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Abstract: In this paper, we establish a ZIKV model and investigate the transmission dynamics
of ZIKV with two types of harvesting: proportional harvesting and constant harvesting, and give
the stability of the steady states of both disease-free and endemic equilibrium, analyze the effect
of harvesting on ZIKV transmission dynamics via numerical simulation. We find that proportional
harvesting strategy can eliminate the virus when the basic reproduction number R0 is less than 1, but the
constant harvesting strategy may control the virus whether the basic reproduction number is less than 1
or not. Epidemiologically, we find that increasing harvesting may stimulate an increase in the number
of virus infections at some point, and harvesting can postpone the peak of disease transmission with
the mortality of mosquito increasing. The results can provide us with some useful control strategies to
regulate ZIKV dynamics.
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1. Introduction

The Zika virus (ZIKV) infection, a vector-borne disease carried by Aedes africanus, is caused by
the sting of Aedes aegypti. ZIKV was first discovered in Uganda in 1947 [1]. In 2007, it was reported
ZIKV occurred on Yap Island (Federated States of Micronesia). It then spread rapidly to Asia, Africa,
the United States and Brazil [2, 3].

Aedes aegyptis (or the yellow fever mosquitos) are the main source of ZIKV transmission and the
cause of dengue infection as well. The ZIKV infected by humans spreads through the bite of infected
Aedes aegyptis. If one partner of a couple is infected with ZIKV, the virus can be transmitted through
unprotected sexual activities. People infected with ZIKV would display mild symptoms initially
because they feel uncomfortable inside and then might develop or trigger serious conditions [4].

As it is known to all, mathematical modelling plays an important role in epidemiology. It is an
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important tool to analyze and understand the spread of virus infection in a community. It can assist to
strengthen health policies to control or avoid the outbreak of infection. Among the mathematical
models of infectious disease, compartment model [5, 6] is the most common. For research on ZIKV,
which is considered as a mosquito-borne virus, the established compartment model classifies not only
the population but also the mosquitoes. Funk et al. [7] considered the incubation period of human
ZIKV. An SEIR model was formulated for the population and an SEI one was formulated for
mosquitoes. They made full use of the commonalities of dengue and ZIKV, compared with two
dengue and ZIKV outbreaks in different island environments (Yappa Main Island and Fayes) in
Micronesia. They found that the proportion of reported ZIKV cases was smaller than that of dengue
cases. Kucharski et al. [8] applied a mathematical compartment model similar to the one above to
analyze the outbreaks in the six major archipelagos of French Polynesia during 2013–2014. Ndaı̈rou
et al. [9] established a compartment model to simulate the mother-to-child transmission and the
spread of ZIKV in Brazil. Considering seasonal effects, Suparit et al. [10] formulated a compartment
model with a time-dependent mosquito biting rate and used a computational parameter estimation
algorithm to estimate the value of unknown insect parameters.

In addition to the study of the infection dynamics of ZIKV, focus should also be given to how to
control the disease. At present, in addition to the use of insecticide spray control vectors and destruction
of larval breeding grounds, there is currently no established ZIKV treatment. So, if humans have
targeted a series of killings on mosquitoes, does this act influence the reduction or eradication of
infectious diseases? Harvesting is defined as the continuous removal (via killing or capture) of a
population species [11]. In the harvesting model of population dynamics, the emphasis is on the killing
or capture of a specific species by humans. So, how to kill mosquitoes? From a human intervention
point of view, there are two main types of methods: one is the use of synthetic insecticides, such
as pyrethroids and organophosphates; the other is the use of growth blocking techniques, such as
the application of the larvicidal bacterium Bti (Bacillus thuringiensis var. israelensis), pyriproxyfen,
larvicidal oil and so on. A study on managing Aedes aegypti populations in the first Zika transmission
zones in the continental United States [12] shows researchers have used some practical control methods
aimed at killing mosquitoes including aerial and truck sprays of adulticides and larvicides. They found
Bti larvicide greatly depressed urban Aedes aegypti populations when applied weekly. Wang et al. [13]
observed the efficacy of control agents against small larvae, large larvae, and pupae of Aedes aegypti
to determine an appropriate larvicide regime to employ in emergency dengue control programs. They
concluded that larvicides that kill the pupal stage (Aquatain AMF or larvicidal oil) should be included
in the effectively interrupting the dengue transmission program in addition to Bti, pyriproxyfen, or
temephos. Cornel et al. [14] believed long-term high density placements of Autocidal-Gravid-Ovitraps
(AGO-B trips) could be used as an environmentally friendly trap-kill control strategy. From the studies
on mosquitoes, one can find that there are methods which are used (such as BG Sentinel traps and
AGO-B traps ) to surveil Ae. aegypti in locations where is in high-risk. Therefore, it is possible to
achieve an approximate quantitative capture of Ae. aegypti.

We find that some researchers have applied the idea of hunting to disease control [15–17]. Yusof et
al. [16] applied the idea of population harvesting to the control of Hantavirus spreading. They used
three harvesting methods, one for constant harvesting, one for proportional harvesting, and another
for seasonal harvesting. From numerical simulation results, it was found that harvesting did not
eliminate the disease but could reduce the spread of the disease and the proportional-based harvesting
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was the most significant. One can find that seasonal harvesting is actually a periodic concussion in a
neighborhood of constant harvesting. In a large time range, this is in fact similar to that of the
constant. In this paper, we focus on the first two harvesting models.

In this paper, we analyze an ZIKV-compartment model and investigate the transmission dynamics
of ZIKV with two types of harvesting: proportional harvesting and constant harvesting. Firstly, the
existence and stability of the equilibrium point of the model are calculated. Next, the relevant
numerical simulations are conducted to verify the conclusions obtained before. Finally, the impact of
the harvesting on the spread of disease is discussed.

2. Model derivations

Thanks to the insightful work of Bonyah [18]. Divide the human population into four sub-classes,
susceptible humans S H(t) , exposed humans EH(t), infected humans IH(t) and recovered humans RH(t).
The total human population is represented as

NH(t) = S H(t) + EH(t) + IH(t) + RH(t).

Similarly, NM(t) is the total number of mosquitoes which is partitioned into susceptible mosquitoes
S M(t) , exposed mosquitoes EM(t) and infected mosquitoes IM(t). Hence

NM(t) = S M(t) + EM(t) + IM(t).

The compartmental mathematical model is given by the following system:

dS H
dt = ΛH − βHS H(IM + ρIH) − µHS H

dEH
dt = βHS H(IM + ρIH) − (µH + αH)EH

dIH
dt = αHEH − (µH + r + η)IH

dRH
dt = (r + η)IH − µHRH

dS M
dt = ΛM − βMS MIH − µMS M

dEM
dt = βMS MIH − (µM + δM)E

dIM
dt = δMEM − µMIM

(2.1)

where all the parameters are positive, which are described in Table 1 [18].
Incorporating the factor of harvesting to control the ZIKV results in a model given by the following

system: 

dS H
dt = ΛH − βHS H(IM + ρIH) − µHS H

dEH
dt = βHS H(IM + ρIH) − (µH + αH)EH

dIH
dt = αHEH − (µH + r + η)IH

dRH
dt = (r + η)IH − µHRH

dS M
dt = ΛM − βMS MIH − µMS M − H1(t)

dEM
dt = βMS MIH − (µM + δM)EM − H2(t)

dIM
dt = δMEM − µMIM − H3(t)

(2.2)

where Hi(t), i = 1, 2, 3 represents the population harvesting or examine of mosquitoes. In this study,
we propose two strategies for harvesting: proportional harvesting and constant harvesting, and the
functions are given as follow:
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(a) Proportional harvesting: H1(t) = eS M,H2(t) = eEM,H3(t) = eIM.

(b) Constant harvesting: H1(t) = h,H2(t) =

{
h EM > 0
0 EM 6 0

,H3(t) =

{
h IM > 0
0 IM 6 0

.

where e, h are positive.
Lemma 2.1 Let the initial value F(0) > 0 , where

F(t) = (S H, EH, IH,RH, S M, EM, IM)

Then the solutions F(t) of the model (2.2) are non-negative for all time t > 0. Furthermore, lim
t→∞

sup

NH(t) 6 ΛH
µH
, lim

t→∞
sup NM(t) 6 ΛM

µM
.

Proof Let the total dynamics of the human population is given by

N′H = ΛH − µHNH,

then we have 0 6 NH 6
ΛH
µH

. The total dynamics of mosquito population is given as

N′M = ΛM − µMNM − (H1(t) + H2(t) + H3(t)),

i.e. N′M 6 ΛM − µMNM . So same as NH , when t → ∞ , we have 0 6 NM 6
ΛM
µM

.
It is obvious that

lim
t→∞

sup NH(t) 6
ΛH

µH
, lim

t→∞
sup NM(t) 6

ΛM

µM
.

Hence
Ω = { (S H, EH, IH,RH, S M, EM, IM) ∈ R7

+

∣∣∣ 0 6 S H + EH + IH + RH 6
ΛH

µH

and 0 6 S M + EM + IM 6
ΛM

µM
}

is positively invariant for the model (2.2) with non-negative initial conditions in R7
+ .

3. Main results of the model with proportional harvesting

Considering the proportional harvesting, then model (2.1) can be rewritten as follows:

dS H
dt = ΛH − βHS H(IM + ρIH) − µHS H

dEH
dt = βHS H(IM + ρIH) − (µH + αH)EH

dIH
dt = αHEH − (µH + r + η)IH

dRH
dt = (r + η)IH − µHRH

dS M
dt = ΛM − βMS MIH − µMS M − eS M

dEM
dt = βMS MIH − (µM + δM)EM − eEM

dIM
dt = δMEM − µMIM − eIM

(3.1)

where e is the fraction of the population removed for each time period. It is worthy to note that, if we
view e + µM as µM , model (3.1) becomes the basic model (2.1), which is the main research subject in
reference [18]. Following the reference [18], we can get the main result of the model (3.1).
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Table 1. Description of the parameters used in model (2.1).

Symbol Description

ΛH Recruitment rate of susceptible humans
ΛM Recruitment rate of susceptible mosquitoes
µH Natural death rate in humans
µM Natural death rate in mosquitoes
βH Mosquito-to-human transmission rate
βM Human-to-mosquito transmission rate
αH The rate of exposed humans moving into infectious class
ρ Human factor transmission rate
η Human infected treatment rate
r Human natural recovery rate
δM The rate flow from EM to IM

The disease-free equilibrium of the model (3.1) is E0(ΛH
µH
, 0, 0, 0, ΛM

µM+e , 0, 0) . Using the next
generation operator method [19] on the model (3.1), the matrix F and V for model (3.1) are
respectively given by

F =


0 ρβHΛH

µH
0 βHΛH

µH

0 0 0 0
0 βMΛM

µM+e 0 0
0 0 0 0

 ,V =


k1 0 0 0
−αH k2 0 0

0 0 k3 + e 0
0 0 −δM µM + e

 ,
where k1 = µH +αH, k2 = µH +r+η, k3 = µM +δM. The basic reproduction number is given by ρ(FV−1),
which is R0 = R1 +

√
R1

2 + R2, where

R1 =
ρβHΛHαH

2µHk1k2
,R2 =

βMβHΛHαHδMΛM

µH(µM + e)2k1k2(k3 + e)
.

Before analyzing the stability, we might as well look at the biological significance of the basic
reproduction number. 2R1 =

ρβHΛHαH
µHk1k2

mainly describes the number of people who are directly infected
by a human carrying Zika virus in unit space. βHαHΛM

µHk1k2
reflects the number of mosquitoes which are

infected by a Zika virus-infected human in unit space. βMδMΛH

(µM+e)2(k3+e)
gives the number of people infected

by a infected mosquito biting in unit space. Therefore, during an infection period, the average number
of infected human by a virus-infected person is R0.

In this article, we mainly consider controlling the virus by reducing the number of mosquitoes. It
doesn’t affect the process of direct infection among humans. If 2R1 > 1, that means the virus breaks
out primarily through direct human transmission, controlling mosquitoes has little effect on the spread
of the virus, let alone eliminating it. Hence, we will focus on the situation 2R1 < 1 . And there are
similar assumptions in section 4.

Lemma 3.1 For 2R1 < 1, 2R1 + R2 < 1 holds if and only if R0 < 1 . Furthermore, 2R1 + R2 = 1
holds if and only if R0 = 1.
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Proof R0 = R1 +
√

R1
2 + R2. Thus, if R0 < 1 , then R1 +

√
R1

2 + R2 < 1 or
√

R1
2 + R2 < 1 − R1.

Squaring both sides of the inequality gives 2R1 + R2 < 1 . On the other hand, 2R1 + R2 < 1 means
R2 < 1 − 2R1 . So R2 + R2

1 < 1 − 2R1 + R2
1, and then

√
R1

2 + R2 < 1 − R1. And if 2R1 + R2 < 1 , then
R0 < 1 . Similarly, if R0 = 1 , then 2R1 + R2 = 1.

Based on the main results of the stability of disease-free equilibrium in [18], we can directly draw
the following conclusions:

Theorem 3.1 [18] The disease-free equilibrium E0(ΛH
µH
, 0, 0, 0, ΛM

µM+e , 0, 0) of model (3.1) is globally
asymptotically stable if R0 < 1, otherwise unstable.

The endemic equilibrium E∗ = (S ∗H, E
∗
H, I

∗
H,R

∗
H, S

∗
M, E

∗
M, I

∗
M) is the positive solution of the following

system: 

ΛH − βHS H(IM + ρIH) − µHS H = 0,
βHS H(IM + ρIH) − (µH + αH)EH = 0 ,

αHEH − (µH + r + η)IH = 0,
(r + η)IH − µHRH = 0,
ΛM − βMS MIH − µMS M − eS M = 0,
βMS MIH − (µM + δM)EM − eEM = 0 ,

δMEM − µMIM − eIM = 0.

(3.2)

Then according to Eq (3.2), we can get:

S ∗H =
(k3 + e)(µM + e)(I∗HβM + µM + e)ΛH

(k3 + e)(µM + e)(ρI∗HβH + µH)(I∗HβM + µM + e) + βHI∗HβMδMΛM
,

E∗H =
I∗HβHΛH[(k3 + e)(µM + e)(I∗HβM + µM + e)ρ + βMδMΛM]

k1[(k3 + e)(µM + e)(ρI∗HβH + µH)(I∗HβM + µM + e) + βHI∗HβMδMΛM]
,

R∗H =
(r + η)I∗H

µH
, S ∗M =

ΛM

I∗HβM + µM + e
, E∗M =

I∗HβMΛM

(k3 + e)(I∗HβM + µM + e)
,

I∗M =
βMδMΛMI∗H

(βMI∗H + µM + e)(k3 + e)(µM + e)
.

And I∗H is the positive root of the following equation:

aI∗2H + bI∗H + c = 0, (3.3)

where

a = ρk1k2βHβM(µM + e)(k3 + e) > 0,
b = βHk1k2[βMδMΛM + (k3 + e)(µM + e)2ρ] + k1k2µHβM(k3 + e)(µM + e)(1 − 2R1),
c = k1k2µH(µM + e)2(k3 + e)[1 − (2R1 + R2)].

Case 1: If R0 < 1, which means 2R1 + R2 < 1, then both b > 0 and c > 0 hold.
Case 2: If R0 > 1, which means 2R1 + R2 > 1, then c < 0.
Case 3: If R0 = 1, then b > 0, c = 0 .
The roots of Eq (3.3) are given as

I∗H1 =
−b −

√
b2 − 4ac

2a
, I∗H2 =

−b +
√

b2 − 4ac
2a

. (3.4)
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Hence, we can get the following results:
Theorem 3.2 For model (3.1) :
(1). if R0 > 1 , there exists a unique endemic equilibrium E∗ = (S ∗H, E

∗
H, I

∗
H,R

∗
H, S

∗
M, E

∗
M, I

∗
M) , where

I∗H = I∗H2 ;
(2). If R0 6 1 , there is no endemic equilibrium.
Remark When e = 0 , model (3.1) becomes model (2.1), which is model of [18]. From Theorem

3.2, we know that model (3.1) has only one endemic equilibrium if and only if R0 > 1 . That is quite
different from the result of reference [18], in which they claimed that there are two positive equilibrium
points in the model.

Directly using the results of Theorem 4.2 and Theorem 5.2 in [18], the following results can be
obtained:

Theorem 3.3 [18] If R0 > 1, then the unique endemic equilibrium of model (3.1) is not only locally
asymptotically stable, but also globally asymptotically stable.

Therefore, the basic reproduction number is a crucial factor to determine whether the mosquito
harvest can control the virus. From the expression R0 = R1 +

√
R1

2 + R2, where

R1 =
ρβHΛHαH

2µHk1k2
,R2 =

βMβHΛHαHδMΛM

µH(µM + e)2k1k2(k3 + e)
,

it is obvious that
dR2

de
= −

βMβHΛHαHδMΛM

µHk1k2
(

1
k3 + e

+
2

(µM + e)3 ) < 0.

Then there are two cases: one is R1 ≥ 1 and the other is R1 < 1. For the former, increasing e can reduce
the number of final infections but not eliminate the virus; but for the latter, it can be done.

4. Main results of the model with constant harvesting

Considering the constant harvesting, then model (2.1) can be rewritten as follows:

dS H
dt = ΛH − βHS H(IM + ρIH) − µHS H,

dEH
dt = βHS H(IM + ρIH) − (µH + αH)EH,

dIH
dt = αHEH − (µH + r + η)IH,

dRH
dt = (r + η)IH − µHRH,

dS M
dt = ΛM − βMS MIH − µMS M − H1(t),

dEM
dt = βMS MIH − (µM + δM)EM − H2(t),

dIM
dt = δMEM − µMIM − H3(t).

(4.1)

where H1(t) = h,H2(t) =

{
h EM > 0
0 EM 6 0

,H3(t) =

{
h IM > 0
0 IM 6 0

.

4.1. Basic reproduction number and stability of the disease-free equilibrium

It is clear that, if 0 6 h 6 ΛM , model (4.1) has a disease-free equilibrium E0 = (ΛH
µH
, 0, 0, 0, ΛM−h

µM
, 0,

0) . Using the next generation operator method [19], the matrix F∗ and V∗ for model (4.1) are
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respectively given by

F∗ =


0 ρβHΛH

µH
0 βHΛH

µH

0 0 0 0
0 βM(ΛM−h)

µM
0 0

0 0 0 0

 ,V∗ =


k1 0 0 0
−αH k2 0 0

0 0 k3 0
0 0 −δM µM

 ,
where k1 = µH + αH, k2 = µH + r + η, k3 = µM + δM. The basic reproduction number R∗0 is equal to

ρ(F∗V∗−1) , which can be written as R∗0 = R∗1 +

√
R∗1

2 + R∗2 , where

R∗1 =
ρβHΛHαH

2µHk1k2
,R∗2 =

βMβHΛHαHδM(ΛM − h)
µHµ

2
Mk1k2k3

.

Next we mainly discuss in the case of 2R∗1 < 1 .
Similar to Lemma 3.1, we can get:
Lemma 4.1 2R∗1 < 1 and 2R∗1 + R∗2 < 1 hold if and only if R∗0 < 1 . Furthermore, 2R∗1 + R∗2 = 1 if

R∗0 = 1 .
Theorem 4.1 If 0 6 h 6 ΛM , the disease-free equilibrium E0 = (ΛH

µH
, 0, 0, 0, ΛM−h

µM
, 0, 0) of model

(4.1) is globally asymptotically stable if R∗0 < 1 , otherwise unstable.
Proof The associated Jacobian matrix of the model (4.1) at E0 is given as

J
(
E0

)
=



−µH 0 −
ρβHΛH
µH

0 0 0 −
βHΛH
µH

0 −k1
ρβHΛH
µH

0 0 0 βHΛH
µH

0 αH −k2 0 0 0 0
0 0 r + η −µH 0 0 0
0 0 −

βM(ΛM−h)
µM

0 −µM 0 0
0 0 βM(ΛM−h)

µM
0 0 −k3 0

0 0 0 0 0 δM −µM


.

Clearly, −µH and −µM are the eigenvalues of the Jacobian matrix above, and −µH is a double
eigenvalue. The remaining four eigenvalues can be determined by the following equation:

λ4 + G1λ
3 + G2λ

2 + G3λ + G4 = 0,

where
G1 = k1 + k2 + k3 + µM,

G2 = (k1 + k2 + k3) µM + k3 (k1 + k2) + k1k2
(
1 − 2R∗1

)
,

G3 = k1k2 (k3 + µM)
(
1 − 2R∗1

)
+ (k1 + k2) k3µM,

G4 = k1k2k3µM
[
1 −

(
2R∗1 + R∗2

)]
.

Both 2R∗1 < 1 and 2R∗1 + R∗2 < 1 hold, since R∗0 < 1 . Thus, the coefficients Gi for i = 1, 2, 3, 4 and
all the order principal minor determinants are positive. Using the Routh Hurtwiz criteria [20], model
(4.1) at the disease free equilibrium E0 is locally asymptotically stable if R∗0 < 1 , otherwise unstable.
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To show the global stability, we define the following Lyapunov function:

V(t) =w1(S H − S
0
H − S

0
H log

S H

S
0
H

) + w2EH + w3IH + w4RH

+ w5(S M − S
0
M − S

0
M log

S M

S
0
M

) + w6EM + w7IM.

The time derivative of V is:

dV(t)
dt

=w1(1 −
S

0
H

S H
)
dS H

dt
+ w2

dEH

dt
+ w3

dIH

dt
+ w4

dRH

dt

+ w5(1 −
S

0
M

S M
)
dS M

dt
+ w6

dEM

dt
+ w7

dIM

dt
.

By model (4.1), we have

dV(t)
dt

=w1(1 −
S

0
H

S H
)[ΛH − βHS H(IM + ρIH) − µHS H]

+ w2[βHS H(IM + ρIH) − (µH + αH)EH]
+ w3[αHEH − (µH + r + η)IH] + w4[(r + η)IH − µHRH]

+ w5(1 −
S

0
M

S M
)[ΛM − βMS MIH − µMS M − h]

+ w6[βMS MIH − (µM + δM)EM − h]
+ w7[δMEM − µMIM − h].

At E0, we have

S
0
H =

ΛH

µH
, S

0
M =

ΛM − h
µM

.

Therefore,

dV(t)
dt

= − µHw1
(S H − S

0
H)

2

S H
− (w1 − w2)βHS H(IM + ρIH)

− [w2(µH + αH) − w3αH]EH − [w3(µH + r + η) − w4(r + η) − w1βHρ
ΛH

µH
− w5βM

ΛM − h
µM

]IH

− w4µHRH − [w5 − w6]βMS MIH − µMw5
(S M − S

0
M)

2

S M

− [w6(µM + δM) − w7δM]EM − [w7µM − w1
ΛH

µH
βH]IM − (w6 + w7)h.

Choose the constants:

w1 = w2 = αH,w3 = µH + αH,w4 = 0,

w5 = w6 =
δMβHαHΛH

µHµM(µM + δM)
,w7 =

βHαHΛH

µHµM
.
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Notice that
R∗1 =

ρβHΛHαH

2µHk1k2
,R∗2 =

βMβHΛHαHδM(ΛM − h)
µHµ

2
Mk1k2k3

,

k1 = µH + αH, k2 = µH + r + η, k3 = µM + δM,

we get

dV(t)
dt

= −µHw1
(S H − S

0
H)

2

S H
− k1k2[1 − (2R∗1 + R∗2)]IH − µMw5

(S M − S
0
M)

2

S M
− (w6 + w7)h.

Thus, dV(t)
dt < 0 if R∗0 6 1. And dV(t)

dt is zero if and only if

(S H, EH, IH,RH, S M, EM, IM) = (
ΛH

µH
, 0, 0, 0,

ΛM − h
µM

, 0, 0).

Therefore the largest compact invariant set in Ω is the singleton set {E0} , and the model (4.1) is
globally asymptotically stable in the interior of Ω .

4.2. Existence and stability of the endemic equilibrium of model (4.1)

4.2.1. Existence of the endemic equilibrium

The endemic equilibrium E
∗

= (S
∗

H, E
∗

H, I
∗

H,R
∗

H, S
∗

M, E
∗

M, I
∗

M) is a positive solution of following
system: 

ΛH − βHS H(IM + ρIH) − µHS H = 0,
βHS H(IM + ρIH) − (µH + αH)EH = 0,
αHEH − (µH + r + η)IH = 0,
(r + η)IH − µHRH = 0,
ΛM − βMS MIH − µMS M − h = 0,
βMS MIH − (µM + δM)EM − h = 0,
δMEM − µMIM − h = 0,

(4.2)

then according to the first four equations of (4.2), we can get

E
∗

H =
k2

αH
I
∗

H,R
∗

H =
r + η

µH
I
∗

H, S
∗

H =
αHΛH − k1k2I

∗

H

αHµH
,

I
∗

M =
k1EH

βHS H
− ρI

∗

H =
µHk1k2I

∗

H

βH(αHΛH − k1k2I
∗

H)
− ρI

∗

H. (4.3)

From the last three equations of (4.2), we can have

E
∗

M =
µMI

∗

M + h
δM

, S
∗

M =
δM(ΛM − 2h) − k3(µMI∗M + h)

δMµM
,

I
∗

H =
k3E

∗

M + h

βMS
∗

M

=
k3µM(µMI

∗

M + h) + µMδMh

βMδM(ΛM − 2h) − βMk3(µMI
∗

M + h)
. (4.4)

Mathematical Biosciences and Engineering Volume 17, Issue 5, 6181–6202.



6191

Rewrite Eq (4.4) as follows:

I
∗

M =
βMδMΛMI

∗

H − [µM(k3 + δM) + βM(k3 + 2δM)I
∗

H]h

(βMI
∗

H + µM)k3µM

. (4.5)

According to Eqs (4.3) and (4.5) , let

f1(IH) =
µHk1k2IH

βH(αHΛH − k1k2IH)
− ρIH, (4.6)

f2(IH) =
βMδMΛMIH − [µM(k3 + δM) + βM(k3 + 2δM)IH]h

(βMIH + µM)k3µM
, (4.7)

f (IH) = f1(IH) − f2(IH). (4.8)

Obviously, the positive roots of f (IH) = 0 are the key that could determine the existence of the positive
equilibrium points of model (4.1). If the two curves of functions Eqs (4.6) and (4.7) (denoted by C1,C2

) meet in the first quadrant, or the curve of function Eq (4.8) (denoted by C ) and the positive half axis
of the transverse axis meet, model (4.4) has positive equilibrium points.

From Eq (4.6) and Eq (4.7), the positive roots of f (IH) = 0 should fall into the interval [I2, I1] , and
h must meet h < h0 to ensure the establishment of I2 < I1 ,where

I1 =
αHΛH

k1k2
, I2 =

(k3 + δM)hµM

βM[δM(ΛM − h) − h(k3 + δM)]
,

h0 =
βMΛHΛMαHδM

k1k2µM(k3 + δM) + (2δM + k3)αHΛHβM
. (4.9)

For curve C,
f ′(IH) = f ′1(IH) − f ′2(IH), f ′′(IH) = f ′′1 (IH) − f ′′2 (IH),

f ′1(IH) =
−ρβH(k1k2IH − αHΛH)2 + ΛHαHk1k2µH

βH(αHΛH − k1k2IH)2 , (4.10)

f ′2(IH) =
βMδM(ΛM − h)
k3(βMIH + µM)2 , (4.11)

f ′′1 (IH) =
2ΛHαHk2

1k2
2µH

βH(αHΛH − k1k2IH)3 > 0, (4.12)

f ′′2 (IH) =
−2β2

MδM(ΛM − h)

k3(βMIH + µM)3 < 0. (4.13)

Then we have f ′′(IH) > 0 and f ′(IH) monotone increasing on interval [I2, I1], where the curve C is
concave. Let

y1 = f ′1(0) =
µHk1k2

βHαHΛH
− ρ =

µHk1k2

βHαHΛH
(1 − 2R∗1) > 0,
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y2 = f ′2(0) =
βMδM(ΛM − h)

k3µ
2
M

> 0.

When comparing the size of y1 and y2 , the following corollaries can be obtained:
Corollary 1 If 2R∗1 + R∗2 6 1 holds, we have y1 > y2 , then f (IH) > 0 for all IH > 0 .
Corollary 2 If 2R∗1 +R∗2 > 1 and 2R∗1 < 1 hold, which implies y1 < y2 , then there is a unique positive

ÎH ∈ (I2, I1) so that f ′(ÎH) = f ′1(ÎH) − f ′2(ÎH) = 0 . Furthermore, f ′(IH) > 0 if IH > ÎH , and f ′(IH) < 0
if IH < ÎH.

Curve C1 has a vertical asymptote IH = I1. When IH = 0 or IH =
µH
ρβH

(2R∗1 − 1) , the curve C1

intersects the axis IH. Curve C2 has a horizontal asymptote IM =
δMΛM−(2δM+k3)h

k3µM
and a vertical asymptote

IH = −
µM
βM

. The intersection of the curve and the axis IM is (0,− k3+δM
k3µM

h) .
According to the analysis above, if 2R∗1 < 1 holds, the possible location relationship of the curves

within the first quadrant is shown in the following Figures:

(a) (b)

Figure 1. The possible location relationship of the curves within the first quadrant. (a)
shows the position relation of two function ( y = f1(IH) and y = f2(IH)) images. (b) shows
the possible intersection of curve C and transverse axis.

According to the Figure 1(a) and 1(b) and corollary 2, when f ′(ÎH) = f (ÎH) = 0 , ÎH ∈ (I2, I1) holds,
and a corresponding h1 exists, which is

h1 = ΛM −
µHI1 − ρβH(ÎH − I1)

2

βH(ÎH − I1)
2
βMδM

k3(βM ÎH + µM)2.

If h1 < h < h0 , then f ′(IH) > 0 holds. And if 0 < h < h1 , then f ′(IH) < 0 holds.
Next, we discuss the number of intersection points. From corollary 1, it is concluded that there must

be no chance for two curves C1 and C2 to meet in first quadrant, or curve C and axis IH meet as R∗0 6 1.
Since both 2R∗1 < 1 and R∗0 > 1 hold, the results are as follows:

Case 1: The two curves (or curve C and axis IH) have two intersections as 0 < h < h1;
Case 2: The two curves (or curve C and axis IH) meet at only one point as h = h1;
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Case 3: If h1 < h < h0 holds, there is no intersection of the two curves (or curve C and axis IH) due
to f (ÎH) > 0;

Case 4: If h0 6 h < δMΛM
2δM+k3

, there is no intersection of curves C1 and C2 because I2 > I1;
Case 5: If δMΛM

2δM+k3
6 h , there is no intersection of curves C1 and C2, for the curve C2 does not exist

in the first quadrant according to the position of the horizontal asymptote.
Hence, we establish the following:
Theorem 4.2 Model (4.1) has no endemic equilibrium if R∗0 6 1 . For R∗0 > 1 and 2R∗1 < 1 , there is

no endemic equilibrium if h1 < h , only one endemic equilibrium if h = h1 and two endemic equilibria
if 0 < h < h1 , where

h1 = ΛM −
µHI1 − ρβH(ÎH − I1)

2

βH(ÎH − I1)
2
βMδM

k3(βM ÎH + µM)2, f ′(ÎH) = f (ÎH) = 0.

4.2.2. Stability of the endemic equilibrium

Here, we still mainly give the results under the condition R∗0 > 1 and 2R∗1 < 1 .
For 0 < h < h1 , according to theorem 4.2 , we can get two endemic equilibria, denoted by

E
∗

1,2 = (S
∗

H1,2, E
∗

H1,2, I
∗

H1,2,R
∗

H1,2, S
∗

H1,2, E
∗

H1,2, I
∗

H1,2),

where I
∗

H1 > I
∗

H2 .
Consider the Jacobian matrix of model (4.1) evaluated as

J =



−λHM − µH 0 −ρλHH 0 0 0 −λHH

λHM −k1 ρλHH 0 0 0 λHH

0 αH −k2 0 0 0 0
0 0 r + η −µH 0 0 0
0 0 −λMM 0 −µM − βMIH 0 0
0 0 λMM 0 βMIH −k3 0
0 0 0 0 0 δM −µM


where λHM = βH(ρIH + IM), λHH = βHS H, λMM = βMS M .

The associate characteristic equation of J is

(λ + µH)(λ + µM)(λ5 + K1(E)λ4 + K2(E)λ3 + K3(E)λ2 + K4(E)λ + K5(E)) = 0.

Obviously, −µH and −µM are negative eigenvalues. Therefore, we care about the eigenvalues of the
following equation:

λ5 + K1(E)λ4 + K2(E)λ3 + K3(E)λ2 + K4(E)λ + K5(E) = 0, (4.14)

where E represents any positive equilibrium point of model (4.1), and

K1(E) = βMIH + k1 + k2 + k3 + µH + µM + λHM, (4.15)

K2(E) =
1
A
{(k1 + k2 + k3 + B)λ2

HM + [2µH(B + k1 + k2 + k3) + Bk1 + Bk2 + Bk3

+ k2k1 + k3k1 + k3k2]λHM + (B + k1 + k2 + k3)µ2
H + (Bk1 + Bk2 + Bk3

+ k3k1 + k3k2)µH + k1k2µH(1 − 2R∗1)},

(4.16)
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K3(E) =
1
A

[(Bk1 + Bk2 + Bk3 + k1k3 + k2k3)µ2
H + (Bk1 + Bk2 + Bk3 + k1k3 + k2k3 + k1k2)

× (2λHMµH + λ2
HM) + (k1 + k2)Bk3µH + (Bk1k2 + Bk2k3 + Bk3k1 + k1k2k3)λHM

+ (µH + B + k3)k1k2µH(1 − 2R∗1)],

(4.17)

K4(E) =
1
A

[(Bk1 + Bk2 + Bk3 + k1k2k3)λ2
HM + (Bk1k2k3 + 2BµHk1k2 + 2BµHk1k3

+ 2BµHk2k3 + k1k2k3µH)λHM + Bk3µ
2
H(k1 + k2) + (B + k3)µ2

Hk1k2(1 − 2R∗1)
+ Bk3βHΛHαH(y1 − f ′2(IH)),

(4.18)

K5(E) =[(λHM + µH)k1k2 − αHρλHHµH](βMIH + µM)k3 − αHδMµHλHHλMM

=
Bk3

A
αHβHΛHµH[

k1k2A2

αHβHΛHµH
− ρ −

δMβM(ΛM − h)
k3B2 ]

=
Bk3

A
αHβHΛHµH f ′(IH),

(4.19)

A = βH(ρIH + IM) + µH = λHM + µH, B = βMIH + µM, λMM =
βM(ΛM − h)

B
, λHH =

βHΛH

A
.

Set λ1, λ2, λ3, λ4, λ5 are the five roots of the Eq (4.14), then according to the relationship between the
roots of the algebraic equation and its coefficient, we have

K1(E) = −(λ1 + λ2 + λ3 + λ4 + λ5), K5(E) = −λ1λ2λ3λ4λ5.

From the analysis on y = f (IH) in section 4.2.1 and Figure 1, for endemic equilibrium E
∗

1 , all the
coefficient Ki(E

∗

1), i = 1, 2, · · · 5 are positive. On the other hand, for another endemic equilibrium E
∗

2 ,
K5(E

∗

2) < 0 holds.
Theorem 4.3 For R∗0 > 1, 2R∗1 < 1 , and 0 < h < h1 , the endemic equilibrium E

∗

1 of model (4.1)
will be locally asymptotically stable, or unstable dimension and the number of central manifolds are
both even. And the endemic equilibrium E

∗

2 of model (4.1) must be unstable.
In fact, through a lot of numerical simulations, we find that the positive equilibrium point E

∗

1 of
model (4.1) should be locally asymptotically stable, rather than globally asymptotically stable.

5. Numerical simulations and transmission dynamics comparisons

In this section, we continue to study transmission dynmamics of ZIKV model (3.1) and model (4.1)
through numerical approach. We aim to investigate how harvesting affect disease spreading on the
ZIKV dynamics.

5.1. Proportional Harvesting

Firstly, we use a set of data from [18], which are

ΛH = 0.4,ΛM = 1.3, βH = 0.0002, βM = 0.0009, µH = 0.01, µM = 0.002,
δM = 0.3, r = 0.0614799, ρ = 0.029, αH = 0.0022.

(5.1)

When η = 0.11, e = 0.001, Reference [18] shows there is a backward bifurcation. In fact, the
moment witnesses that R0 = 1.011632168 > 1 and a stable endemic equilibrium exists (see Figure 2).
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(a) (b)

Figure 2. Time series of IH and IM in model (3.1). Parameters are given in (5.1) and η =

0.11, e = 0.001, then R0 = 1.011632168 > 1 . The figures show that the solutions of IH and
IM from different initial values convert to the equilibrium values I∗H = 0.008068, I∗M = 1.036.

(a) (b)

Figure 3. Time series of IH and IM in model (3.1). Parameters are given in Eq (5.1) and
η = 0.2, e = 0.001 , then R0 = 0.8271019214 < 1 . The figures show that the solutions of IH

and IM from different initial values convert to the disease-free equilibrium I∗H = 0, I∗M = 0.

When η = 0.2 , R0 = 0.8271019214 < 1 is hold, disease-free equilibrium for the model (3.1) is stable
(See Figure 3).

5.2. Constant harvesting

In order to better explain the local stability of the positive equilibrium, we change the value of
parameter ΛM to 3, and the rest remain the same as in (5.1). We also give two sets of initial values: the
initial value 1 is (2, 4, 4, 3, 6, 4, 2) and the initial value 2 is (0.01, 0.1, 0.5, 3, 0.1, 0.01, 0.1) . It is shown
in Figure 4 that the results are related not only to the value of h , but also to the initial value.
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(a) (b)

Figure 4. Time series of IH and IM in model (4.1) with h = 0.004.

(a) (b)

Figure 5. Time series of IH and IM in model (7) with h = 0.0035.

Figure 4 shows that the values of IH and IM departure under different initial conditions finally
converge to 0 with h = 0.004; Figure 5 shows that when h = 0.0035, the final IH values of departure
from different initial conditions converge to different values: 0.2109 and 0 as well as the final IM

converge to different values: 56.52 and 0.

5.3. The effect of harvesting mosquitoes

To control the ZIKV infection, we can increase the value of e (the fraction of the mosquitoes
population harvesting during each time period) or h (fixed harvesting constant). Theoretically
speaking, R0 (or R∗0 ) decreases monotonically as e (or h ) increases, which means it is possible to
control Zika virus by increasing the value of e (or h ) . Here we focus on a more detailed result of this
strategy on the number of infected people. we use another set of data shown in Table 2:
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Table 2. Parameters values in the numerical simulation of the model(2.2).

Parameter Description Value Ref

βH
Mosquito-to-human

transmission rate
0.2 Bonyah et al. [18]

βM
Human-to-mosquito

Transmission rate
0.09 Bonyah et al. [18]

αH

The rate of exposed
humans moving into

infectious class
1/5.5 per day Ferguson et al. [21]

ρ
Human factor

transmission rate
0.01 assumed

δM
The rate flow from

EM to IM
1/8.2 per day Ferguson et al. [21]

r Human natural recovery rate 1/6 Ferguson et al. [21]

η
Human infected
treatment rate

0.8 assumed

µH
Natural death rate in

humans
1/(360×60 ) per day Manore et al. [22]

µM
Natural death rate in

mosquitoes
1/14 per day Manore et al. [22]

ΛH
Recruitment rate of

humans
0.01 assumed

ΛM
Mosquito recruitment

rate
0.5 assumed

Assume T is the peak time of disease transmission. From the second, third, sixth and seventh
equations of system (3.1), we can get

EH(T ) =
k2

αH
IH(T ), βHS H(T )(IM(T ) + ρIH(T )) = k1EH(T ),

EM(T ) =
µM + e
δM

IM(T ), βMS M(T )IH(T ) = (k3 + e)EH(T ).

Therefore we can build the relationship between S H(T ) and S M(T ) as follows:

S H(T ) =
k1k2

αHβHβMδM

(µM + e)(k3 + e)
S M(T ) + αHβHρ

. (5.2)

Because S M(T ) is decreasing with the mortality of mosquito increasing, supposing e increases to e1

(e1 > e) and the corresponding peak time becomes T1, then S H(T ) < S H(T1). Noting dS H
dt ≥ 0, then it

will take longer time to get S H(T1). This means the peak time is postponed.
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(a) (b)

Figure 6. Time series of IH with different values of e and h (a) is for model (3) and (b) is for
model (4.1). The initial values of the two graphs is (0.4, 0.3, 0.02, 0.1, 0.6 ,0.2, 0.1).

Similarly, we can get the following expression from system (4.1),

S H(Th) =

k1k2

βHαH

δM + k3

µMk3
[
βMδM

δM + k3
S M(Th) −

h
IH(Th)

] + ρ

,

k1k2

βHαH

δM + k3

µMk3
L(h) + ρ

, (5.3)

where Th is the peak time and L(h) =
βMδM

δM + k3
S M(Th) −

h
IH(Th)

. The first order approximate linear

expression of L(h) is

L(h) ≈
βMδM

δM + k3
S M(T0) + [

βMδM

δM + k3

(
dS M(Th)

dh

)
h=0
−

1
IH(T0)

]h (5.4)

where T0 is the peak time as h = 0. Because S M(Th) is decreasing with the increase of h, dS M(Th)
dh < 0

holds. Then L(h) decrease with h increase. Take this result into Eq (5.3) and let h grow to h + 4h
(4h > 0), then S H(Th) < S H(Th+4h), which suggests that the peak time is delayed.

We increase the value of e from 0.05 to 0.08, to 0.1 and then to 0.8, draw the time series diagram
of the number of infected people respectively, and also give the time series diagram of the number of
infected people under the four values of h (0.0001,0.00015,0.0002, and 0.00025). Figure 6 shows that
harvesting can postpone the peak of disease transmission with the mortality of mosquito increasing.
Now let’s look at what happens to the number of people infected at peak time. If dIH

dt keeps being
positive for two different values of e or h , then we can get the longer peak time corresponding the
greater the value of e or h , and the more people will be infected at the peak time. Take Figure 6 as an
example, the number of infected human reaches to about 0.23 units at peak time T = 1847 days when
e = 0.1. However it is no more than 0.14 units at peak time T = 1240 when e = 0.08. If dIH

dt is negative
for two different values of e or h , then the less people will be infected at the peak time with e or h
increase.
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6. Conclusions

In the present paper, we mainly study the control of ZIKV by taking advantage of continuous
harvesting mosquitoes. Through the analysis of the models, the steady states of disease-free and
endemic equilibrium are obtained for two types of harvesting models: proportional harvesting and
constant harvesting. We find that it is possible to eliminate the virus by harvesting mosquitoes under
certain conditions, no matter which of the two harvesting strategies is adopted.

Compare the two harvesting strategies, we find there is something in common:
(1) If ZIKV is primarily transmitted among humans, which means 2R1 > 1 (or 2R∗1 > 1) , harvesting

may only reduce the number of infections, but not eliminate the disease.
(2) Increasing harvesting (enhance the value of e or h ) may stimulate an increase in the number of

virus infections at some point.
(3) Harvesting can postpone the peak of disease transmission with the mortality of mosquito

increasing.
We also should pay attention to the difference between the proportional harvesting and constant

harvesting. The proportional harvesting is easier to control the virus through the basic reproduction
number R0. If 2R1 < 1 , the purpose of permanently eliminating the virus will be achieved by adjusting
the value of e so that the value of R0 is less than 1. And get the minimum value of e that can kill the
virus. For the constant harvesting, it is hard to confirm the minimum value of h because different initial
values lead to different results. In other words, for the proportional harvesting, if and only if R0 < 1 ,
the Zika virus can be wiped out. But for the constant harvesting, the Zika virus may be controlled even
though R∗0 > 1 holds.

Figure 7 shows the relationship between R0 and mosquitoes recruitment rate ΛM under different
capture coefficients e.You will find that R0 gradually decreases with the increase of e. If the recruitment
rate ΛM is 0.3, then R0 will be less than one as e = 0.6 . When ΛM grows to 0.5, taking e equal to 0.8
will force R0 to be less than one and ZIKV will be wiped out.

Figure 7. R0 changes with ΛM with different values of e.

But for the constant harvesting strategy, it is quite different. As can be seen from Figure 8, under the
same parameter conditions, different initial value conditions lead to different final infection numbers.
Virus may eventually disappear, although R∗0 is greater than 1.
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Figure 8. Taking h = 0.0002 , the two different results from two different initial values at the
same h, where initial value 1 is (0.4, 0.3, 0.02, 0.1, 0.6 ,0.2, 0.1), and initial value 2 is (0.08,
0.02 ,0.01, 0.01, 0.8, 0.01, 0.01).

(a) (b)

Figure 9. R∗0 changes with h. A split line h = h1 ≈ 0.002196696388 exists, which can be
used to control mosquitoes.

In Figure 9, the red solid curve shows R∗0 changes with h while the black dotted line respects R∗0 =

1.The vertical green dotted line is h = h1 ≈ 0.002196696388 , which is a split line. According to
theoretical reasoning that, the system has no positive equilibrium point when the selected h is larger
than h1 (See Figure 10), which means that the disease has been eliminated. Here we get h1 from the
following:

h1 = ΛM −
µHI1 − ρβH(ÎH − I1)

2

βH(ÎH − I1)
2
βMδM

k3(βM ÎH + µM)2,

where ÎH is the root of f ′(ÎH) = f (ÎH) = 0 , ÎH ∈ (I2, I1) . Of course, we can choose h = h0 (See
Figure 9, the vertical blue dotted line is h = h0 ≈ 0.002475094697 ), which is larger than h1 and can
be figured out from

h0 =
βMΛHΛMαHδM

k1k2µM(k3 + δM) + (2δM + k3)αHΛHβM
.
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This looks easier to calculate. To sum up, both h1 and h0 enable us to choose an appropriate value
of h to control the virus. Clearly this approach has nothing to do with R∗0 .

Figure 10. The number of infectious eventually converts to zero with h = 0.0025.

Therefore, if we control the spread of the disease by means of constant harvesting of mosquitoes, we
must consider the initial values and some other known parameters to select the appropriate harvesting
constants, otherwise it may not control the disease, but will cause more people to be infected.
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