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Abstract: In comparison with lymphomas and leukemias, chemotherapy of solid neoplasms, i.e., 

cancer, has much more limited success in curing the patient. This lack of efficacy of chemotherapy 

has been attributed to increased interstitial fluid pressure within cancers, which obstructs convection 

and only permits diffusion of oxygen and nutrients about 100 µm from blood vessels. As diffusion is 

limited to this distance, hypoxic and necrotic fractions within the tumor are observed beyond this 

region. The comparably small number of cancer cells that can be targeted with drugs inevitably leads 

to an ineffective treatment response. This study presents an analysis of the influence of interstitial 

fluid pressure on the chemotherapeutic effect in an HT29 human colon cancer xenograft mouse 

tumor model. To investigate the limited distribution of drugs into primary tumor and metastases, we 

developed a mathematical model describing tumor growth dynamics of oxygenated, hypoxic, and 

necrotic fractions, combined with a pharmacokinetic–pharmacodynamic model describing the 

behavior and effectivity of the chemotherapeutic agent. According to the numerical simulations, the 

age of the tumor at treatment was the decisive factor in the reduction in size of the primary tumor. 

This effect is mediated by the rapid decrease in the percentage of oxygenated cells within the tumor, 
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which reduces the fraction of cells that can be affected by the drug. As in the primary tumor, 

interstitial fluid pressure builds up in metastases when they reach a specific size, leading to the 

formation of tumor fractions. This behavior is absent if the metastasis enters a dormant phase before 

the threshold for the development of interstitial fluid pressure has been reached. The small size of 

these metastases maximizes therapeutic success since they consist only of oxygenated cells, and the 

drug therefore affects all the cells. 

Keywords: computer simulation; hypoxic and necrotic fractions; mathematical model; parameter 

estimation; therapeutic efficacy; tumor growth; tumor interstitial fluid pressure  

 

Abbreviations: TFIP: Tumor interstitial fluid pressure; DTC: Disseminated tumor cells 

1. Introduction 

There is a remarkable difference between the treatment responses of generalized lymphomas 

and leukemias on the one hand and solid neoplasms, i.e. cancer, on the other. While the former can 

be successfully treated with chemotherapy and/or antibody treatment, the latter cannot. This 

treatment failure in carcinomas has been attributed to the high tumor interstitial fluid pressure (TIFP) 

observed in most cancers, which is absent in lymphomas and leukemias. TIFP is caused by a fluid 

imbalance within the tumor mass. In particular, functioning lymphatic vessels are absent within the 

tumor so that interstitial fluid, normally transported away by the lymphatic vessels, remains in the 

local area. Two forms of fluid transport within tissues can be distinguished, namely diffusion and 

convection. Diffusion is the random movement of molecules and particles from a higher 

concentration region to one of lower concentration which is driven by a concentration gradient. In 

contrast, convection is the directed flow of particles within the interstitial fluid from the blood-tissue 

exchange microvessels to the lymphatic drainage system, which is pressure-related. The latter is 

absent in cancers so transport processes are more or less limited to diffusion [1,2]. For both 

macromolecules such as antibodies [3,4] and small molecules such as doxorubicin [5] or cisplatin [6], 

xenograft experiments showed that anti-cancer drugs only penetrate about 100 µm around blood 

vessels, and therefore target only a minority of cancer cells. As these drugs are transported in the 

same way as oxygen and nutrients, their access to the tumor cells via the existing blood vessels is 

accordingly limited. Due to the lack of oxygen and nutrients, a fraction of the oxygenated 

proliferating cells, those that are more than 100 µm from a blood vessel, switch into a hypoxic and 

later into a necrotic state.  

Due to this low penetration depth, cancers consist mainly of hypoxic and necrotic areas; this leads to 

treatment resistance because hypoxia enhances chemo- and/or radioresistance of cancer cells [7]. After 

the removal of oxygenated cells by chemotherapy or radiotherapy, formerly hypoxic cells are 

resupplied with oxygen and nutrients, leading to an oxygenated state. This process is called 

reoxygenation, and it also rescues hypoxic cells from becoming necrotic. The process of 

reoxygenation is utilized during radiotherapy, where small radiation fractions are applied at short 
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intervals, leading to radiosensitization of previously hypoxic tumor areas [8]. Saggar and Tannock 

investigated chemotherapy-induced reoxygenation using hypoxia markers to quantify the number of 

cells that are reoxygenated after therapy in MCF-7 and PC-3 xenograft mouse tumor models [9]. 

They showed that after 24 hours, approximately 90% of the hypoxic cells were already reoxygenated 

in xenograft primary tumors of both cell lines. 

Mathematical models are widely used to describe the increase in tumor volume over time, the 

spread of metastases, and the effect of different treatment strategies [10–14]. In order to create 

biologically meaningful translational predictions (e.g., optimal treatment doses), these models have 

to be calibrated with experimental data, validated with untrained data, and evaluated on predictive 

performance for known treatments [15]. Mathematical models can also be useful for developing a 

better understanding of biological mechanisms, which can stimulate new experimental approaches. A 

variety of mathematical models exist that can describe tumor growth including Gompertz [16,17], 

exponential [18], von Bertalanffy [19], or the generalized logistic model [20,21]. These models only 

consider the change in tumor volume over time, not the behavior of individual fractions within the 

tumor. Ribba et al. published a mathematical model that successfully describes tumor growth and 

tumor fractions over time based on longitudinal data and histological biomarkers [10].  

In order to better understand the limited success of chemotherapy in solid neoplasms, we 

modeled the effect of limited distribution of chemotherapeutic drugs into the primary tumor by 

extending this mathematical model [10], adding a pharmacokinetic-pharmacodynamic model [22], 

and including the reoxygenation of hypoxic cells. In a second step, the effect of chemotherapy on 

disseminated tumor cells (DTCs) and multicellular metastases was studied. DTCs and small 

metastases are of particular relevance as they consist only of tissue that is well supplied with 

nutrients and oxygen and have not built up increased TIFP. Only once metastases have grown to a 

certain size does TIFP build up, leading to the formation of hypoxic and necrotic tumor fractions. 

Changes were identified in the overall effectiveness of chemotherapy, which decreased with the 

progression of the disease. TIFP also has adverse effects on the treatment of metastases and is, 

therefore, a critical factor that must be considered in developing treatment strategies for malignant 

tumors.  

2. Materials and methods 

2.1. Longitudinal tumor data and histological biomarkers 

To investigate the limited convection of chemotherapeutic drugs into the primary tumor, we 

used experimental data, including tumor size and histological biomarkers, which describe two 

fractions of the tumor over time: hypoxic and necrotic tissue [10]. In this study 6 × 10
6
 HT29 cells 

were subcutaneously injected into 15 female athymic nude mice. Tumor size was measured at 

repeated intervals using a caliper. The percentage of hypoxic and necrotic tissue was determined 

using immunohistochemistry. The mean values of tumor size (mm) and hypoxic and necrotic 

fractions (%) for each measured time point were obtained using WebPlotDigitizer [23]. The 

oxygenated fraction of the tumor was deduced from the hypoxic and necrotic fractions. 
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2.2. Metastasis formation and dormancy behavior 

Since no metastases were examined in the original study, we used data from an HT29 xenograft 

mouse model [24], which provided information about the number and size of the metastases at the 

end of the experiment. In this study 1 × 10
6 

HT29 cells were subcutaneously injected into pore-

forming protein and recombination activating gene 2 double knockout (pfp/rag2) mice and in 

recombination activating gene 2 only knockout (rag2) mice. In pfp/rag2 mice typical metastases (~ 789) 

consisted of approximately 10–100 tumor cells. In rag2 mice, only disseminated tumor cells were 

generally found (~ 200). Computer simulation of the metastatic spread proved that metastases stayed 

dormant for at least 30 days after reaching a size between 10 and 100 cells in the pfp/rag2 group. In 

contrast, the metastatic cells in the rag2 group entered an initial dormant phase, in which they 

remained for 30 days before starting to proliferate. 

2.3. Reoxygenation of hypoxic tumor cells 

Investigations of human breast (MCF-7) and prostate cancer (PC-3) primary xenograft tumors 

have shown that chemotherapy induces reoxygenation and repopulation of hypoxic cells [9]. In this 

study 5 × 10
6
 MCF-7 and 2 × 10

6
 PC-3 cells were subcutaneously injected into female and male 

athymic nude mice, respectively. The tumor hypoxia marker pimonidazole was given concurrently 

with doxorubicin. At 24, 48, 72, 96 and 120 hours following initial treatment, a second tumor 

hypoxia marker EF5 was injected to quantify reoxygenated tissue. The reoxygenation process 

rescues hypoxic cells from conversion to a necrotic state by resupplying oxygen and nutrients 

(Figure 1). Approximately 90% of the hypoxic cells were converted to an oxygenated state after 24 hours. 

After 120 hours, around 100% of formerly hypoxic cells were reoxygenated. The number of 

reoxygenated cells should depend on the number of eliminated oxygenated cells. For example, if 

only 20% of the tissue is destroyed during therapy, it is implausible that all hypoxic cells will be 

converted back into an oxygenated state if the number of cells in the hypoxic tissue is higher than the 

initial number of cells in the oxygenated tissue. We assume that rescued hypoxic cells are able to 

proliferate after being converted to an oxygenated state.  

 

Figure 1. Schematic representation of the effect of reoxygenation of the hypoxic fraction 

after treatment. The drug destroys a specific number of tumor cells in the oxygenated 

fraction of the tumor. Depending on the number of cells in the oxygenated fraction that 

are destroyed, some (or all) of the hypoxic cells are resupplied with nutrients. The cell 

numbers in the hypoxic fraction decrease. P: Oxygenated tissue, Q: Hypoxic tissue, N: 

Necrotic tissue. 
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2.4. Mathematical model 

An existing tumor growth model was coupled with models of the pharmacokinetics and 

pharmacodynamics of a cell-cycle non-specific drug such as cisplatin (an alkylating agent), 

reoxygenation of hypoxic tissue after treatment, and metastasis formation and dormancy behavior 

(Figure 2).  

 

Figure 2. Schematic description of the full mathematical model. The mathematical model 

consists of two main parts: The pharmacokinetic/pharmacodynamic (PK/PD) part describing 

drug behavior and the part modeling tumor growth (Tumor/Metastasis Growth [10]). Each 

compartment of the primary tumor/metastasis contains cancer cell species (oxygenated, 

hypoxic, necrotic) that characterize the amount or concentration of an entity, e.g., the 

number of oxygenated cells (P). Solid black arrows describe the interaction between 

compartments. For example, the drug in the central compartment moves into the 

peripheral compartment, where the rate constant k12 regulates the amount of the drug. 

Gray dotted arrows indicate where the quantity of the cancer cell species is specified by 

the amounts or concentrations of other cancer cell species and not by rates. Black dashed 

arrows describe dependencies, e.g., the maximal tumor size is limited by the carrying 

capacity K, which depends on the rate of increase in the carrying capacity. A complete 

description of the model is given in the main text. 

2.4.1. Mathematical model of tumor growth 

The mathematical model of tumor growth published by Ribba et al. [10] describes the growth of 

cancer and its tumor fractions over time. The tumor consists of three main compartments: 

Oxygenated (P), hypoxic (Q), and necrotic tissue (N). P* represents the total tumor size. The 

oxygenated tissue follows a generalized logistic equation, where the maximum size is limited by a 

carrying capacity (K) that describes the maximum tumor size that can be reached with the amount of 

physical space and nutrients available. Therefore, the carrying capacity depends on the rate of 

increase in carrying capacity for a specific cell line (b) induced by angiogenic processes. Since we 
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assume that only oxygenated cells are able to proliferate, P is the growth rate constant for the 

oxygenated tissue. The parameter s regulates the slowdown of the logistic growth of oxygenated 

tissues and   reflects the effect of hypoxic stress. Cell transfer from oxygenated tissue (P) to hypoxic 

tissue (Q) and hypoxic tissue (Q) to necrotic tissue (N) is modeled via the rate constants kPQ and kQN, 

respectively. The system equations are given by the following: 
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2.4.2. Pharmacokinetic-pharmacodynamic model 

We modeled the pharmacokinetics (PK) of a cell-cycle non-specific drug using a two-

compartment model. The system is divided into two kinetically different regions: Central (CD) and 

peripheral (PD) compartment [22]. The central compartment consists of the plasma and tissues where 

the drug is homogeneously distributed right after the administration. In contrast, drug distribution in 

the tissue of the peripheral compartment is slower. The intravenous bolus administration is modeled 

via the addition of the dose to the central drug compartment. The parameters k12 and k21 are rate 

constants characterizing drug movement between the central and peripheral compartment. ke 

represents the rate constant for drug elimination (clearance) out of the central compartment, which 

leads to a drug concentration c(t) that is following an exponential decay function (as illustrated in the 

“PK/PD” sub-model in Figure 2). The corresponding model equations are given by: 

   
  

   (      )                
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To include the effect (PD) of limited diffusion of chemotherapeutic agents into the primary 

tumor, the drug only affects cells in the oxygenated layer (P), because drugs cannot diffuse into the 

hypoxic layer due to the limited penetration depth of 100 µm around blood vessels [5,6]. The 

parameter k2 represents the drug potency. Treatment was applied on days 10, 20 and 30. 

2.4.3. Reoxygenation of hypoxic cells  

The process of reoxygenation is modeled by the fraction of the hypoxic cells (kQPQ) that is 

transferred to the oxygenated compartment after treatment, where kQP is the constant transfer rate. 
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This approach is similar to models of the reoxygenation process after chemotherapy or radiotherapy 

treatment [25–27]. Since approximately 90% of hypoxic cells were already reoxygenated after 24 hours 

in a previous study [9], we assume that the reoxygenation process begins immediately after 

chemotherapy. Cell transfer from the hypoxic to the oxygenated compartment remains active until 

the number of cells in the oxygenated layer reaches the number of cells before treatment. This 

decision is based on experiments showing that chemotherapy does not lead to better blood supply 

through angiogenesis, but to a reduction in blood vessel density, which is still detectable several days 

after the therapy ended [28]. Therefore, the number of cells in the oxygenated layer during the 

reoxygenation process cannot be higher than the number before treatment. 

2.4.4. Spread and growth of metastases 

The primary tumor spreads single malignant cells at a colonization rate  (  ), which depends 

on the per day probability m that any individual cell will spread and establish a distant metastasis, the 

number of cells in the primary tumor P*, and the fractal dimension of blood vessels   [29]. A fractal 

dimension of 2 implies that the tumor is superficially supplied with blood vessels, while a value of 3 

means a completely supplied tumor.  

 (  )          
(3) 

A cumulative trapezoidal numerical integration of the colonization rate was performed to derive 

the time of development of each metastasis from the integrated values. Each time the integrated 

values reach the next integer value, a new metastasis is created.  

The growth of metastases starts from a single cell and follows the growth pattern of the primary 

tumor. Metastases also consist of oxygenated, hypoxic, and necrotic tissue. Since nutrients are only 

transported up to 100 µm away from the blood vessels, we assume that the formation of a hypoxic 

and necrotic layer only begins when the metastasis reaches a threshold diameter of 200 µm with an 

assumed superficial blood supply. Therefore, the initial values of the rate constants kPQ and kQN were 

set to 0 until the size of the metastasis reached this threshold. 

2.4.5. Modeling late dormancy 

Malignant cells emitted from the primary tumor can stay dormant for a certain length of time or 

enter a late dormancy state after they reach a specific size [24]. In this article we focus on the case of 

metastases entering a late dormancy phase of 30 days. With the chosen treatment strategy, it makes 

no difference whether 1 or 100 cells are affected since chemotherapy is parameterized in such a way 

that all treatable cells will be destroyed. Furthermore, all metastases are in a dormant phase at the 

selected treatment times (days 10, 20 and 30). The growth parameter P and transfer rate constants 

(kPQ, kQN) are set to a value of 0 during the time span of dormancy (30 days). Based on previous 

experiments on metastasis formation, the number of cells at which metastases enter a late dormant state is 

calculated randomly for each metastasis based on a uniform distribution between 10 and 100 cells [24]. 
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2.4.6. Combined model  

The full mathematical model including tumor growth, chemotherapy treatment, reoxygenation 

of hypoxic cells, and dormancy of metastases is defined by: 
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2.5. Model calibration 

Experimental data was used to determine model parameters and rate constants in order to 

calibrate the model. 

2.5.1. Primary tumor growth 

The growth of tumor size in experiments is usually measured as diameter in mm. For computer 

models the number of cells is required. The diameter of the tumor (mm) was converted to volume 

(mm
3
) and multiplied by 10

6
 using the well-established conversion rule (1 mm

3
 ~ 1 × 10

6
 cells) to 

determine the number of cells [30]. The number of hypoxic and necrotic cells was calculated from 

the percentage of tumor fractions at each measuring time point. Least-squares minimization was 

performed using fmincon from the MATLAB Optimization Toolbox (MATLAB R2019b, The 

MathWorks Inc., Natick, USA) to obtain all model parameters based on experimental tumor data. 

The number of initial tumor cells in the oxygenated compartment (P) was set to 6 × 10
5
 cells during 

the parameter estimation process because our previous study showed that only 10% of the 

subcutaneously injected tumor cells survive the first 24 hours [31]. Furthermore, fixation of the 

initial tumor cell number to a well-known value reduces the number of degrees of freedom and 

improves the parameter estimation results. 

2.5.2. Pharmacokinetic-pharmacodynamic model 

Due to the absence of pharmacokinetic and pharmacodynamic data for the experimental data 

analyzed here, we used determined parameters from Simeoni et al. [32], which describe the drug 
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concentration of the chemotherapy agent paclitaxel over time. We adjusted the drug potency 

parameter k2 until all cells in the oxygenated fraction of the tumor and metastases were eliminated (in 

the absence of reoxygenation) to mimic the most effective treatment. Since the cells in the 

oxygenated layer will be entirely destroyed, the limiting effect of the interstitial fluid pressure on the 

efficacy of the chemotherapeutic drug can be studied most clearly.  

2.5.3. Reoxygenation 

Previous experimental data from human MCF-7 and PC-3 primary xenograft tumors in mice 

were used to determine the reoxygenation rate kQP of hypoxic cells [9]. These data provide the 

percentage of reoxygenated cells 24, 48, 72, 96 and 120 hours after the application of chemotherapy. 

They show that 90 and 100% of hypoxic cells were reoxygenated by 24 and 120 hours, respectively. 

These percentages represent the mean values from four mice. Based on these percentages, growth 

data for the reoxygenation process after the application of chemotherapy was generated. For example, 

1 × 10
5
 cells were killed by chemotherapy in the oxygenated layer. After 24 hours, 9 × 10

4
 cells 

(90%) are already reoxygenated. After 120 hours, the oxygenated layer has regained its pre-treatment 

cell count. The generated data were used to estimate the reoxygenation rate constant kQP using 

lsqnonlin (trust-region reflective algorithm). The number of cells that are reoxygenated can change 

depending on the drug concentration in the system. Since we assume that reoxygenation starts 

immediately after the therapy, reoxygenated cells can also be killed. The reoxygenation process 

remains active until the number of cells has reached the cell count in the oxygenated layer before 

treatment. 

2.5.4. Spread of metastases 

We assumed a superficial blood supply (fractal dimension  = 2) for the primary tumor due to 

the fast growth behavior that is observed in typical xenograft experiments. Based on experimental 

data [24], we adjusted the per day probability m for each cell to spread and establish a distant 

metastasis until the metastasis count reached a value of 789.  

2.6. Simulation procedure 

The mathematical model was implemented in MATLAB SimBiology
®

-Command line 

(MATLAB R2019b Update 4, 9.7.0.1296695, The MathWorks Inc., Natick, USA). We used the 

SUNDIALS solver (Suite of Nonlinear and Differential/Algebraic Equation Solvers) to solve the 

model’s ordinary differential equations. The simulation time was set to 50 days. The first step was 

the parametrization of the primary tumor, the spread of metastases, and reoxygenation based on the 

model calibration results. After this simulation, the metastasis creation time was calculated based on 

the colonization rate  (  ). The last step was the simulation of each metastasis. This procedure 

allowed us to examine the course of the individual fractions of each metastasis for further evaluations.  
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3. Results 

3.1. Calculations and observations for primary tumor fit well  

The tumor growth model was calibrated with experimental data, including longitudinal tumor 

data and histological biomarkers (hypoxic and necrotic fractions). The initial number of surviving 

engrafted tumor cells after subcutaneous injection (P) was set to 6 × 10
5
 cells. The predictions were 

in good agreement with the observed values from experimental data (tumor cells R
2
 = 0.95, hypoxic 

cells R
2
 = 0.82, necrotic cells R

2
 = 0.97). The parameterized model was able to describe the size of 

the tumor and the dynamics of its hypoxic and necrotic fractions based on the number of cells 

(Figure 3). The estimated parameters are displayed in Table 1.  

 

Figure 3. Model predictions vs observed values and simulation results of primary tumor 

growth including 95% confidence intervals. Panels A–C show the individual model 

predictions of tumor cells (A), hypoxic cells (B), and necrotic cells (C) compared to the 

observed values from experimental data. Panels D–E show model simulations with a 95% 

confidence interval. Tumor size (A, D), hypoxic (B, E) and necrotic (C, F) fractions.  

3.2. Percentage of oxygenated cells in a tumor decreases rapidly with time 

Some time after subcutaneous injection of HT29 tumor cells into mice, the engrafted surviving 

cells form a local tumor nodule and develop hypoxic and necrotic fractions depending on the blood 

vessel geometry. Experimental tumor data, including histological biomarkers of hypoxic and necrotic 

tissue, were used to estimate model parameters and rate constants. Figure 4 shows the simulation 

output of untreated tumor growth including the percentage of tumor fractions over time. According 

to the model output, the percentage of oxygenated cells decreased significantly over time compared 
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to the tumor size. This finding implies that the tumor consists mainly of hypoxic and necrotic tissue, 

which is in good agreement with the experimental data [10]. 

Table 1. Parameter description and estimated values. 

Parameter Description Value 

P0 Initial tumor size  6.00e5 cells* 

K0 Initial carrying capacity 1.1193e9 cells 

P Growth rate for the oxygenated tissue 1.8420 day
-1

 

kPQ Transfer rate from oxygenated to hypoxic tissue compartment 0.3595 day
-1

 

kQN Transfer rate from hypoxic to necrotic tissue compartment 0.1141 day
-1

 

kQP Transfer rate from hypoxic to oxygenated tissue compartment  2.2216 day
-1

 

b Rate of increase of carrying capacity 0.5811 day
-1

 

m Per day probability to spread and establish a distant metastasis 2.732e-8 (cell day)
-1

 

δ Fractal dimension of blood vessels 2 

 Effect of the hypoxic stress on the growth 0.1* [10] 

dose Drug dose 20 arbitrary unit * 

k12 Transfer rate from central to peripheral compartment (PK/PD) 0.0115 day
-1 

[32] 

k21 Transfer rate from peripheral to central compartment (PK/PD) 0.0616 day
-1 

[32] 

ke Rate constant for drug elimination (clearance) 3 day
-1 

* 

k2 Drug potency (effectivity) 2.1 * 

*Known parameters were set to a fixed value during the parameter estimation procedure, which increased the 

accuracy of the estimates and reduced the number of degrees of freedom. 

 

Figure 4. Dynamics of untreated tumor growth and tumor fractions over time. Panel A 

shows the change in size of the tumor over time. Panel B shows percentages of tumor 

fractions over time. The number of cells in the oxygenated tissue increased slowly (A), 

while the percentage decreased in relation to the size of the tumor (B). Hypoxic and 

necrotic tissue compartments represent the most substantial parts of the tumor. Panel C 

shows the tumor structure in layer form over time. 
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3.3. Effectiveness of chemotherapy on tumors decreases rapidly over time  

Chemotherapeutic drugs only penetrate about 100 µm around blood vessels, and therefore only 

target cancer cells within this range [5,6]. The percentage of oxygenated cells in a tumor after 

chemotherapy could be understood as an indicator of the success of the therapy since hypoxic (and 

necrotic) cells are chemotherapy resistant [7]. One reason for this resistance is their increased 

distance from blood vessels, so that no chemotherapeutic drugs can reach these cells [5,6]. 

Furthermore, this distance also causes nutrient and oxygen deficiency, which slows down the cell 

cycle and, as a result, the proliferation rate [33]. Therefore, cell-cycle specific drugs are less effective 

in these cells because they are only active in a particular phase of the cell cycle. We investigated the 

effectivity of cell-cycle non-specific chemotherapy, which can treat cells in all phases of the cell 

cycle. Since cell-cycle non-specific drugs destroy more cells than cell-cycle specific drugs, we can 

focus on the limited distribution of the chemotherapeutic drug. 

The drug potency parameter k2 for cell-cycle non-specific chemotherapy was manually adjusted 

until the number of cells in the oxygenated layer was smaller than one cell layer after treatment in the 

absence of reoxygenation. A value of k2 = 2.1 was determined for all three treatment time points 

(days 10, 20 and 30). The number of cells in the oxygenated layer is affected by the occurrence of 

reoxygenation of hypoxic cells, which is assumed to start immediately after cells are destroyed in the 

oxygenated layer. This approach is based on our assumption that more cells are destroyed if a 

sufficient concentration of the chemotherapeutic drug is still present, depending on the PK/PD 

model's parameterization. Figure 5 shows the results of model simulations of chemotherapy 

treatment at three different treatment times (days 10, 20 and 30, panels A–F) as well as the 

percentage distribution of the tumor fractions before and after treatment (panels G–I). Since the 

formation of the necrotic portion of the tumor is not reversible and treatment of these cells has no 

effect, the oxygenated and hypoxic fractions represent the potentially treatable part of the tumor. 

Over time, the treatable part of the tumor became smaller and smaller, and hence a more substantial 

portion of the tumor could be destroyed with early treatment. However, the fact that penetration of 

the drug is limited to 100 µm around blood vessels prevents treatment of the hypoxic fraction, even 

for small tumors. Panels A–C show the course of tumor growth for three different treatment times 

(days 10, 20 and 30). As shown in panel D (blue dotted lines), the oxygenated cells were killed in the 

first days after the application of chemotherapy. The decreasing concentration of the drug, combined 

with reoxygenation of the hypoxic cells and the proliferative behavior of the oxygenated cells, led to 

recovery of the oxygenated tissue. The hypoxic layer also decreased in size due to the reoxygenation 

process, as hypoxic cells switched into an oxygenated state (panel E). Since reoxygenation prevented 

a proportion of hypoxic cells from entering the necrotic state, the growth of the necrotic layer slowed 

down (panel F). The values for the oxygenated, hypoxic, and necrotic fractions were determined 

when the drug concentration (central drug) reached a value below 1% of its peak concentration (day 2 

post-treatment) in order to compare the tumor fraction distribution before and after therapy. This 

drug concentration is considered to have a negligible therapeutic effect [34,35]. If treatment 

commenced on day 10, the proportion of potentially targetable tumor cells was higher than if it starts 

on day 20 or 30 (panels G–I). The percentage of necrotic tissue before and after treatment provides 

information about the therapeutic efficacy. The necrotic portion did not grow abruptly after treatment 
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but did represent a higher percentage of the tumor volume since the oxygenated tissue had been 

killed and a fraction of the hypoxic cells had been reoxygenated. The difference between the necrotic 

tissue fraction before and after therapy was 49% (G), 47% (H) and 37% (I) on treatment days 10, 20 

and 30, respectively. These results imply that the timing of chemotherapy treatment is critical in the 

presence of interstitial fluid pressure, which leads to the formation of hypoxic and necrotic tumor 

fractions.  

The application of chemotherapy can possibly disrupt the blood vessel geometry [28]. As an 

effect of the altered geometry, cell transfer from the hypoxic to the oxygenated compartment after 

chemotherapy might lead to a reduced number of cells after treatment only due to the smaller amount 

of cells that are in contact with blood vessels. To study this effect, we performed the same simulation 

with a modified reoxygenation behavior (Figure S1). In this scenario, cells were transferred from the 

hypoxic to the oxygenated compartment until the number of cells in the oxygenated compartment 

reached 80% of the cell count before treatment. This percentage represents a reasonable assumption 

in our view since no experimental data is available. Similar results were obtained in comparison to 

the simulation with a reoxygenation behavior in which the number of cells is completely restored 

during the reoxygenation process indicating that the percentage of the oxygenated fraction is of 

lesser importance.  

 

Figure 5. Simulation results of tumor growth under chemotherapy on different days. 

Panels A–C show the growth curves of an untreated tumor (solid lines) and the treated 

tumor (dashed lines). Treatment was applied on day 10 (A), day 20 (B), and day 30 (C). 

Panels D–F show the effects of different treatment times on the oxygenated (D), hypoxic 

(E) and necrotic layers (F). Panels G–I compare the percentage distribution of the 

individual tumor fractions before and two days after treatment for tumors treated at day 

10 (G), 20 (H) and 30 (I), respectively. 
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3.4. Interstitial fluid pressure protects metastases from chemotherapy 

Inspired by the simulation results for the effects of chemotherapy on the size of the primary 

tumor, we applied the same procedure to understand its impact on the spread of malignant cells and 

metastases. The colonization rate µ(P
*
) was parametrized in such a way that an untreated primary 

tumor spread and established 789 distant metastases, which was the observed mean number from 

previous HT29 xenograft experiments [24]. We assumed a superficial blood supply (fractal 

dimension of 2) due to the rapid growth of the primary tumor. In some of our previous research, the 

size of metastases at the end of the experiment ranged from 10 to 100 cells, which implied a late 

dormancy after metastases reached a specific size [24]. Two main scenarios were considered, namely 

metastases with and without dormancy behavior. Chemotherapy was applied on day 30 in both 

scenarios with a simulation time of 50 days. In addition, effects of the resection of the primary tumor 

two days after chemotherapy treatment commenced were simulated for both scenarios.  

Figure 6 shows different simulation scenarios to investigate the influence of chemotherapy on 

metastasis formation. The untreated primary tumor established 789 distant metastases. In contrast, 

the treated primary tumor, which received chemotherapy on day 30, established 683 distant 

metastases or disseminated tumor cells due to a reduced spreading behavior because the reduction in 

the size of the primary tumor    affected the colonization rate  (  ) . Chemotherapy had no 

substantial effect on metastases that had already built up interstitial fluid pressure. Only 56 

metastases that were smaller than 200 µm in size at the time of commencement of chemotherapy 

were destroyed (blue bar). In the scenario where metastases switched into a late dormancy state 

(Figure 7B,C), chemotherapy destroyed 266 metastases. The remaining 417 metastases were 

disseminated after application of chemotherapy and could not be treated. With an additional 

resection two days after chemotherapy, 761 distant metastases or disseminated tumor cells were 

eliminated.  

In addition, we studied blood vessel disruption after chemotherapy to analyze its influence on 

spreading behavior. As in the utilized model of vascular tumor growth [10], the disruption of blood 

vessels was realized with the formula 
  

  
       , where   was set to an arbitrary value of 0.1 

during treatment. Since no data about the alteration of the blood vessel geometry is available for the 

used experiment, the changed fractal dimension of blood vessels after the chemotherapy was 

estimated from our previous studies [28]. To obtain a biologically realistic value we adjusted the 

fractal dimension after chemotherapy to the mean value of 1.58. Supplementary Figure S2 represent 

the same simulation scenarios to investigate the influence of chemotherapy on metastasis formation. 

In general, the disruption of blood vessels has a positive effect on the spreading behavior of 

malignant cells, since the primary tumor spread fewer malignant cells. Although surgical removal of 

the primary tumor stops the tumor's spread, the resistance of the metastases due to the increased 

interstitial fluid pressure is the most prominent obstacle in the treatment of cancer. 

As with the primary tumor, the timing of the initiation of chemotherapy plays an important role 

in the treatment of metastases, because in small metastases interstitial fluid pressure has not been 

built up. Interstitial fluid pressure protects metastases from chemotherapy if they are not in a dormant 

state or have grown larger than 200 µm in diameter, leading to the development of hypoxic and 
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necrotic fractions. Furthermore, the results show that one cycle of chemotherapy is not sufficient to 

kill all metastases if the primary tumor is not removed by surgery. 

 

Figure 6. Effect of chemotherapy on the number and size distribution of metastases in 

different scenarios. Panel A shows the number of metastases after different treatment 

strategies and in varied growth conditions. Panel B shows the size distribution of 

metastases for chemotherapy when there was no dormancy of the metastases, leading to 

build-up of interstitial fluid pressure (ChT). Panel C shows the size distribution of 

metastases for chemotherapy when metastases showed dormancy behavior (ChT + 

dormancy). The chemotherapy was applied on day 30. The simulation time was set to 50 

days. Gray bars represent reference values (Ref.) for an untreated and a tumor treated 

with chemotherapy to compare treatment effectivity.  

3.5. Drug clearance is the most sensitive parameter for tumor growth behavior  

Chemotherapy profiles from real published experiments were used [32]. To understand the 

limitations of the present approach, we generated 25 synthetic parameter sets to simulate different 

treatment effects on a primary tumor that received chemotherapy on day 30, as previous results (Figure 5) 

showed that this treatment time point was the most ineffective of the whole series of time points used. 

The effects on the number and size of distant metastases in the absence and presence of interstitial fluid 

pressure were also investigated. We performed a local sensitivity analysis (SimBiology
®

 Model Analyzer) 

of the model to investigate which PK/PD parameters had a significant influence on the growth behavior 

of the primary tumor or metastases (P
*
, P, Q and N). Since the anti-cancer drug influenced the size of the 
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primary tumor and the number of metastases, the tumor growth response was simulated for each of the 

synthetic parameter sets. The local sensitivity analysis of the combined model showed that drug clearance 

ke (µ = 3.0) and drug potency k2 (µ = 2.1) are the two most sensitive parameters that affect tumor growth 

behavior. This is especially true for the oxygenated fraction P since the treatment is only effective in this 

tissue which is limited due to the low penetration depth when diffusion takes place, but convection is 

absent. The full sensitivity analysis for the combined model is displayed in the supplementary material 

Figure S3 which increases the understanding of the relationships between input and output parameters in 

our model for further investigation. We drew parameter values from a joint probability distribution with a 

standard deviation of  = 0.20 for both parameters to cover a wide parameter range. To select a subset of 

samples, random sampling with a rank correlation matrix, where the matrix was an identity matrix, was 

performed. Simulations were then performed for each parameter set. 

Figure 7 shows the distribution of each parameter and simulation outputs for the primary tumor 

based on the generated synthetic samples. The influence of the different therapies led to an overall 

reduction in tumor size (P
*
; range −22 to +8%) at the end of the experiment (simulation time 50 days, 

treatment on day 30). Compared with the drug potency k2, drug clearance ke had a considerably greater 

influence, as reduced clearance meant the drug was present within the system and affecting tumor cells 

for a prolonged period of time. Furthermore, depending on the length of time the drug was present in the 

system, the oxygenated tissue recovered faster or slower (Figure 7F), which influenced the overall 

reduction in tumor size. Drug potency k2 can also have a substantial impact but this is limited to the 

oxygenated compartment due to the low diffusion depth. The various tumor size reductions led to 

different spreading behaviors as well as different size distributions of those metastases that did not switch 

into a dormant phase. No differences were found in metastases that switched into a late dormant state 

after reaching a size of 10 to 100 cells. This result indicates that all metastases present at the time of 

therapy are killed in the absence of interstitial fluid pressure. 

 

Figure 7. Synthetic parameter samples and tumor growth response. Panels A–D show the 

histogram and distribution of drug clearance ke and drug potency k2 varying around its 

parameter value (gray dash-dot line). Panels E–H show simulation outputs of tumor growth 

behavior for tumor size (E), oxygenated cells (F), hypoxic cells (G), and necrotic cells (H). 

The black line indicates the model output with the estimated values whereas gray dashed 

lines represent model outputs with synthetic samples.  
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4. Discussions 

4.1. Mathematical modeling of metastatic spread  

The mathematical tumor growth model presented here and calibrated with longitudinal tumor 

data and histological biomarkers successfully describes the development of hypoxic and necrotic 

fractions reported by Ribba et al. [10]. Since no metastases were investigated in the original 

experiment, we used data from other HT29 xenograft experiments to calibrate the model for the 

primary tumor to spread and establish distant metastasis [24]. Previous research showed that 

chemotherapy modifies the geometry and density of the blood vessels [28]. This change was still 

detectable 15 days post-treatment compared to the control group, and led to a reduction in the 

number of malignant cells that were able to spread to distant sites. Even if the correct number of 

metastases is not known for the underlying experimental data, chemotherapy will have a similar 

effect on the number of metastases because the increased interstitial fluid pressure limits the 

distribution of the drug. The simulation results clearly showed the impact of interstitial fluid pressure 

inside the tumor, which results in a barrier to oxygen, nutrients, and drugs. 

4.2. Build-up of interstitial fluid pressure in metastases 

In cancers, oxygen and nutrients penetrate only about 100 µm around the blood vessels in the 

presence of increased interstitial fluid pressure. This increased interstitial fluid pressure results in the 

formation of hypoxic and necrotic fractions once the tumor has reached a specific size. In contrast to 

large primary tumors, micrometastases are too small for interstitial fluid pressure to build up and the 

blood supply can reach all cells. This is the equivalent of a fractal dimension of 3 for the blood 

vessels. Micrometastases consist only of oxygenated cells until their size reaches a certain threshold 

when the fluid pressure starts to build up. The threshold value for the formation of hypoxic and 

necrotic layers may vary with different blood vessel geometries. Further investigations of the 

dynamics of hypoxic and necrotic tissues are important in order to better understand this process. 

This variation in the threshold may have a negligible effect when metastases grow as rapidly as the 

primary tumor, leading to a superficial blood supply after several days. Furthermore, metastases may 

switch into a late dormant state for at least 30 days after reaching a size between 10 and 100 cells [24]. 

However, this threshold may be important for simulation scenarios that extend far beyond a period of 

about 50 days. 

4.3. Chemotherapy resistance of dormant cells 

In a previous HT29 xenograft study, the metastases present at the end of the experiment 

consisted of 10–100 tumor cells in pfp/rag2 mice and only disseminated tumor cells were generally 

found in rag2 mice. This difference in the number of metastases was caused by a late dormancy 

phase of at least 30 days when cells entered a reversible cell cycle arrest in the pfp/rag2 group. The 

emitted cells in the rag2 group underwent an initial dormancy phase before they were able to 

proliferate. Cell-cycle specific chemotherapy agents such as doxorubicin that target actively dividing 
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cells cannot kill cells that are in a dormant state because they are not cycling [36]. In contrast, cell-

cycle non-specific drugs kill cells in any phase of the cell cycle. In order to be able to affect both types 

of cell simultaneously, up to five agents could be combined, including cell-cycle specific and cell-cycle 

non-specific chemotherapy agents (polychemotherapy) [37]. The mathematical model must be 

modified to model cycling and resting cells in the oxygenated layer to perform simulations of cell-

cycle specific treatments [38]. Since cell-cycle non-specific chemotherapeutic agents such as cisplatin 

were used in our simulations, the simulated treatment was able to kill dormant cells as well. Therefore, 

simulation results obtaining using cell-cycle specific chemotherapy may show reduced treatment 

efficacy compared with cell-cycle non-specific chemotherapy. 

5. Conclusions 

In this article, a mathematical model is presented to model tumor growth and the dynamics of 

oxygenated, hypoxic and necrotic tumor fractions. This model was combined with a pharmacokinetic-

pharmacodynamic model that describes the behavior of a chemotherapeutic drug over time. We used 

this combined model as a theoretical tool to investigate the effects of limited distribution of 

chemotherapy into the primary tumor and metastases as a result of interstitial fluid pressure, which 

means chemotherapy drugs can only penetrate about 100 µm around blood vessels. The number of 

cells in the oxygenated tissue increased slowly over time. However, the size of the oxygenated tissue 

fraction as a percentage of the total tumor size decreased significantly over time, thereby reducing the 

effect of chemotherapy on the entire tumor. This is due to the limited distribution of the drug, which 

can only reach oxygenated cells as oxygen and drug diffuse together to the cancer cells. Therefore, 

early treatment is recommended, especially before surgery, to reduce the base number of oxygenated 

and hypoxic tumor cells and the vessel density to change the spreading behavior of malignant cells. 

Similar results were obtained in the treatment of metastases, where interstitial fluid pressure also limits 

the effect of chemotherapy. The timing of the initiation of chemotherapy is an important factor in the 

success of the treatment, especially when interstitial fluid pressure is increased. Priority should be 

given to overcoming the convection barrier to achieve a higher penetration depth for chemotherapeutic 

drugs [2]. This approach would increase the chances of a cure for solid tumors as a more substantial 

proportion of the tumor cells would be reached by chemotherapy. 
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