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Abstract: In this paper, the finite-time stability and control of a kind of singular bio-economic
systems with stochastic fluctuations are investigated. When economic profit is no longer a constant
but a variable, the system shows distinct dynamic behavior. First, a singular system is proposed to
describe the bio-economic system with stochastic fluctuation. Then a singular stochastic T-S fuzzy
model is established based on T-S fuzzy system theory. Second, a sufficient condition is proposed to
satisfy finite-time stochastic stability of bio-economic system. On this basis, a fuzzy state feedback
controller is designed which can make corresponding closed-loop singular stochastic bio-economic
system admissible in finite-time, and the states of the system can be driven to a bounded range through
the management of the open resource. Finally, the validity of the results is verified through the
numerical simulation.
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1. Introduction

In recent years, the problems of resource shortage and fragile ecological environment have
appeared frequently, threatening the survival and development of posterity to a large extent.
Therefore, many people have a keen interest in studying biological systems. Considering the
maximization of net economic income, a bio-economic model was proposed in [1] which was based
on differential-algebraic equation. Biological and economic stability by adding a popular dynamic
was studied in [2–4]. The problem of how to obtain best harvest in the bio-economic model was
studied in [5, 6], which provides a theoretical basis for the rational development of biological
resources. The optimal cost control problem of Markov jump system was solved in [7, 8]. For the
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purpose of protecting the environment and maintaining the economic development stably and rapidly,
it is very urgent and necessary to research the analysis of the bio-economic system.

Singular systems have a larger application background in bio-economic systems [9]. The singular
systems is different from the normal system in that its stability is more complex. It is well-known
that a singular system can be stabilized only when it is regular and impulse-free [10, 11]. Therefore,
much effort was devoted to singular system and its applications. In the recent years, some singular
bio-economic system models with stochastic and bifurcation properties are established, which shows
that the research of the singular system is very broad and has good development prospects. A singular
biological economy markov jump system is proposed in [12], which takes commodity price as markov
chain. The bio-economic singular Markov jumping system was studied and the corresponding control
design was proposed in [13].

In natural environment, environmental fluctuation is a very important part of bio-economic system
in real life. To a large extent, there are limitations in the application of deterministic methods in
mathematical modeling. Therefore, the future dynamics of the system are difficult to accurately
predict. In the various dynamic analysis of the system, the stochastic differential equation model is a
important part. The ecological population system model was established using randomness in [14].
Some problems of T-S fuzzy system was researched and the applicaton of this type of system in
bio-economy was explored in [15, 16]. According to the theory of fishery resource economics, a
stochastic singular bio-economic system which based on the T-S fuzzy model was established in [17].

In practice, some systems can maintain asymptotic stability in an infinite time interval but they do
not have good transient characteristics. Consequently, it is meaningful to study the transient behavior
within a limited time interval. Several sufficient conditions for the continuous-time systems and
discrete-time systems to maintain stability in a finite-time are given in [18,19]. In the singular system,
the finite-time stability was redefined which have impulsive effects. Then at this time, sufficient
conditions were derived in [20]. The conditions which linear stochastic systems can achieve
finite-time stability was studied in [21]. The linear matrix inequality theory was used to obtain a
series of properties of linear systems, nonlinear systems and stochastic systems in [22, 23]. However,
up to now, there are few studies on stochastic singular systems with parameter uncertainties and
external disturbances. These problems are very important in practical application and also the main
content of our research.

The purpose of this paper is to research stability in finite-time and achieve control of the singular
bio-economic system with stochastic fluctuations. It is undoubtedly challenging to control the density
of biological population within a certain range and eliminate the influence of some unfavorable factors.
This is also the motivation of this paper. The knowledge of the singular stochastic bio-economic system
combined with the application of T-S fuzzy control in [24, 25]. Firstly, the T-S fuzzy control model
which based on the T-S fuzzy control method is established. Then, it provides a new sufficient condition
for the system to achieve stochastic stability in finite-time. On this basis, a state feedback controller
which can control the biological populations in a limited range through open resource management is
designed. Finally, the effectiveness of the method is verified through simulation in the feasible region.

Notations: The superscript T of a matrix represents its matrix transpose. A is a positive definite
matrix if A > 0. deg (·) represents the degree of the determinant. ε (x) represents expectation of
stochastic variable x. diag (·) denotes a diagonal matrix. λmax (A) and λmin (A) stand for the largest
eigenvalue and the smallest eigenvalue of matrix A.
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2. Modeling and problem formulation

A single kind of dynamic model which has stage structure proposed by [26] is introduced as follows:ẋ1(t) = αx2(t) − r1x1(t) − βx1(t) − ηx2
1(t),

ẋ2(t) = βx1(t) − r2x2(t),
(2.1)

where x1(t) represents the population density of immature species at time t. x2(t) represents the
population density of mature species at time t. α represents the inherent growth rate of the immature.
β denotes the transition rate which from the immature species grow into mature species. r1 represents
the death rate of immature species. r2 represents the death rate of mature species. −ηx2

1(t) reflects
restriction on the growth of immature species density.

The economic profit is often affected by tax, season, market demand, capture costs and other factors.
By the bio-economic theory, the sustainable economic profit should be the sustainable total revenue
minus the sustainable total cost. If the population captured in the model (2.1) and the economic benefits
of the young population captured are considered, and the economic profit m(t) changes with time, then
the singular bio-economic system model can be established as follows:

ẋ1(t) = αx2(t) − r1x1(t) − βx1(t) − ηx2
1(t),

ẋ2(t) = βx1(t) − r2x2(t),
0 = E1(p(t)x1(t) − c) − m(t),

(2.2)

where E1 represtents harvested effort of the immature species, c denotes the cost coefficient so cE1

represents the total cost, p(t) and m(t) represent the price coefficient and the economic benefits of each
individual at time t, respectively.

We notice that there are many random factors in nature and many other random factors caused by
human activities, affecting or interfering the changes of immature population density and mature
population density in the real environment. It is assumed that the parameters involved in the
deterministic model (2.2) are deterministic and have nothing to do with environmental fluctuations.
By considering these factors, we can replace the parameters r1 and r2 to introduce randomness into
the model. Firstly, it is supposed that the white noise can affects the mortality rate of biological
species by r1 → r1 − α1ξ(t) and r2 → r2 − α2ξ(t). Secondly, it is assumed that the population density
will also be directly affected through the external random parameter ω(t) .

Therefore, the stochastic differential-algebraic equations is established as follows:
ẋ1(t) = αx2(t) − r1x1(t) − βx1(t) − ηx2

1(t) − E1x1(t) + α1x1(t)ξ(t) + x1(t)w(t),
ẋ2(t) = βx1(t) − r2x2(t) + α2x2(t)ξ(t),

0 = E1(p(t)x1(t) − c) − m(t),
(2.3)

where α1, α2 are used to represent two different intensities of the white noises. It is assumed that ξ(t)
and ω(t) are independent of each other, the mean value is zero and the standard deviation is Gaussian
white noises, that is E[ω(t)] = 0, E[ω(t)ω(t + τ)] = δ(τ), δ(τ) is the Dirac function. In the context of
biological systems, all the coefficients in Eq (2.3) are non-negative.
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3. T-S fuzzy linearization and preliminaries

There is a positive equilibrium point and a non-positive equilibrium point in system (2.3). In other
words, there are two equilibrium points in total, and only the positive balance point is considered in the
context of biological. Therefore, this paper only considers the positive equilibrium point under some
certain conditions.

For express more clearly, it is supposed that the equilibrium point is p∗ = (x∗1 x∗2 m∗). In order to
facilitate further study, the following transformations can be used:

ς1(t) = x1(t) − x∗1,

ς2(t) = x2(t) − x∗2,

ς3(t) = m(t) − m∗.

(3.1)

The system (2.3) can be converted to:
ς̇1(t) = α(ς2(t) + x∗2) − r1(ς1(t) + x∗1) − β(ς1(t) + x∗1) − η(ς1(t) + x∗1)2,

− E1(ς1(t) + x∗1) + α1(ς1(t) + x∗1)ξ(t) + (ς1(t) + x∗1)w(t)
ς̇2(t) = β(ς1(t) + x∗1) − r2(ς2(t) + x∗2) + α2(ς2(t) + x∗2)ξ(t),

0 = E1
(
p(t)(ς1(t) + x∗1) − c

)
− (ς3(t) + m∗).

(3.2)

The Eq (3.2) is obviously a nonlinear system. Since species density saturation exists, it can be
assumed that ςi(t)(i = 1, 2, 3) are bounded. Make the following changes to the system (3.2) to make
expression more concise:

Eς̇(t) =


Ω11 α 0
β −r2 + α2ξ(t) 0

E1 p(t) 0 −1

 ς (t)

+


αx∗2 − r1x∗1 − βx∗1 − ηx∗1

2 − E1x∗1 + x∗1α1ξ(t) + x∗1ω(t) + ς1(t)w(t)
βx∗1 − r2x∗2 + x∗2α2ξ(t)
E1 p(t)x∗1 − E1c − m∗

 ,
(3.3)

where

Ω11 = −r1 − β − ης1(t) − 2ηx∗1 − E1 + α1ξ(t)

ς (t) =


ς1(t)
ς2(t)
ς3(t)

 , E =


1 0 0
0 1 0
0 0 0

 .
Let

z(t) = −r1 − β − ης1(t) − 2ηx∗1 − E1 + α1ξ(t),

so

max z(t) = −r1 − β − ης
min
1 (t) − 2ηx∗1 − E1 + α1ξ(t),

min z(t) = −r1 − β − ης
max
1 (t) − 2ηx∗1 − E1 + α1ξ(t).
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z(t) is expressed as follows by the max-min values

z(t) = M11(z(t)) max z(t) + M12(z(t)) min z(t)

where M11 + M12 = 1 and M11, M12 denote the membership functions. Given the fuzzy rules as follows:
Model rule 1:
If z(t) is M11(z1(t)), then E

.
ς(t) = A1ς(t) + B1ς(t)w(t)

Model rule 2:
If z(t) is M12(z1(t)), then E

.
ς(t) = A2ς(t) + B2ς(t)w(t)

The system (3.3) can be changed into Eq (3.4) by using the fuzzy rules:

Edς(t) = Ahς(t)dt + Bς(t)dw(t) (3.4)

where Ah =
2∑

i=1
hi (z (t))Ai hi (z (t)) ≥ 0

2∑
i=1

hi (z (t)) = 1 B = B1 = B2 .

Definition 3.1. (i) If there is a constant λ such that det(λE − Ah) , 0, then the system (3.4) is regular.
(ii) If rank(E) = deg(det(λE − Ah)), then the system (3.4) is impulse-free.

Definition 3.2. Given a positive definite matrix R, for any two positive numbers l1, l2 then satisfy
l1 ≤ l2, the system (3.4) for (l1, l2,T,R) is stochastic finite-time admissible if

ε
{
ςT (0) ET REς (0)

}
≤ l1

⇒ ε
{
ςT (t) ET REς (t)

}
≤ l2,∀t ∈ [0,T ]

Definition 3.3. [27] Given a stochastic Lyapunov function V (x (t) , t), where x (t) satisfies the
following equation which is a stochastic differential equation in a stochastic system:

dx (t) = f (t) dt + g (t) dw (t) (3.5)

The definition of the weak infinitesimal operator L in the random process is given as {x (t) , t > 0}:

LV (x (t) , t) = V(x (t) , t)t + V(x (t) , t)x f (t)
+1

2 tr
[
gT (t) Vxx (x (t) , t) g (t)

] (3.6)

Lemma 3.4. ( [28] Gronwalls inequality) Given a non-negative function g (t), for any two constants
m, n and they satisfy m, n ≥ 0

g (t) ≤ m + n
∫ t

0
g (s)ds, 0 ≤ t ≤ T (3.7)

then

g (t) ≤ m exp (nt) (3.8)

Lemma 3.5. (Schur’s complement) Exist any real matrix A, B,C, among them BT = B and CT = C > 0,
the following three conditions are equivalent:

(i) B + AC−1AT < 0
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(ii)
(

B A
AT −C

)
< 0

(iii)
(

B −A
−AT −C

)
< 0

Lemma 3.6. [29](i) For two orthogonal matrices U and V, if rank (E) = r,then E can be decomposed
as follows

E = U
[ ∑

r 0
∗ 0

]
VT = U

[
Ir 0
∗ 0

]
vT (3.9)

where
∑

r = diag {δ1, δ2, · · · , δr} , δk > 0, k = 1, 2, · · · , r
Partition U =

[
U1 U2

]
,V =

[
V1 V2

]
, v =

[
V1

∑
r V2

]
with

∑
V2 = 0,UT

2 E = 0.
(ii)If P satisfies

EPT = PET (3.10)

Then

P̃ = UT Pv =

[
p11 p12

0 p22

]
. (3.11)

We can have P11 ≥ 0, det (P22) , 0 if P is nonsingular. Furthermore, P that satisfied Eq (3.10) can be
set as follows

P = Ev−T Yv−1 + UZVT
2 (3.12)

where Y = diag {P11,Φ} ,Z =
[

PT
11 PT

22

]T
, among this Φ ∈ R(n−r)×(n−r) is an arbitrary parameter

matrix.
(iii) The following equation holds if P is a nonsingular matrix, C and Φ are two positive definite
matrices, Y is a diagonal matrix in Eq (3.12), P and E satisfy Eq (3.13)

P−1E = ETC
1
2 S C

1
2 E (3.13)

Then the solution of Eq (3.13) can be expressed by S = C−
1
2 UY−1UTC−

1
2 , where S is a positive definite

matrix.

4. Main results

4.1. Finite-time stability of the singular stochastic bioeconomic system

In this section, we discuss whether the model (3.4) can be stable in a finite-time.

Theorem 4.1. If there is a non-singular symmetric positive definite matrix Q makes any given time
constant T > 0 and scalar α > 0 satisfy

PET = EPT ≥ 0 (4.1)
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P−1E = ET R
1
2 QR

1
2 E (4.2)

λmax (Q) l1eαT − l2λmin (Q) < 0 (4.3)

and satisfy the following matrix inequalities: A1PT + PAT
1 − αEPT

(
EBPT

)T

EBPT −Q̃

 < 0 (4.4)

 A2PT + PAT
2 − αEPT

(
EBPT

)T

EBPT −Q̃

 < 0 (4.5)

where Q̃ = R−
1
2 Q−1R−

1
2 . Then the system (3.4) is tolerable in a stochastic finite-time for (l1, l2,T,R).

Proof. Introduce the following Lyapunov function

V (ς (t) , t) = ςT (t) P−1Eς (t) (4.6)

Let L be the infinitesimal generator. We can get the following inequality:

LV (ς (t) , t) < αV (ς (t) , t) (4.7)

In the following, we can prove that the three conditions Eqs (4.7), (4.4) and (4.5) are equivalent.
Applying Itô formula, we can get

LV (ς (t) , t) = ςT (t)
(
AT

h P−T + P−1Ah + BT P−1EB
)
ς (t) (4.8)

then

LV (ς (t) , t) − αV (ς (t) , t)
= ςT (t)

(
AT

h P−T + P−1Ah + BT P−1EB − αP−1E
)
ς (t)

(4.9)

Combining condition Eq (4.2) with Q̃ = R−
1
2 Q−1R−

1
2 , Eq (4.9) can be transformed as

LV (ς (t) , t) − αV (ς (t) , t)
= ςT (t)

(
AT

h P−T + P−1Ah + BT ET Q̃−1EB − αP−1E
)
ς (t)

(4.10)

Therefore, from Eq (4.10), Eq (4.7) is equivalent to

AT
h P−T + P−1Ah + BT ET Q̃−1EB − αP−1E < 0 (4.11)

The left is multiplied by P and on the right multiplied by PT , we get

PAT
h + AhPT + PCT ET Q̃−1EBPT − αEPT < 0 (4.12)
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It can be obtained that Eq (4.12) is equivalent to Eqs (4.4) and (4.5) by using matrix factorization and
Schur’s complement lemma. Integrating the left and right sides of Eq (4.7) from 0 to t at the same time
and then taking the expected value, we can get

ε {V (ς (t) , t)} < V (ς (0) , 0) + α

∫ t

0
ε {V (ς (s) , s)} ds (4.13)

From Lemma 3.4, we have

ε {V (ς (t) , t)} < V (ς (0) , 0) eαt (4.14)

from inequalities

ε {V (ς (t) , t)} = ε
{
ςT (t) ET R

1
2 QR

1
2 Eς (t)

}
≥ λmin (Q) ε

{
ςT (t) ET REς (t)

} (4.15)

and

V (ς (0) , 0) eαt = ςT (0) ET R
1
2 QR

1
2 Eς (0) eαt

≤ λmax (Q) ςT (0) ET REς (0) eαt

≤ λmax (Q) l1e
(4.16)

then, we get

ε
{
ςT (t) ET REς (t)

}
<
λmax (Q)
λmin (Q)

l1eαT (4.17)

Considering condition Eq (4.3) and inequality (4.17), for the t ∈ [0,T ], have

ε
{
ςT (t) ET REς (t)

}
< l2 (4.18)

4.2. Finite-time control of singular stochastic bioeconomic system

In practice, the bio-economic system is more or less disturbed by the external environment. For
example, the growth of a population can be affected by environmental factors such as the intensity of
sunlight and the temperature. This section considers this random environment that affects populations
as a zero-mean Gauss white noise. In order to achieve effective planning of capture strategies and
maintain the sustainable development of market economy, some measures must be taken to stabilize
the biological population. Therefore, control is added to the singular stochastic bioeconomic system
model (2.3):

ẋ1(t) = αx2(t) − r1x1(t) − βx1(t) − ηx2
1(t) − E1x1(t) + α1x1(t)ξ(t) + u(t) + x1(t)w(t),

ẋ2(t) = βx1(t) − r2x2(t) + α2x2(t)ξ(t),
0 = E1 (p(t)x1(t) − c) − m(t),

(4.19)
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where u(t) represents the management degree of open resources and it is a control variable.
Through the method which is similar to the T-S fuzzy method mentioned in Section 3, we get

Edς (t) =

2∑
i=1

hi (z (t)) ((Aiς (t) + Cu (t)) dt + Bς (t) dw (t)) (4.20)

Consider the following state feedback controller:

u (t) =

2∑
i=1

hi (z (t)) Giς (t) (4.21)

By designing the state feedback gain Gi.
Thus, the corresponding closed-loop system can be expressed as

Edς (t) =

2∑
i=1

hi (z (t))
2∑

j=1

h j (z (t))
[(

Ai + CG j

)
ς (t) dt + Bς (t) dw (t)

]
(4.22)

where C = [1 0 0]T

Next, design parameters of the fuzzy state feedback controller Eq (4.21), a new sufficient condition
for the closed-loop singular stochastic bio-economic system to be stable in a finite-time is given.

Theorem 4.2. The closed-loop system (4.22) is stochastic finite-time admissible for a state feedback
controller Eq (4.21) relative to (l1, l2,T,R), if P is a nonsingular matrix, Q is a symmetric positive
definite matrix and any matrix Y j, j = 1, 2 which can make Eqs (4.1)–(4.3) hold, and the following
matrix inequalities can be satisfied: γii

(
EBPT

)T

EBPT −Q̃

 < 0, i = j, i, j = 1, 2 (4.23)

 γi j + γ ji

(
EBPT

)T

EBPT −Q̃

 < 0, i < j, i, j = 1, 2 (4.24)

where γi j = PAT
i + YT

j CT + AiPT + CY j − αEPT and Q̃ = R−
1
2 Q−1R−

1
2 , Next, we can choose the state

feedback G j = Y jP−T which we need.

Proof. First, regularity and impulse-free of the system can be proved. Without loss of generality,
denoting

E =

[
Ir 0
0 0

]
where rank (E) = rank (Ir) = r ≤ n.
Suppose that there are two non-singular matrices H and K, then

HEK =

[
Ir 0
0 0

]
H

(
Ai + CG j

)
K =

[
Ai11 Ai12

Ai21 Ai22

]
HBK =

[
B1 B2

0 0

]
H−T PK−1 =

[
P11 P12

P21 P22

] (4.25)

Mathematical Biosciences and Engineering Volume 18, Issue 3, 2991–3005.



3000

Now, if
(
E, Ai + CG j

)
is impulse-free, we can prove the impulselessness of the system (4.22). The

system (4.22) is impulse-free if

rank
[

E Ai + CG j

0 E

]
= n + rank (E) (4.26)

It can be computed from Eq (4.25) that

rank
[

E Ai + CG j

0 E

]
= rank


Ir 0 Ai11 Ai12

0 0 Ai21 Ai22

0 0 Ir 0
0 0 0 0

 = 2r + rank (Ai22) (4.27)

This shows Eq (4.26) is equivalent to n = r+rank (Ai22), then
(
E, Ai + CG j

)
is regular and impulse-free

if Ai22 is non-singular simultaneously.
Considering Theorem 4.1 and the system (4.22), the following matrix inequality can be obtained:

2∑
i=1

2∑
j=1

hi (z (t))h j (z (t)) ∆i j < 0 (4.28)

where

∆i j = P
(
Ai + CG j

)T
+

(
Ai + CG j

)
PT + PCT ET Q̃−1EBPT − αEPT

Let

Y j = G jPT

Then
2∑

i=1

2∑
j=1

hi (z (t))h j (z (t))
(
PAT

i + YT
j C + AiPT + CY j

+PCT ET Q̃−1ECPT − αEPT
)
< 0

(4.29)

Obviously, Eq (4.29) is equivalent to
2∑

i=1
h2

i (z (t))
(
γii + PCT ET Q̃−1ECPT

)
+

2∑
i=1

2∑
j=1

hi (z (t))h j (z (t))
[(
γi j + γ ji + PCT ET Q̃−1ECPT

)]
< 0

(4.30)

Using matrix decomposition and Lemma 3.5, the above inequality (4.30) is equivalent to
inequalities (4.23) and (4.24). Next, by using Eqs (4.2)–(4.3) and similar proof of Theorem 4.1, the
system (4.22) is stochastic finite-time admissible for (l1, l2,T,R).

Remark 1. By designing a fuzzy state feedback controller, the government’s management of open
resource development can be better expressded. The density of biological population can be
controlled within a limited range and some unfavorable phenomena can be eliminated. In real life,
managers should take some effective measures, such as adjusting taxes, introducing some preferential
policies to stimulate the development of fisheries, reducing environmental pollution and so on. Thus,
the population density can be strictly controlled and the economic benefits can be maintained steadily.
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5. Numerical examples

We use the following special circumstances to prove that the results obtained are true and effective.
Selection of ecological parameters based on Nile tilapia data from Lake Tanganyika in Africa.

Consider the finite-time stability of bio-economic model with white noise, we choose the ecological
parameters of the appropriate unit:

α=0.4, r1 = 0.5, β = 0.5, η = 0.1
α1 = 0.1, r2 = 0.1, α2 = 0.1, p (t) = 1
E1 = 0.8, c = 3, ξ (t) = 1,w (t) = 0.1

Then, the singular bioeconomic system can be obtained:
ẋ1(t) = 0.4x2(t) − 0.5x1(t) − 0.5x1(t) − 0.1x2

1(t) − 0.8x1(t) + 0.1x1(t)ξ(t) + u(t) + x1(t)w(t),
ẋ2(t) = 0.5x1(t) − 0.1x2(t) + 0.1x2(t)ξ(t),

0 = 0.8 (p(t)x1(t) − 3) − m(t),
(5.1)

where

x1(t) ∈ [0, 5], x2(t) ∈ [0, 10],m(t) ∈ [0, 5]

We can get the system (5.1) has an equilibrium point p∗ (5, 15, 1.225) when u (t) = 0.
For achieveing the transition from the equilibrium point to origin, a following fuzzy models can be

constructed by using linear transformation (3.1):

E
.

ζ (t) =


Ω11 0.4 0
0.5 −0.1 + 0.1ξ (t) 0

0.8p (t) 0 −1

 ζ (t)

+


−5.5 + 0.5ξ (t) + 5w (t) + ζ1 (t) w (t) + u (t)

1 − 1.5ξ (t)
4p (t) − 3.625

 ,
(5.2)

where

ζ1(t) ∈ [−5, 0], ζ2(t) ∈ [−15,−5], ζ3(t) ∈ [−1.225, 3.775]

Ω11 = −2.8 − 0.1ζ1(t) + 0.1ξ(t)

we have

max z(t) = −3.3 + 0.1ξ(t)
min z(t) = −2.8 + 0.1ξ(t)

By using the fuzzy rules mentioned above, we can execute the fuzzy model as:

Edς (t) =

2∑
i=1

hi (z (t))
2∑

j=1

h j (z (t))
[(

Ai + CG j

)
ς (t) dt + Bς (t) dw (t)

]
(5.3)
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where

E =


1 0 0
0 1 0
0 0 0

 , A1 =


−3.2 0.4 0
0.5 0 0
0.8 0 −1


A2 =


−2.7 0.4 0
0.5 0 0
0.8 0 −1

 , B =


−4.5
−0.5
0.375


C =

[
1 0 0

]T

Let

α = 0.001, l1 = 10000, l2 = 10000000,T = 1000,R = I

Then we get

G1 =
[
−8.6579 47.2591 −0.0345

]
G2 =

[
−8.6221 47.2785 −0.0364

]
Therefore, we can get that ε

{
ζT (t) ET REζ(t)

}
< 10000000, for all t ∈ [0, 1000].

Figure 1. Trajectory of the open-loop stochastic singular system.

From Figure 1, we can see the trajectory of a stochastic singular bio-economic system which is
open-loop and considers the white noise. It can be seen that the species density and average price are
unstable within a limited time. The economic interests fluctuates randomly in Figure 1, on account
of the economic interests is affected by the population unit price and the species density of biological
economic model which proposed in this paper in a randomly disturbed environment.
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Figure 2. Trajectory of the closed-loop stochastic singular system.

From Figure 2, through the state feedback controller Eq (4.21), we can see the trajectory of a
stochastic singular bio-economic system which is closed-loop and considers the white noise. It can be
seen from Figure 2 that economic profits tend to be stabilize within a limited time.

6. Conclusions

In this paper, the finite time stability and control of a kind of singular bio-economic system with
stochastic fluctuations which based on T-S fuzzy model are studied. Through two theorems, we derived
some new sufficient conditions to guarantee the stability of system in finite time. The corresponding
controller design method is also given. Finally, the effectiveness of the method is verifies through a
numerical simulation. The results are also applicable to other types of systems which is similar to the
system of this paper.

From a biological point of view, the biological species density can be controlled within a certain
range through the fuzzy state feedback controller which designed in this paper, eliminating influence
of some unfavorable factors, It can better control the density of the population and keep the economic
profit stable.
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