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Abstract: In this paper, deterministic and stochastic models are proposed to study the transmission
dynamics of the Coronavirus Disease 2019 (COVID-19) in Wuhan, China. The deterministic model
is formulated by a system of ordinary differential equations (ODEs) that is built upon the classical
SEIR framework. The stochastic model is formulated by a continuous-time Markov chain (CTMC)
that is derived based on the ODE model with constant parameters. The nonlinear CTMC model is
approximated by a multitype branching process to obtain an analytical estimate for the probability of a
disease outbreak. The local and global dynamics of the disease are analyzed by using the deterministic
model with constant parameters, and the result indicates that the basic reproduction number R0 serves
as a sharp disease threshold: the disease dies out if R0 ≤ 1 and persists if R0 > 1. In contrast to the
deterministic dynamics, the stochastic dynamics indicate that the disease may not persist when R0 > 1.
Parameter estimation and validation are performed to fit our ODE model to the public reported data.
Our result indicates that both the exposed and infected classes play an important role in shaping the
epidemic dynamics of COVID-19 in Wuhan, China. In addition, numerical simulations indicate that a
second wave of the ongoing pandemic is likely to occur if the prevention and control strategies are not
implemented properly.

Keywords: COVID-19; SEIR model; ODE model; CTMC model; disease extinction, disease
outbreak; second wave

1. Introduction

On December 31, 2019, a highly contagious pneumonia case with unknown origin was reported
in Wuhan City, Hubei Province of China. Wuhan has been the focus of worldwide attention due to
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the outbreak of Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). The number of infections and deaths has been growing rapidly since
then. COVID-19 has become a pandemic [1] and disease is creating unprecedented public health
challenges worldwide. As of August 30, 2020, the disease has caused over 12.5 million confirmed
cases and 843 thousand deaths in at least 188 countries and territories.

COVID-19 is a new disease. The origin and etiology of the infection is still uncertain. There
were likely substantial proportions of undetected cases in early periods [2–4]. Moreover, the disease
incubation period ranges from 2 to 14 days [5]. During this period of time, infected individuals may
not show any symptoms; thus, they may not have awareness of the infection, but they are capable
of transmitting the disease to other people. Therefore, we are facing unprecedented challenges in
the prevention and control of the disease. To that end, a large number of mathematical models have
being proposed to improve our understanding in mitigating the pandemic (see, e.g., [1, 3, 6–20] and
the references therein). Some of these works are summarized below. Chen et al. [13] cataloged the
symptoms and physical characteristics of the first 425 laboratory-confirmed cases in Wuhan. Their
study shows that the basic reproduction number R0 is 2.2 and the incubation period of these early
cases to be 7.5 ± 3.4 days. Wu et al. [4] presented a susceptible-exposed-infectious-recovered (SEIR)
model in which the reported value of R0 is 2.68 and they estimated that the COVID-19 epidemic
was doubling every 6.4 days. Their study helped to forecast the potential domestic and international
spread of COVID-19. Ndairou et al. [18] used a compartmental epidemic model to study the spread
of the COVID-19 with an inclusion of super spreaders. In their case study of Wuhan, the reported
value of the basic reproduction number is 0.945, indicating that the containment within Wuhan was
well-controlled by the Chinese authorities. A modeling study in [4] inferred the basic reproduction
number, outbreak size in Wuhan, exported cases from Wuhan, forecasting the spread in China. In [21],
a modified SEIR model and an AI trained model on SARS 2003 data were proposed to predict the
epidemic curve and promise for future prediction of epidemics. Lin et al. [22] used a variation of
the SEIR model to study the outbreak of COVID-19 in Wuhan by incorporating individual behavioral
change and governmental actions towards the spread of the disease. Hao et al. [23] employed a more
detailed epidemic model to help understand the vigorous non-pharmaceutical intervention that has
helped in keeping infection spread at the lowest in Wuhan. However, most of these mathematical
models of COVID-19 dynamics are deterministic. To capture the discrete nature of human population
and heterogeneity among individual hosts, a stochastic modeling approach may be more appropriate,
particularly during the initiation of the infection. That motivates our work.

The goal of this article is to develop deterministic and stochastic models to study the evolution of
the disease in both short and long terms. Our focus is mathematical modeling and analysis of disease
epidemic, which aims to address the important questions such as how long will it take to disease
extinction and how likely the second wave of the pandemic would occur if the reopening of Wuhan is
not well contained?

The remainder of this paper is organized as follows. Section 2 presents the deterministic ordinary
differential equation (ODE) model and performs a detailed analysis on the local and global dynamics
of the ODE model with constant parameters. Section 3 is dedicated to the formulation of the stochastic
model and a theoretical estimate of the probability of disease extinction. In Section 4, parameter
estimation is carried out to fit the publicly reported data and numerical simulations of deterministic and
stochastic models are performed. Finally we conclude the paper with some discussion in Section 5.
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2. Deterministic model

To study the transmission dynamics of the COVID-19 epidemic, we employ the classical SEIR
epidemic modeling framework where the total human population is composed of four compartments:
the susceptible, the exposed, the infected and the recovered. Let S , E, I, R denote the number of human
individuals in each of the classes; thus, our deterministic model takes the form:

dS
dt

= b − β(t)I
S
N
− dS ,

dE
dt

= β(t)I
S
N
− (d + α)E,

dI
dt

= αE − (d + τ + γI)I,

dR
dt

= τI − dR.

(2.1)

Here N = N(t) is the total population size at time t. The parameter b and d are the natural birth and
death rates, respectively. Let N0 = b/d denote the initial population size. The function β(t) is the
transmission rate. This function is time dependent and assumed to be piecewise constant, which is to
capture the dramatic change in the prevention and control policy in Wuhan, such as city lockdown,
hospitalization and quarantine. Parameter α−1 denotes the latent period, τ−1 is the (mean) infectious
period and γI is the disease-induced mortality rate. For simplicity of analysis, in the rest of this section,
we assume that β(t) = β is constant.

2.1. Basic reproduction number R0

The basic reproduction number R0 in epidemic models is an important threshold parameter to un-
derstand the extinction and persistence of a disease. It is defined as the expected number of secondary
infectious cases produced by a primary infected individual in an otherwise susceptible population.
Using the next generation matrix method [24], we compute R0 and it is given by

R0 =
αβ

(d + α)(d + τ + γI)
.

2.2. Equilibrium analysis

It is easy to verify that the deterministic model (2.1) admits at most two biologically feasible equi-
librium solutions which depends on the value of R0.

The disease-free equilibrium (DFE) E0 = (N0, 0, 0, 0) always exists and E0 is the only feasible
equilibrium when R0 ≤ 1. An endemic equilibrium (EE)

E1 = (S ∗, E∗, I∗,R∗) =

(
N0 −

1
R0

β

d
I∗,

d + τ + γI

α
I∗, I∗,

τ

d
I∗
)

(2.2)

for which I∗ = b
β−γI

(R0 − 1) exists when R0 > 1. Note that R0 > 1 implies β > γI .
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2.2.1. Local stability

The local stability of the DFE is an immediate consequence of [24, Theorem 2]. More specifically,
the DFE is locally asymptotically stable for R0 < 1 and unstable for R0 > 1. The following theorem
establishes the local stability of the EE of model (2.1).

Theorem 2.1. The EE, E1, of the system (2.1) is locally asymptotically stable for R0 > 1.

Proof. Let S ∗, E∗, I∗,R∗ be as defined above as in (2.2). Note that the Jacobian matrix of the linearized
system of (2.1) at the EE E1 is

J =


−
βI∗

N∗ +
βI∗S ∗

(N∗)2 − d βI∗S ∗

(N∗)2 −
βS ∗

N∗ +
βI∗S ∗

(N∗)2
βI∗S ∗

(N∗)2

βI∗

N∗ −
βI∗S ∗

(N∗)2 −
βI∗S ∗

(N∗)2 − (d + α) βS ∗

N∗ −
βI∗S ∗

(N∗)2 −
βI∗S ∗

(N∗)2

0 α −(d + τ + γI) 0
0 0 τ −d

 .
Hence the corresponding characteristic equation is

(λ + d)(λ3 + a1λ
2 + a2λ + a3) = 0,

where

a1 = α + d + d + γI + τ +
b

S ∗
,

a2 =
b

S ∗
(α + d + d + γI + τ),

a3 =
αβb
R0N∗

(R0 − 1).

By the Routh-Hurwitz criterion, the EE is locally stable when a1 > 0, a3 > 0 and a1a2 > a3. Clearly
a1 > 0, since α, d, τ, b, γI , and S ∗ > 0. Similarly, a3 > 0, for α, β, b,N∗ > 0 and R0 > 1. Now it
remains to show that a1a2 − a3 > 0. Let u = α + d and v = d + τ + γI . Thus,

a1a2 − a3 =

(
u + v +

b
S ∗

)( b
S ∗

(u + v)
)
− uv

b
S ∗

(
1 −

1
R0

)
=

b
S ∗

(u + v)2 +

( b
S ∗

)2

(u + v) − uv
b

S ∗

(
1 −

1
R0

)
=

b
S ∗

(u2 + v2) +

( b
S ∗

)2

(u + v) +
b

S ∗
uv

(
1 +

1
R0

)
.

This shows that a1a2 − a3 > 0.
Thus, the local stability result of the EE follows when R0 > 1. �

2.2.2. Global stability

It is clear that the biologically feasible region

Ω = {(S , E, I,R) ∈ R4
+ : S + E + I + R ≤ N0}

is the positive invariant for model (2.1). The global stability of the DFE and the EE is established in
the following two theorems.
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Theorem 2.2. If R0 ≤ 1, then the DFE E0 is globally asymptotically stable in Ω.

Proof. One can verify that [dE
dt
dI
dt

]
≤ (F − V)

[
E
I

]
where

F =

[
0 β

0 0

]
,V =

[
d + α 0
−α d + γI + τ

]
.

Define x =
[
E I

]T
, and u = (0, β). Consider a Lyapunov function L = uV−1x. Taking the derivative

of L along the solution of model (2.1) in Ω leads to

L̇ :=
dL
dt

= uV−1 dx
dt
≤ uV−1(F − V)x ≤ u(V−1F − I)x.

Note that u is the left eigenvector of the matrix V−1F corresponding to the spectral radius of V−1F.
Since R0 = ρ(FV−1) = ρ(V−1F), uV−1F = R0u. Thus,

L̇ ≤ u(R0 − 1)x

If R0 < 1, L̇ ≤ 0 and L̇ = 0 implies that ux = 0. This shows that I = 0. Using the second, fourth
and the first equations of model (2.1), we have E = 0, R = 0 and S = N0. This shows that the largest
invariant set on which L̇ = 0 is the singleton E0.

If R0 = 1, L̇ = 0 and the fact uV−1 > 0 yield S = N. By the definition of N = S + E + I + R
and E, I,R ≥ 0, E = I = R = 0. In view of the first equation of model (2.1), S = N0 = b/d.
Hence, the largest invariant set on which L̇ = 0 is the singleton E0. Therefore, by LaSalle’s invariance
principle [25], the DFE is globally asymptotically stable in Ω when R0 ≤ 1. �

Theorem 2.3. If R0 > 1 and γI = 0, then the unique endemic equilibrium E1 is globally asymptotically
stable in the interior of Ω.

Proof. By γI = 0, dN/dt = b − dN. Since N(0) = N0 = b/d, N(t) ≡ N0 for all t ≥ 0. Recall that
E1 = (S ∗, E∗, I∗,R∗). Consider a Lyapunov function V as follows:

V =

(
S − S ∗ − S ∗ ln

S
S ∗

)
+

(
E − E∗ − E∗ ln

E
E∗

)
+ c

(
I − I∗ − I∗ ln

I
I∗

)
(2.3)

where c =
βS ∗I∗

αE∗N . It is clear that V ≥ 0 and V = 0 if and only if U = U∗ for U = S , E, I. Taking the
derivative of (2.3) along the solutions of model (2.1), we have the following,

V̇ :=
dV
dt

= Ṡ
(
1 −

S ∗

S

)
+ Ė

(
1 −

E∗

E

)
+ cİ

(
1 −

I∗

I

)
Using the equilibrium equations of model (2.1) yields

V̇ =

(
b − β

S
N

I − dS
) (

1 −
S ∗

S

)
+

(
β

S
N

I − (d + α)E
) (

1 −
E∗

E

)
+ c(αE − (d + τ + γI)I)

(
1 −

I∗

I

)
=dS ∗

(
2 −

S
S ∗
−

S ∗

S

)
+ β

S ∗

N∗
I∗

(
3 −

S ∗

S
−

I∗

I
E
E∗
−

S
S ∗

I
I∗

E
E∗

)
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By the arithmetic-geometric mean inequality,

S
S ∗

+
S ∗

S
≥ 2,

S
S ∗

+
I∗E
IE∗

+
S
S ∗

I
I∗

E
E∗
≥ 3

and the quantities hold if and only if S = S ∗, E = mE∗ and I = mI∗ for some m > 0. Substituting
I = mI∗ into the fourth equation of model (2.1) yields R = mR∗. Using the first equations leads to
m = 1. Hence the largest invariant set where V̇ = 0 is the singleton E1 = (S ∗, E∗, I∗,R∗). It follows
from the LaSalle’s Invariance Principle [25], the EE E1 is globally asymptotically stable in the interior
of Ω when R0 > 1.

�

Theorems 2.2 and 2.3 show that R0 serves as a sharp threshold for disease dynamics. More specifi-
cally, the disease will die out if R0 < 1 and persist if R0 > 1.

3. Stochastic process

Epidemic ODE models typically assume that the sizes of the compartments are large enough that
the mixing of members is homogeneous, or at least that there is homogeneous mixing in each subgroup
if the population is stratified by activity levels. However, at the beginning of a disease outbreak, there
is a very small number of infectious individuals and the transmission of infection is indeed a stochastic
event depending on heterogeneity among individuals in the population (e.g., variations in individual
health conditions and disease transmissibility) and patterns of contacts between them. This suggests
that the homogeneous mixing at the beginning of an epidemic may not be a good assumption and
hence the ODE models may not be appropriate when the initial infection is small. To that end, we use
a continuous time Markov chain (CTMC) model to study the variability of the disease dynamic, and
then we apply the theory of the multitype branching process (e.g., see [26–28] and references therein)
to approximate the dynamics of the CTMC model near the DFE.

3.1. Continuous time Markov chain (CTMC) model

We use the ODE model (2.1) with constant parameters as a framework to formulate a CTMC model,
which is composed of nine independent events. For simplicity, we use the same notation as in the ODE
model (2.1). Let Z(t) = (S (t), E(t), I(t),R(t)) be a discrete random vector and ∆Z(t) = Z(t + ∆t) − Z(t)
denote the change during [t, t + ∆t], for t ∈ [0,∞). The infinitesimal transition probabilities are defined
based on the ODE rates. The changes and the corresponding transition probabilities are summarized
in Table 1.

3.2. Branching process approximation (BP)

To investigate the dynamics of the CTMC model near the DFE (i.e., S ≈ N0), we employ the
multitype branching process theory by approximating the “birth and death” of the infection process
near the origin. Assume that S = N0 and R = 0 and consider only the events in Table 2. The transition
rates in this table follow directly from the rates in the linearized ODE model (2.1). This leads to a
multitype branching process for the exposed and infected human individuals, where a transition occurs
in one of the infectious random variables, E or I.
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Table 1. Transition probabilities of the CTMC model.

Event Description ∆Z(t) Transition probability
1 Birth of S (1, 0, 0, 0) b∆t + o(∆t)
2 Death of S (-1, 0, 0, 0) dS (t)∆t + o(∆t)
3 Infection of S (-1, 1, 0, 0)

(
β S (t)

N(t) I(t)
)
∆t + o(∆t)

4 Natural death of E (0, -1, 0, 0) dE(t)∆t + o(∆t)
5 Incubation loss of E (0, -1, 1, 0) αE(t)∆t + o(∆t)
6 Natural death of I (0, 0, -1, 0) dI(t)∆t + o(∆t)
7 Disease-induced death (0, 0, -1, 0) γI I(t)∆t + o(∆t)
8 Recovery of I (0, 0, -1, 1) τI(t)∆t + o(∆t)
9 Natural death of R (0, 0, 0, -1) dR(t)∆t + o(∆t)

Table 2. Transition probabilities ri∆t+o(∆t) for the branching process approximation, where
∆X(t) = X(t + ∆t) − X(t).

Event Description ∆X(t) Rate ri

1 Infection (1, 0) βI(t)
2 Natural death of E (-1, 0) dE(t)
3 Incubation loss of E (-1, 1) αE(t)
4 Loss of I (-1, 0) (d + τ + γI)I(t)

In general, let X = (X1, X2, · · · , Xn) denote a vector of discrete-state random variables where Xi is
the random variable corresponding to the infectious group i for i = 1, 2, · · · , n. Let Xi(0) = δi j where
δi j is the Kronecker delta with δi j = 1 if i = j and zero otherwise, for 1 ≤ i, j ≤ n. The offspring pgf
for the infectious individuals of type i is a function fi : [0, 1]n → [0, 1] and

fi(x1, x2, · · · , xn) =

∞∑
k1=0

∞∑
k2=0

· · ·

∞∑
kn=0

pi(k1, k2, · · · , kn)xk1
1 xk2

2 · · · x
kn
n

where pi(k1, k2, · · · , kn) denotes the probability that the individual of type i gives “birth” to k j individ-
uals of type j, for j = 1, 2, · · · , n. In our case, X = (X1, X2) = (E, I) and n = 2.

By Table 2, the offspring pgf for E is given (E(0), I(0)) = (1, 0) is

f1(x1, x2) =
d + αx2

d + α

and the offspring pgf for I given (E(0), I(0)) = (0, 1) is

f2(x1, x2) =
βx1x2 + τ + γI + d
β + τ + γI + d

.

It follows from branching process theory that the key of estimating the probability of disease extinction
is to determine the fixed point of the offspring pgf on [0, 1]. Solving fi(q1, q2) = qi for i = 1, 2 on [0, 1]
leads to

q1 =
d + αq2

d + α
,

(q2 − 1)(c1q2 + c2) = 0,
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where c1 = αβ and c2 = −(d + α)(τ + γI + d).
Thus fixed points in terms of q2 on [0, 1] are 1 and q∗2 = −c2/c1 = 1/R0. It is clear that 0 < q∗2 < 1

if and only if R0 > 1, which shows that the minimal fixed point of q2 is q∗2 = min{1/R0, 1}. Thus the
fixed point (q∗1, q

∗
2) of fi(q1, q2) = qi (i = 1, 2) in [0, 1]2\{(1, 1)} is given by

q∗1 =
d

d + α
+

α

d + α

1
R0
,

q∗2 =
1
R0
,

(3.1)

when R0 > 1.
By the theory of the multitype branching process approximation, an estimate of the probability of

disease extinction is given by

Pext =

(q∗1)e0(q∗2)i0 , if R0 > 1,
1, if R0 ≤ 1,

(3.2)

and consequently, the probability of an outbreak is

Pout = 1 − Pext =

1 −
(
(q∗1)e0(q∗2)i0

)
, if R0 > 1,

0, if R0 ≤ 1,
(3.3)

where e0, i0 corresponds to the initial population size of the exposed class and the infected class respec-
tively. This particularly shows that the outbreak probability is 1 − q∗1 (resp. 1 − q∗2) when the infection
is initiated by one exposed (resp. infected) individual.

The above results highlight the difference between the deterministic and stochastic dynamics; i.e.,
unlike the deterministic dynamics showing that the disease persists and reaches an endemic equilibrium
when R0 > 1, the stochastic model indicates there is a positive probability of disease extinction when
R0 > 1.

4. Numerical simulations

In this section, we fit our ODE model to the public reported data, conduct a sensitivity analysis for
the model parameters and predict the second wave of the pandemic in terms of the time, duration and
strength. On the other hand, numerical simulations of the CTMC model are performed. In particular,
we use the stochastic model to investigate the disease extinction and the first and second waves of the
disease epidemics in terms of the time and the likelihood.

4.1. Deterministic model

4.1.1. Parameter estimation

Using the method of iterated filtering [29], we fit our ODE model to COVID-19 data published
daily by WHO and other sources [30–34] from December 31, 2019 to June 28, 2020. It has been
estimated that the population of Wuhan was approximately 9,000,000 people [35], so that we set N(0) =

9, 000, 000 in our model. The model parameters are taken from [36–38], which is summarized in
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Table 3. Definition and value of the parameters. Here the unit of time is a day.

Parameter Description Value
α−1 latent period (days) 2
τ−1 mean infectious period (days) 5
γI disease induced mortality rate 1/17.5
d crude death rate per 1000 people 10.94

Table 3. The other initial compartment values are set as S (0) = 8, 999, 768, E(0) = 39, I(0) = 193,
and R(0) = 0.

We assume that β(t) is a piecewise constant function of time. We estimate β(t) by fitting to our data
sets in five time intervals: days 0–17, days 17–28, days 28–37, days 37–42, and days greater than 42.
These days were chosen as follows. Day 17 corresponds to January 23, 2020 which is the day that
the citywide lockdown began in Wuhan, China [39]; Day 28 corresponds to February 2, 2020 which is
the day that the centralized quarantine and treatment began [39] (and also this is the end of Period 1
in [2]); Day 37 corresponds to the first day in which clinical diagnosis of COVID-19 were included in
the dataset on February 12, 2020 [40]; Day 42 corresponds to February 17, 2020 which is the day that
the community universal symptom survey began and is the peak in daily active infected cases from
our calculations [39]. It is well-known that the dataset of confirmed cases for COVID-19 is greatly
underestimated due to various reasons such as high transmissibility, long incubation periods, low levels
of testing, particularly, in the beginning and high levels of asymptomatic infections (e.g., see [2,41–43]
and the references therein). To account for under-reported cases, we assume an ascertainment rate of
14% before January 23, 2020 and then linearly increase the ascertainment rate from 14% to 65% until
February 12, 2020 [2]. After February 12, 2020, the ascertainment rate is assumed to be 100% [44].
The cumulative infections in Wuhan estimated from our model are 3049 people by January 18, 2020
and cumulative cases are estimated at 36,091 people by January 27, 2020, which is in line with the
results from other studies [22, 43].

Jan 10 Jan 23 Feb 2 Feb 16 Mar 1 April 1 May 1 June 1 July 1
Months

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

Co
nf
irm

ed
 C
as
es

0 25 50 75 100 125 150 175
Time (Days)

Infected Class Soln
Confirmed Cases

Figure 1. Fit to the confirmed cases for Wuhan from December 31, 2019 to June 28, 2020.
Solid circles are the reported cases and the curve is the best fit to the data.
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Figure 1 presents our fitted result to the data. It shows that (1) the onset of the epidemic occurs in
January of 2020; (2) the epidemic lasts for about two months; (3) the situation of the epidemic is under
control by March of 2020 and the disease tends to be extinct after July of 2020.
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Ba
sic

 R
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du
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n 
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m
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r 2.4

1.65 1.625

1.25
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Figure 2. R0(t) over the first 60 days.

Figure 2 plots the time-dependent effective reproduction number R0(t) over the first 60 days, where

R0(t) =
αβ(t)

(d + α)(d + τ + γI)
.

This indicates that the effective reproduction number is 2.4 during [0, 17) days, and it is gradually
reduced to 1.25 by February 12, 2020 (Day 42) and and dropped to 0.625 afterward. The details of the
estimated β and R0 values are provided in Table 4.

Table 4. Estimated values of R0(t) and β(t).

Parameter 0–17 17–28 28–37 37–42 > 42
β(t) 0.617 0.424 0.418 0.321 0.161
R0(t) 2.4 1.65 1.625 1.25 0.625

4.1.2. Prediction

As shown in Figure 3, the ODE model predicts the disease extinction after June of 2020, which is
a direct consequence of the effective intervention, prevention and control strategies currently imple-
mented in Wuhan. There arises a question: Will the second wave take place if these strategies can’t be
implemented properly, for instance due to economic reopening?

To address this question, we elevate the basic reproduction number R0 by increasing β(t) after
June 28, 2020 (175 days) at which R0 = 0.625. The simulated result of our ODE model is illustrated
in Figure 3. Our fitted solution (based on the data until June 28, 2020) is displayed in black and the
curves in blue (resp. orange, green, red) shows the evolution of the infected cases over time when the
value of R0 is increased to 1.5 (resp. 2.0, 2.5, 3.0) after June 28, 2020. The prediction of our ODE
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model shows that (a) the second wave may be much stronger than the first one; (b) the higher of the R0

value, the sooner the second wave would take place with higher peak value. This result indicates the
second wave of the pandemic would happen if the infection risk goes up, for instance, due to changes
in control strategy or human behavior.
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Figure 3. Impact of R0 on the second wave of the pandemic.

Additionally, in this section, we conduct numerical simulations using stochastic models.
First, we study the probability of a disease outbreak. The outbreak is assumed to be attained when

the cumulative sum of E and I reaches 10, 000. The outbreak probability is estimated from the propor-
tion of the sample paths (out of 10, 000) of the CTMC model. Then the obtained estimate is compared
to the theoretical approximation computed by the multitype branching process theory. Figure 4 dis-
plays the probability of a disease outbreak as a function of R0 when the infection is initiated by an
individual from the infected class (I(0) = 1), where R0 is changed by varying β. In the case where the
infection is initiated by an exposed individual (E(0) = 1), the result is nearly identical to the case begun
with an infected individual. This happens because of d � α. Note that when d � α, d

α+d ≈ 0 and
a

a+d ≈ 1 and hence it follows from (3.1) that q∗1 = d
d+α

+ α
d+α

1
R0
≈ 1
R0

= q∗2, which implies 1−q∗1 ≈ 1−q∗2.
This result indicates that the outbreak probability is (approximately) 1 − 1/R0 when R0 > 1 , which
is regardless of the initial condition of the infection (beginning with E(0) = 1 or I(0) = 1), since the
human lifespan (1/d) is much longer than the disease latent period (1/α). In both cases, (1) we find a
strong agreement between the theoretical estimate (using branching process theory) and the numerical
simulation of the CTMC model (using Gillespie simulation algorithm); (2) the chance of an outbreak
increases as R0 increases; (3) the disease extinction occurs with probability one (i.e., the probability of
an outbreak is zero) when R0 < 1; (4) unlike the deterministic model that predicts the persistence of
the disease, the stochastic model indicates there is a positive chance for disease extinction.

Secondly, we study the time to the disease extinction and an outbreak by using the CTMC models
for 10,000 simulation runs in each scenario. Figure 5 displays the conditional probability distribution
of the extinction time given the extinction takes place during [0, 400] days, where the left (resp. right)
panel displays the result when the infection starts with one exposed E (resp. infected I) individual. It
shows that there is a delay in the time to extinction when the infection is initiated by an exposed indi-
vidual E(0) = 1 as compared to that by an infected individual I(0) = 1. Besides, in the case of I(0) = 1,
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Figure 4. Probability of an outbreak as a function of R0, where R0 is changed by varying
β. The solid curve is the analytical estimate obtained by the multitype branching process
approximation (i.e., 1−q∗2) and the stars are the result obtained from Monte Carlo simulation
of the CTMC model for 10,000 simulation runs. The infection is initiated by one infected
individual (i.e., I(0) = 1).

(a) E(0) = 1 (b) I(0) = 1

Figure 5. The probability distribution of the time to disease extinction given the occurrence
of the extinction during [0, 400] days when the infection is initiated by one individual in the
(a) exposed class and (b) infected class.

the probability distribution of extinction time undergoes an immediate peak in the beginning and then
declines rapidly as time increases. This indicates that disease extinction is expected to occur sooner
with higher probability if the infection starts with one infected person. A biological interpretation of
this result is that exposed individuals have to pass the incubation period to be capable of transmitting
the disease to others and hence it delays the time to extinction. Figure 6 illustrates the conditional
probability distribution of an outbreak given the occurrence of an outbreak during [0, 400] days. If we
fix a time during this investigation period, we see the that the outbreak probability (the corresponding
area in Figure 6) is higher in the case where infection is initiated by a person from the infected class,
as compared to that initiated with a person from the exposed class.
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(a) E(0) = 1 (b) I(0) = 1

Figure 6. The probability distribution of the time to an outbreak given the occurrence of
an outbreak during [0, 400] days when the infection is initiated by one individual in the (a)
exposed class and (b) infected class.

Table 5. Mean and standard derivation of time to disease extinction and time to an outbreak
for different R0 values given that the occurrence of an extinction and an outbreak during
[0, 400] days.

Initial condition β R0 Pout E[Text|ext] σ[Text|ext] E[Tout|out] σ[Tout|out]

E = 1, I = 0

0.62 2.4 0.59 4.90 4.42 49.70 6.73
0.51 2.0 0.50 5.72 5.60 64.39 8.68
0.45 1.75 0.43 6.58 6.79 81.04 11.08
0.39 1.5 0.34 8.03 9.11 113.57 16.11
0.32 1.25 0.21 10.67 14.65 203.75 30.61

E = 0, I = 1

0.62 2.4 0.59 2.96 4.04 47.38 6.18
0.51 2.0 0.51 3.74 5.29 62.31 8.49
0.45 1.75 0.43 4.62 6.57 79.28 11.04
0.39 1.5 0.34 6.04 9.03 111.36 15.81
0.32 1.25 0.20 9.05 15.08 201.85 30.23

Additionally, we investigate the time to the second wave of the pandemic. The current R0 is below
one (from our investigation on the ODE model). Hence, to account for the change in restrictions and
intervention and human behavior after reopening, we consider four different scenarios by assuming
that R0 is elevated to 2.0, 1.75, 1.5 and 1.25. Figure 7 shows the conditional probability distribution of
time to the second outbreak under these four scenarios when the infection starts with one I. Our result
indicates that the second wave is likely to happen sooner with the higher value R0 after reopening. The
mean and standard derivation for the time to extinction and the time to the second outbreak that are
associated with the two initial conditions (i.e., either E(0) = 1, I(0) = 0 or E(0) = 0, I(0) = 1) are
summarized in Table 5 for the selected R0 values. For instance, in the case where R0 is elevated to 1.5
after reopening, there would be about a 34% chance of a second outbreak and the standard deviation of
the time to extinction is about 9 days. If we compare the infection initiated by an exposed individual
to that initiated by an infected individual, as shown in Table 5, the average extinction time is reduced
from 8.03 to 6.04 days, the average time to outbreak decreases from 113.57 to 111.36 days and the
corresponding standard deviation is dropped slightly from 16.11 to 15.81 days. In these two scenarios,
we see the difference in terms of time to extinction or outbreak is small. As R0 increases, both disease
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(a) (b)

(c) (d)

Figure 7. The probability distribution of the time to an outbreak given the occurrence of an
outbreak during [0, 400] days when the infection is initiated by one individual in the infected
class for (a) R0 = 2, (b) R0 = 1.75, (c) R0 = 1.5, and (d) R0 = 1.25.

extinction and outbreak are likely to occur sooner. More specifically, if R0 is increased from 1.25
to 2.4, the average time to the second outbreak (resp. extinction) is decreased from 201.85 to 47.38
days (resp. from 9.05 to 2.96 days) in the case of the infection starting with an infected individual.
Nevertheless, our results from deterministic and stochastic models indicate that there is a possibility of
the second wave if the reopening is not handled properly.

5. Discussion

In this paper, we propose a deterministic and stochastic modeling framework to study the ongoing
epidemic dynamics of the COVID-19 in the city of Wuhan, China. The deterministic model is for-
mulated by a system of ODEs model that is built upon the classical SEIR framework. The stochastic
model is formulated by a CTMC that is derived based on the ODE model with constant parameters
during the early stage of the infection. We obtain a theoretical estimate for the probability of a disease
outbreak by using multitype branching process approximation. Then we conduct a detailed mathe-
matical analysis to the ODE model with constant model parameters, and our result indicates that the
basic reproduction number R0 is served as a sharp disease threshold: the disease dies out if R0 ≤ 1 and
persists if R0 > 1. In contrast, the stochastic dynamics indicate that the disease may not persist when
R0 > 1. A parameter estimation and validation is performed to fit our ODE model to the public reported

Mathematical Biosciences and Engineering Volume 18, Issue 1, 950–967.



964

data that is corrected to address underestimation issue. Additionally, we use numerical simulations of
the CTMC model to study the disease extinction and an outbreak. Our results show that if the non-
pharmaceutical interventions such as quarantine and social distancing were not implemented properly,
the second wave is likely to take place. There are several limitation of this work. First, our model is
based on the classical SEIR epidemic framework. It would be more realistic if more compartments
representing variations in the population (e.g., asymptomatic, symptomatic, hospitalized individuals
and different age groups) are included. Second, it would be interesting to study the ongoing pandemic
under various prevention and control strategies (e.g., the stay-at-home order, the reopening of schools
and social distancing measures) with data available. Third, the epidemic patterns of COVID-19 vary
significantly by countries and regions. The impact of spatial heterogeneity on the transmission and
spread of COVID-19 will provide an interesting topic in future research.
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