R0 and the network
structure. Since the contact bipartite network has two states, it is reasonable to consider the human

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3073–3091.



3086

0 100 200 300 400 500 600 700 800

t

0

0.05

0.1

0.15

0.2

0.25

D
e

n
s
it
y

I
20

(t)

I
50

(t)

I
80

(t)

I(t)

Figure 3. Time evaluation of I(t),
I20(t), I50(t), I80(t) when R0 ≈

0.8370 < 1.
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Figure 4. Time evaluation of Im(t),
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20(t), Im

50(t), Im
80(t) when R0 ≈

0.8370 < 1.

0 100 200 300 400 500 600 700 800

t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

D
e

n
s
it
y

I
20

(t)

I
50

(t)

I
80

(t)

I(t)

Figure 5. Time evaluation of I(t),
I20(t), I50(t), I80(t) when R0 ≈

3.3482 > 1.
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3.3482 > 1.
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Figure 7. Time evaluations of I(t)
with different lengths of delay τ.
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Figure 9. Time evaluations of I(t)
with different lengths of delay ω.
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Figure 10. Time evaluations of Im(t)
with different lengths of delay ω.
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Figure 11. The relationship between
the basic reproduction number R0 and
the incubation period of humans τ and
vectors ω.
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Figure 12. The relationship between
the basic reproduction number R0 and
the power-law distribution index of
humans α1 and vectors α2.

population structure and the vector population structure, respectively. We discuss the impact of the
following three cases: the heterogeneity of network, the maximum degree of node and the average
degree of node.

Case 1: The power-law distribution index can reflect the heterogeneity of the network. Let the
power-law index of humans α1 and vectors α2 change separately, the other parameters are a = 0.2,
µ = 0.08, γ = 0.04, τ = 20, ω = 10 k = 1, ..., 100, and l = 1, ..., 100. Figure 12 shows R0 decreases as
α1 and α2 increase. That is, the smaller the heterogeneity transmission between humans and vectors,
the more difficult it is to control the disease.

Case 2: Since the range of nodes degree are k = 1, 2, ..., n and l = 1, 2, ..., h, let n and h change
separately, and the other parameters are α1 = α2 = 2.5, a = 0.25, µ = 0.08, γ = 0.04, τ = 20 and
ω = 10. Figure 13 shows R0 increases as n and h increase, and the rate of increase of R0 continues to
slow down. In other words, the larger the maximum number of contacts between humans and vectors,
the more difficult it is to control the disease, but the impact continues to decrease.

Case 3: The average degree of the node represents the average number of connections of the node in
network. We use the range of the node degree control the change of the average degree. Let the average
degree of humans 〈k〉 and vectors 〈l〉 change separately, the other parameters are the other parameters
are α1 = α2 = 2.5, a = 0.25, µ = 0.08, γ = 0.04, τ = 20 and ω = 10. Figure 14 shows R0 increases
as 〈k〉 and 〈l〉 increase. That is, the more the average number of contacts between humans and vectors,
the harder it is to control the disease.

From above three phenomena, we conclude that the network structure has a great influence on
the basic reproduction number, and the vector population structure has a greater impact on disease
transmission than the human population structure. In other words, controlling the vector population
can effectively curb the spread of vector-borne diseases.
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the basic reproduction number R0 and
the maximum degree of humans n and
vectors h.
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5. Conclusion

Due to the connection between humans and vectors in vector-borne diseases is heterogeneous [12],
in this paper, we concentrate on the impact of incubation periods of humans and vectors on diseases
transmission and propose a novel vector-borne diseases model with two time delays on bipartite net-
works.

For this delayed model, we identify the formula of the basic reproduction number R0 which de-
pends on the two time delays. By constructing appropriate Lyapunov functions, we prove that when
R0 < 1, the disease-free equilibrium E0 is globally asymptotically stable; when R0 > 1, the endemic
equilibrium E∗ is globally asymptotically stable.

Based on the pioneers’ researches on real data, we present numerical simulations to verify the
correctness of our results and discuss the impact of the incubation periods. The results show the
incubation periods of humans and vectors can constrain the diseases transmission. That is, the longer
the incubation periods, the slower and less widely the spread of diseases. Moreover, we reveal the
influence of the structure of bipartite network on the basic reproduction number. It is shown the power-
law distribution index of networks is negatively correlated with the basic reproduction number, and
the maximum degree and average degree of node are positive correlated with it. We also find that
compared with the human population structure in bipartite network, the vector population structure has
a greater impact on disease transmission.

These results can help us understand the dynamics of vector-borne diseases on bipartite networks,
and the analysis of the incubation periods and the network structure could provide a reference for
taking measures to control vector-borne diseases.
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