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Abstract: This paper presents an improved teaching learning-based whale optimization algorithm 
(TSWOA) used the simplex method. First of all, the combination of WOA algorithm and teaching 
learning-based algorithm not only achieves a better balance between exploration and exploitation of 
WOA, but also makes whales have self-learning ability from the biological background, and greatly 
enriches the theory of the original WOA algorithm. Secondly, the WOA algorithm adds the simplex 
method to optimize the current worst unit, averting the agents to search at the boundary, and 
increasing the convergence accuracy and speed of the algorithm. To evaluate the performance of the 
improved algorithm, the TSWOA algorithm is employed to train the multi-layer perceptron (MLP) 
neural network. It is a difficult thing to propose a well-pleasing and valid algorithm to optimize the 
multi-layer perceptron neural network. Fifteen different data sets were selected from the UCI 
machine learning knowledge and the statistical results were compared with GOA, GSO, SSO, FPA, 
GA and WOA, severally. The statistical results display that better performance of TSWOA compared 
to WOA and several well-established algorithms for training multi-layer perceptron neural networks. 

Keywords: teaching learning-based; whale optimization algorithm; multi-layer perceptron (MLP) 
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1. Introduction 

Since McCulloch and Pitts first proposed the primary theory and learning model of artificial 
neural networks [1]. ANNs can be considered as an effective model that can get desirable results for 
processing supervised/unsupervised machine learning tasks [2]. Hence, ANNs have been widely used 
in various fields as a powerful and practical tool to solve real problems, such as forecast and 
estimation [3], biology and medicine [4], classification [5], pattern recognition [6] and so on [7]. 
Among different artificial neural networks, feed-forward neural networks (FNNs) [8], especially 
two-layer FNNs, is widely applied [9]. In fact, FNNs with two layers is the simplest and most 
widespread practical application. For any type of neural network, learning is considered an important 
and critical process and attracts lots of researchers. The learning process is a key field and the 
purpose of which is to optimize the cost function for feedforward neural networks. The cost function 
is considered to be the mean square error (MSE) obtained by the optimal connection of the weights 
and bias values. 

Generally, the training methods of feedforward neural networks can be seen in two classes: 
gradient-based search methods and metaheuristic search methods. The most popular search method 
in this area is the so-called Back-Propagation (BP) algorithm [10], which is a gradient-based method. 
When dealing with complex optimal problems, it may quickly converge to the local optimal solution 
instead of the global optimal solution. As a result, back-propagation cannot obtain a better candidate 
solution. In addition, the initial solutions of weights, biases, and learning rates determines the 
performance of the BP algorithm. Even if the learning target is reached, this results in the slow 
performance of the BP algorithm. 

In recent years, a growing number of scholars’ regard metaheuristic search methods as the 
training method of feedforward neural networks to alleviate this main drawback. In the stochastic 
algorithms, Montana and Davis proposed genetic algorithm (GA) is the first training method to 
optimize the feedforward neural network [11], they describe a set of experiments performed on data 
from a sonar image classification problem. The experimental results display that GA is superior to 
the BP algorithm when solving complex real problems. Li et al. proposed an improving particle 
swarm optimization algorithm based on neighborhood and historical memory (PSONHM) [12], and 
employed to investigate the efficiencies of PSONHM in training Multi-Layer Perceptron (MLP). The 
experimental results indicate that the proposed PSONHM can effectively solve the global 
optimization problems. Gambhir et al. developed a PSO-ANN based diagnostic model for earlier 
diagnosis of dengue fever [13]. In the proposed model, PSO technique is applied to optimize the 
weight and bias parameters of ANN method. The effectiveness of the proposed model is evaluated 
based on accuracy, sensitivity, specificity, error rate and AUC parameters. The results of the 
proposed model have been compared with other existing approaches like ANN, DT, NB, and PSO. 
Mirjalili et al. proposed using a social spider optimization algorithm to train feedforward neural 
networks [14]. The experimental results show that the algorithm has fast convergence speed and high 
accuracy in most test data sets. Uzlu et al. study is associated with predicting energy consumption in 
Turkey [15]. GDP (gross domestic product), population, import and export were used as predictor 
variables. TLBO (teaching–learning-based optimization) and BP were used to train ANNs. 
ANN-TLBO predicted the energy consumption more accurately than ANN–BP. Using the 
ANN–TLBO model, the energy consumption was forecasted until 2020. Aljarah et al. proposed a 
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new training algorithm based on the recently proposed whale optimization algorithm (WOA) [16]. 
The results are verified by comparisons with back-propagation algorithm and six evolutionary 
techniques. Kowalski and Łukasik to compare the Krill Herd Algorithm (KHA) optimization 
algorithm used for learning an artificial neural network (ANN), with other heuristic methods and 
with more conventional procedures [17]. The proposed ANN training method has been verified for 
the classification task. It has been concluded that the application of KHA offers promising 
performance-both in terms of aforementioned metrics, as well as time needed for ANN training. 
Alboaneen et al. used to glowworm swarm optimisation (GSO) algorithm training the MLP neural 
network [18]. The GSO based trainer is evaluated on five classification datasets, the results show that 
our proposed trainer achieves better classification accuracy rate in most datasets compared to the 
other algorithms. Heidari et al proposed a new hybrid stochastic training algorithm using the recently 
proposed grasshopper optimization algorithm (GOA) for multilayer perceptrons (MLPs) neural 
networks [19]. The proposed GOAMLP model is then applied to five important datasets: breast 
cancer, parkinson, diabetes, coronary heart disease, and orthopedic patients. It is shown and proved 
that the proposed stochastic training algorithm GOAMLP is substantially beneficial in improving the 
classification rate of MLPs. Ehsan, et al. proposed an improved cuckoo search algorithm [20]. It is 
employed for training feedforward neural networks for two benchmark classification problems. 
Socha and Blum proposed a Ant Colony Optimization (ACO) variant for continuous optimization 
[21,22]. The results show that the best of our algorithms are comparable to gradient-based algorithms 
for neural network training [23–26]. 

In 2016, Mirjalili and Lewis proposed the whale optimization algorithm [27]. It has proved that 
the WOA algorithm is more competitive than other famous meta-heuristic algorithms. When dealing 
with the real problem, it may quickly reach to the local optimal solution instead of the global optimal 
solution. This phenomenon, called immature convergence, is a common problem in metaheuristics 
[28]. Another question called the stagnation in local optimal solutions [29]. This question can 
seriously lead to the degradation of the candidate solution quality. The phenomenon can happen 
when algorithms fail to get better between exploration and exploitation. Exploration defined as the 
ability of algorithm to find an unknown area in search space. The exploitation stage must follow the 
exploration phase. In this stage, the field of the better-explored positions in various regions is 
included again to get a better candidate solution [30]. Widespread exploration in early iterations and 
then focused exploitation in the final steps of optimization can help the optimizer to avert local 
solutions [31]. 

Studies have shown that some algorithms have better local search capabilities [32], some 
algorithms have better global search capabilities, and some optimization algorithms profit from a 
better balance between exploration and exploitation. Hence, hybrid algorithms can decrease the 
inherent defects of the original algorithm [33]. With this strategy, the hybrid algorithms gain all the 
superiority of the original algorithm. The primary intention of hybrid optimizers is to decrease the 
amount of computation, increase the accuracy of the results, enhanced the stability of the algorithm 
and the convergence trend of the basic algorithm [34]. This paper presents an improved whale 
optimization algorithm which aimed to enhance the precision of the convergence of the basic WOA 
algorithm. In order to test the performance of the algorithm, the optimal weight and biases of MLP 
neural networks are used for classification problems and experimental results indicate that this 
algorithm has better classification accuracy, convergence speed, and convergence precision than 
other algorithms in optimizing multi-layer perceptron neural network. 
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The research content of this paper is as follows: the basic definition of MLP is described in 
section 2. Section 3 describes the original WOA algorithm. The detailed description of the TSWOA 
is presented in section 4. Section 5 details how the TSWOA can be used for training MLP. Various 
experimental results and analyses were conducted in section 6. We conclude in section 7. 

2. Feedforward neural network and multi-layer perceptron 

Feedforward neural network is a prevalent structure of neural network model which employs 
its sophisticated parallel layered to understand and approximate computing models [35]. It is made 
up of many neurons distributed in different levels. The input layer is located in the first layer of 
feedforward neural network, the output layer is located in the last layer, and the hidden layer is 
located in the other layer. Feedforward neural networks that have many hidden layers are called 
multilayer perceptron (MLP), which is displayed in Figure 1. In MLP, neurons are organized in a 
unidirectional pattern. In the network form, the message is spread in one direction, respectively 
through the input layer, the hidden layer, and the output layer. As shown in Figure 1, the data is 
input by the input layer, multiplied by the respective weights, and then taken as the input of the 
hidden layer. After the calculation of the hidden layer, the data is spread to the output layer by 
multiplying the respective weights, and the output is calculated by the output layer. The actual 
output of the neuron is calculated by the activation function. The operation step of MLP is 
displayed in Eqs (1)–(4). 

 

Figure 1. Three-layer FNNs. 

Firstly, the input value of the hidden layer is obtained by using the Eq (1) 
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where n  represents the total number of the input layer, jiw , is the connection weight, bias value of 

the j-th node is expressed as j , and ix  is i -th input data. 

The output value of the hidden layer is obtained by using the Eq (2), 
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Finally, the result of the output layer is described as follows: 
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where kjw ,  is the connection weight from the j -th node to the k -th node, k  expresses the bias 

value of the k -th node in the output layer, and kO is the output value of the k -th node. From Eqs 

(1)–(4), it can be concluded that the connection weights and bias values are the most important parts 
of the MLP, and they confirm the final value of the output. The ultimate goal of optimizing MLP is to 
get the optimal connection weights and bias to achieve the output. 

3. Whale Optimization Algorithm (WOA) 

There are three main stages in the whale optimization algorithm, which are searching prey, 
encircling prey and Logarithmic spiral prey. Among them, searching for prey is the exploration stage 
of the algorithm. Moreover, encircling prey and Logarithmic spiral prey is the exploitation stage of 
the algorithm. This method of Logarithmic spiral prey is based on creating bubbles by encircling or 
through a ‘9’ shaped path [27]. It can be modeled as follows: 

3.1. Searching prey 

At this stage, the humpback whale does not know the position of the prey. The humpback whale 
can only change randomly to update its position. This means that humpback whales randomly select 
the position of an individual from the current population as prey to update its position. The 
humpback whales position is shown by the following Eqs (5)–(6): 

XXCD rand                                  (5) 

  DAXtX rand 1                               (6) 

where 
randX  represents the random vector (a random whale). The coefficient vectors are represented 

by A  and C , and the calculation process is expressed as follows: 

araA  2                                    (7) 

rC  2                                        (8) 

where the vector a  is declining linearly from 2 to 0, and r  is a random vector in the range of 0 

and 1. 
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3.2. Encircling prey 

In the WOA, since it is impossible to know the location of the optimal solution in the search 
space, the algorithm assumes that the prey is the best candidate solution (the optimal whale location) 
or close to the optimal solution. After obtaining the best whale position, all whales update their 
positions towards the current optimal whale position. The calculation process shown as follows: 

   tXtXCD  *                                (9) 

    DAtXtX  *1                             (10) 

where current iteration is shown by t , *X represents the position of the optimal solution. if 1A , 

the searching prey is represented by Eqs (5)–(6), otherwise the encircling prey is represented by 
Eqs (9)–(10), which expresses the shrinking mechanism. 

3.3. Logarithmic spiral updating position 

At this stage, the distance between the individual whale and the optimal whale (prey) position is 
first calculated, and then the whale moves up the water surface in a spiral shape while spitting out 
many bubbles of varying sizes to prey. The whales are updated as follows: 

     tXleDtX bl *'' 2cos1                            (11) 

where    tXtXD  *'  shows the distance from whale to its prey, l is a random number, which is 

the range of –1 and 1, the shape of the logarithmic spiral is defined as b, which is the constant 
number. 

In the process of predation, whales have two ways of predation. Therefore, we assume that their 
probability of encircling mechanism is 50%, and the spiral model updates their positions with the 
same probability, and its model is as follows: 
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where p is a random number, which is the range of 0 and 1. The pseudo-code of WOA can be 

displayed in Algorithm 1 below. 

Algorithm 1. WOA pseudo-code 
1. Initialize the whale population ),....2,1( niXi   
2. Initialize a , A , and C , l , and p  
3. Calculate the fitness of each search agent 
4. *X  = the best search agent  
5. while )max_( iterationt   
6. for each search agent 
7.    Update a , A ,and C , l , and p  

8.  if1 )5.0( p  

9.  if2 )1( A  
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10.     Update the position of the current search agent by Eq (10) 
11.  else if2 )1( A  

12.      Select a random search agent )( randX  
13.      Update the position of the current search agent by Eq (6) 
14.  end if2 
15.  else if1 )5.0( p  
16.      Update the position of the current search by Eq (11)  
17.  end if1 
18.  end for 
19.     Check if any search agent goes beyond the search space and amend it 
20.     Calculate the fitness of each search agent 
21.     Update *X if there is a better solution 
22.     1 tt  
23.  end while 
24.  Return X* 

4. An improved teaching learning-based whale optimization algorithm (TSWOA) 

In the literature [36], the effectiveness of WOA in solving some real problems has been verified. 
Due to the role of leaders, the WOA has better search capability. These random leaders enable the 
whale algorithm to increase the diversity of the population in the early stages. However, the 
algorithm has problems such as slow convergence accuracy and difficulty in jumping out of local 
optimum. In addition, when researchers use WOA to solve complex real-world optimization 
problems, WOA needs some improvements to obtain better performance. Inspired by the 
characteristics of the teaching-learning-based optimization algorithm, we tried to improve the search 
ability of the WOA algorithm by utilizing the advantages of teaching-learning-based optimization 
algorithm (TLBO) [37]. 

It is called TWOA that the teaching phase of TLBO is added to the whale optimization 
algorithm. On the one hand, it enhances the exploitation capability of the algorithm and improves the 
quality of candidate solutions. On the other hand, from the biological background, whales are 
considered as highly intelligent animals with thinking, learning, judging, and communication. 
TWOA enables whales to have the ability of self-learning, which makes the algorithm more 
consistent with the biological mechanism. Meanwhile, the improved algorithm is more 
self-organizing and cooperative. We add the simplex method to the WOA to increase the diversity of 
the population and enrich the exploration capacity of the algorithm. The description of the new 
method is provided in the next subsections. 

4.1. Teaching learning–based optimization(TLBO) 

TLBO is a metaheuristic algorithm whose idea comes from the traditional learning process to 
simulate the teaching of teachers and the learning of students in the class to achieve the purpose of 
optimization [37,47]. A class is a population in the search space, and the number of people in the 
class is the size of the population. The subject the student learns could interpreted as different design 
variables. The learning level represents the fitness of the optimization algorithm, and the teacher is 
the individual with the best fitness value of the population. There are two mechanisms for 
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exchanging information in the classroom: collaboration between teachers and students and between 
students. These intra-class actions implemented in two different consecutive processes: the teacher 
phase is to simulate the influence of teachers on students, and the learner phase is to model the 
cooperative learning between students. 

4.1.1. Teacher phase 

In the teacher phase, the students with the best fitness values are selected as teachers to improve 
the learning level of other students in the class. The average level of the class continues to improve, 
moving towards the optimal solution. The difference between the average level of students 
(population mean) and teachers is as follows: 

))(1,0( meanfteacherdifference XTXrandD                        (13) 

where 
teacherX  is the individual with the best fitness value of the current population. 

meanX  is the mean 

value of the class, which is defined as nXX
n

i

i
mean 




1

. The value of 
fT  can be either 1 or 2, which 

is again a heuristic step and decided randomly with equal probability as ))1,0(1(f randroundT  . 

In the teacher phase, the i-th learner in the class generates a new individual according to the 
following: 

difference
i
old

i
new DXX                                (14) 

4.1.2. Learner Phase 

In the actual teaching process, the teacher's teaching is a heuristic process, and students may not 
be able to improve themselves effectively according to the teacher's teaching. Continuous learning 
from other students after class can improve their ability more effectively, which is the learning stage 
of the TLBO algorithm. 

In the learner phase, randomly select two learners 
iX  and 

jX  from the class, where ji  . The 

i -th learner in the class generates a new individual according to the following: 
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jiij
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jiji
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XfXfXXroundX
X             (15) 

4.2. Our approach (TSWOA) 

4.2.1. The combination of teacher phase and whale optimization algorithm 

In this section, we mainly introduce the combination of teacher phase and whale optimization 
algorithm and we explain how to improve the quality of candidate solutions. To increase the 
exploitation, avoid falling into local optimum, and improve the quality of candidate solutions, we 
consider adding the teacher phase of TLBO to the algorithm to enable whale agents to have a 
capacity of self-learning. After each update of the whale agent, the fitness value of each whale agent 
was calculated. Then select the best whale agent and use formula 14 to guide other whale agents to 
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move towards the current best position to improve the average performance of individuals in the 
population. The implementation steps of TWOA as follows: 

Algorithm 2. TWOA pseudo-code 
1. Initialize the whales population ),....2,1( niXi   

2. Initialize a , A , and C , l ,and p  
3. Calculate the fitness of each search agent   
4. *X  = the best search agent  
5. while )max_( iterationt      
6. for each search agent 
7.    Update a , A ,and C , l ,and p  
8.  if1 )5.0( p  
9.  if2 )1( A  

10.     Update the position of the current search agent by Eq (10) 
11.  else if2 )1( A  

12.      Select a random search agent )( randX  
13.      Update the position of the current search agent by Eq (6) 
14.  end if2 
15.  else if1 )5.0( p  
16.      Update the position of the current search by Eq (11)  
17.  end if1 
18.  Update the position of each search agent by Eq (14) 
19.  Check if any search agent goes beyond the search space and amend it 
20.  end for 
21.  1 tt  
22.  end while 
23.  Return X* 

4.2.2. The Simplex Method (SM) 

Although TWOA enhances the convergence precision of the WOA, it is easy to fall into the 
local optimum, so the Simplex method (SM) [38] is added to not only increase the diversity of 
population but also change the search direction of the algorithm and expand the search space. The 
simplex method obtains higher search accuracy by optimizing and has a good advantage in searching. 
The simplex method uses the optimization idea of reflection, expansion, and contraction of a convex 
figure (simplex) in multidimensional space to reach the minimum point [39]. Therefore, it is easy to 
help the algorithm to jump out of local optima. In this paper, after each update of the whale agent in 
the TWOA algorithm, the simplex method is run, where the specific addition position is shown in the 
pseudocode of Algorithm 3. The schematic diagram of the simplex method (Figure 2) is shown 
below: 
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Figure 2. diagrams of the Simplex method. 

The specific process of the simplex method is described as follows: 
Step 1: Obtaining the objective function value of all points, and getting the best point as the gX , 

and then getting the second-best point as the bX , supposing that sX is the one should be substituted. 

)X(f s , )X(f b and )X(f g show the objective function values. 

Step 2: Obtaining the objective function value of the middle point cX between point gX and 

point bX : 

2

XX
X bg

C


                                   (16) 

Step 3: Obtaining the reflection point rX by using the following formula.  is the reflection 

coefficient, which is set as 1: 

）（ sccr XXXX                               (17) 

Step 4: If   )X(fXf gr  , getting the expansion point from formula 18: 

)XX(XX crce                                  (18) 

where the expansion coefficient is  , which usually set to 2. If )X(f)X(f ge  , sX will be replaced 

by eX ; otherwise, sX will substitute rX . 

Step 5: If )X(f)X(f sr  , the compression point can be acquired by the formula (19): 

)XX(XX csct                                   (19) 

where represents the cohesion coefficient, which is set to0.5 . If )X(f)X(f st  , replace sX by tX ; 

otherwise, tX  substitute sX . 

Step 6: If )X(f)X(f)X(f srg  , shrink point is wX , and the shrink coefficient is  . 

)XX(XX cscw                                   (20) 

If )X(f)X(f sw  , substitute sX by wX ; otherwise, substitute sX by rX . 

According to the simplex method above, this method diversifies the population, ensuring the 
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algorithm can search efficiently, and reducing the algorithm fall into local optimum. The 
implementation steps of TSWOA are as follows. 

Algorithm 3. TSWOA pseudo-code 
1. Initialize the whales population ),....2,1( niXi   
2. Initialize a , A , and C , l , and p  

3. Calculate the fitness of each search agent   
4. *X =the best search agent  
5. while )max_( iterationt      

6. for each search agent 
7.    Update a , A ,and C , l , and p  
8.  if1 )5.0( p  
9.  if2 )1( A  

10.     Update the position of the current search agent by Eq (10) 
11.  else if2 )1( A  

12.      Select a random search agent )( randX  

13.      Update the position of the current search agent by Eq (6) 
14.  end if2 
15.  else if1 )5.0( p  

16.      Update the position of the current search by Eq (11)  
17.  end if1 
18.  Update the position of each search agent by Eq (14) 
19.  Update the position of the worst search agent using the simplex     method [Eqs (16)–(20)] 
20.  end for 
21.  Check if any search agent goes beyond the search space and amend it 
22.  Calculate the fitness of each search agent 
23.  Update *X if there is a better solution 
24.  1 tt  
25.  end while 
26.  Return X* 

The corresponding to the TSWOA flowchart as follow (see Figure 3): 
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Figure 3. TSWOA flowchart. 
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5. Using TSWOA to train MPL 

In this part, we focus on ways to solve the problem. It covers the setting of the candidate solution 
dimension, the setting of the objective function and the setting of assessment to the experiment results. 

5.1. The setting of the dimensionality of the candidate solution 

Before optimizing MLP, we must first obtain the structure of the MLP network. The number of 
neurons of the input layer and the output layer is decided by classified data sets, while the number of 
neurons of the hidden layer is decided by the Kolmogorov theorem [40]. The result is determined by 
Eq (21). 

12  InputHidden                                 (21) 

when TSWOA is adopted to obtain the connection weights and bias values, D represents the 
dimension of the candidate solution. The result is determined by Eq (22): 

    biasbias OutputHiddenOutputHiddenHiddenInputD              (22) 

where the number of neurons of the input layer, hidden layer, and output layer is expressed by Input, 
Hidden and Output. The number of bias of the hidden layer and the output layer is shown by 

biasHidden and biasOutput . 

5.2. Setting of candidate solution form 

In the study [41], we can get many encoding ways to optimize MPL. The mathematical models 
of the TSWOA algorithm are all represented by vectors, so we use vectors to represent. 

 nXXXXX ,,,, 321   represents N agents in the population. Each agent in population is denoted 

by  ,,,2,1,,,, niobhbhwiwX i  the weights of the input layer and the hidden layer are denoted 

by iwand hw , the biases of the hidden layer and the output layer are shown by hb andob . 

5.3. The setting of objective function 

In optimizing MLP, it is crucial to define appropriate objective functions. Generally, after agents 
are defined by vectors, the objective function of the neural network needs to be used to define the 
fitness function of the TSWOA algorithm. Hence, the fitness function is considered as the difference 
between the theoretical output and the actual output in the neural network, which is obtained by 
using Eq (23): 

  


m

i

k
i

k
i doMSE

1

2
                               (23) 

where the total number of output is shown by m, the desired output and the actual output of 
i -th input are exhibited by k

id and k
iO . 

Apparently, training neural networks requires data sets, and there are many training data sets. So, 
the fitness function is the mean value of MSE, which is obtained by using formula 24: 
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where the total number of training data sets is shown by s , other parameters are the same as the 
formula above. Therefore, the objective function of optimizing MLP is defined: 

 MSEMinimizeF                                 (25) 

5.4. Setting of assessment 

Because classified data is used to optimize MLP, classification problems often involve learning 
existing data to forecast undiscovered data. In classification problems, accuracy is considered to 
assessing the classification capacity of the algorithm, which is defined as follows: 

N

N
Accuracy                                   (26) 

where N shows the correct number for the classification, the total number of datasets is denoted by N . 

6. Experiment and result analysis 

In this section to test the validity of the algorithm for optimizing MPL, fifteen data sets from the 
UCI machine learning knowledge were obtained. There are 15 data sets displaying in Table 1. To 
better test the performance of TSWOA, the other six state-of-the-art algorithms are adopted: 
grasshopper optimization algorithm (GOA) [19], glowworm swarm optimization (GSO) [42], social 
spider optimization algorithm(SSO) [43], flower pollination algorithm(FPA) [19], genetic algorithm 
(GA) [11], and whale optimization algorithm(WOA) [44]. 

Table 1. The details of data sets. 

Datasets Attribute Class Training Testing Input Hidden Output 
Blood 4 2 493 255 4 9 2 
Scale 4 3 412 213 4 9 3 

Survival 3 2 202 104 3 7 2 
Liver 6 2 227 118 6 13 2 
Seeds 7 3 139 71 7 15 3 
Wine 13 3 117 61 13 27 3 
Iris 4 3 99 51 4 9 3 

Statlog 13 2 178 92 13 27 2 
Cancer 9 2 461 238 9 19 2 

Diabetes 8 2 507 261 8 17 2 
Gene 57 2 70 36 57 115 2 

Parkinson 22 2 129 66 22 45 2 
Splice 60 2 660 340 60 121 2 
WDBC 30 2 394 165 30 61 2 

Zoo 16 7 67 34 16 33 7 
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6.1. Experimental setup 

All used codes in this study have been implemented in the same manner using MATLAB R2017 
(a) and run on a PC with the Windows 10 64-bit and Intel Core (TM) i5-4590 processor, 3.30 ghz 
and 4 GB RAM. For all data sets above, data for training and testing respectively accounted for 66% 
and 34% of the total data [45]. To obtain great accuracy of experimental results, each algorithm runs 
20 times. The number of iterations is 500 in independent experiments. The population number is 30 
and the main parameter settings for all algorithms are in Table 2. 

Table 2. The initial parameters of algorithms. 

Algorithms Parameter values 
GOA [19] Cmin = 0.00004,Cmax = 1 
GSO [42] Luciferin decay value is 0.4, luciferin enhancement is 0.6, the rate of the 

neighborhood range is 0.08, the number of neighbors is 5, the step size of moving is 
0.3, initial luciferin is 5 

SSO [43] PF = 0.7 
FPA [42] P = 0.8 
GA [11] Crossover rate is 1, Mutation rate is 0.01 
WOA [44]   Linearly decreased from 2 to 0 have been used as recommended in [44].  
TSWOA   Linearly decreased from 2 to 0 have been used as recommended in [44] 

6.2. Experimental results and analysis of training MLP 

The 15 data sets were obtained from the UCI machine learning knowledge, namely, Blood, 
Scale, Survival, Liver, Seeds, Wine, Iris, Statlog, Cancer, Diabetes, Gene, Parkinson, Splice, WDBC, 
and Zoo. The experimental results are displayed in Tables 3–17, in which the “Best” is the best value, 
the “Worst” is worst value, the “Mean” is the mean value and the “Std” is the standard deviation. 
Accuracy is the best accuracy of 20 independent runs, and rank is the algorithm ranked according to 
accuracy. Due to the randomness of the swarm intelligence algorithm in the process of operation, the 
statistical test is important [46]. In order to obtain the difference between the improved algorithm and 
contrastive algorithms, Wilcoxson’s rank-sum test is also added in the experiment to obtain whether 
there is an obvious difference between the two groups of data. When the value is less than 0.05, the 
difference between the two groups of data is obvious. The p values are revealed in Table 18. 

6.2.1. Blood classification problem 

The blood classification problem is the most commonly used data set in the classification 
problem. The experimental results of the classification problem of Blood dataset trained by 
intelligence optimization algorithm are shown in Table 3, and the convergence and the anova graphs 
of algorithms are displayed in Figures 4 and 5, severally. It was found from Table 3 that the mean 
value and variance of MSE obtained by the TSWOA algorithm are better than other comparison 
algorithms, indicating that the optimizing result of the TSWOA algorithm is the best. Experimental 
results show that the accuracy of the algorithm is 80.39, higher than that of other comparison 
algorithms, ranking first. As can be found from the convergence curve in Figure 4, the convergence 
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speed of the TSWOA algorithm is faster than that of other algorithms and the accuracy value is better 
than that of other algorithms. According to Figure 5, compared with other comparison algorithms, 
TSWOA has a better variance value. According to the p -value test shown in Table 18, the results of 
TSWOA is obviously different from other comparison algorithms. 

Table 3. The experimental results of Blood. 

Algorithms Best Worst Mean Std Accuracy Rank 
GOA 3.28E − 01 3.55E − 01 3.37E − 01 6.32E − 03 78.43 3 
GSO 3.45E − 01 3.96E − 01 3.66E − 01 1.49E − 02 76.47 6 
SSO 3.27E − 01 3.65E − 01 3.49E − 01 9.11E − 03 78.82 2 
FPA 3.30E − 01 3.69E − 01 3.47E − 01 9.69E − 03 78.04 4 
GA 3.30E − 01 4.15E − 01 3.82E − 01 2.60E − 02 77.25 5 

WOA 3.30E − 01 3.61E − 01 3.47E − 01 1.06E − 02 76.25 7 
TSWOA 3.05E − 01 3.20E − 01 3.11E − 01 4.37E − 03 80.39 1 

 

Figure 4. The convergent curve of Blood. 

 

Figure 5. The variance diagram of Blood. 
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6.2.2. Scale classification problem 

The experimental results of 20 independent runs of the algorithm are displayed in Table 4, and 
the convergence and anova graphs of all algorithms are displayed in Figures 6 and 7, severally. As 
displayed in Table 4, the mean value of MSE obtained by TSWOA algorithm is the smallest in the 
data set. But, the accuracy of the TSWOA algorithm and the FPA algorithm in optimizing MLP to 
forecast Scale data set is 89.67, ranking first, and their classification accuracy is far higher than that 
of other comparison algorithms. As seen in Figure 6, the TSWOA algorithm has faster convergence 
speed and higher convergence accuracy than other comparison algorithms. Figure 7 exhibits that 
TSWOA has a small and stable anova. Table 18 also shows the superiority of TSWOA, which is 
obviously different from all comparison algorithms in Scale dataset. 

Table 4. The experimental results of Scale. 

Algorithms Best Worst Mean Std Accuracy Rank 
GOA 2.78E − 01 7.23E − 01 4.45E − 01 1.11E − 01 78.87 3 
GSO 5.02E − 01 1.10E + 00 7.95E − 01 1.42E − 01 61.50 6 
SSO 2.34E − 01 6.13E − 01 3.94E − 01 7.89E − 02 77.94 4 
FPA 2.01E − 01 3.50E − 01 2.46E − 01 3.73E − 02 89.67 1 
GA 2.82E − 01 6.91E − 01 5.04E − 01 1.09E − 01 76.53 5 

WOA 1.86E − 01 4.33E − 01 3.06E − 01 7.43E − 02 86.38 2 
TSWOA 1.16E − 01 5.81E − 01 1.75E − 01 9.65E − 02 89.67 1 

 

Figure 6. The convergent curve of Scale. 
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Figure 7. The variance diagram of Scale. 

6.2.3. Survival classification problem 

Table 5 displays the experimental results of the seven algorithms that optimized MLP to forecast 
the Survival dataset. The convergence and variance graphs of all algorithms are displayed in Figures 
8 and 9, severally. As displayed in Table 5, the mean value of MSE obtained by the TSWOA 
algorithm is the smallest in the comparison algorithms. But, the accuracy of the TSWOA algorithm 
optimizing MLP in forecasting the Survival dataset is lower than that of GOA, GSO, SSO, and GA, 
which ranks third. Among them, the classification accuracy of GOA, GSO and SSO algorithms is 
81.73, ranking first. The convergence curve in Figure 8 shows that the TSWOA algorithm has a 
faster convergence speed and a better convergence accuracy value than other algorithms. In Figure 9, 
compared with other algorithms, TSWOA has a better mean value. Table 18 displays that the 
TSWOA algorithm has obvious advantages. 

Table 5. The experimental results of Survival. 

Algorithms Best Worst Mean Std Accuracy Rank 
GOA 3.81E − 01 4.03E − 01 3.95E − 01 5.57E − 03 81.73 1 
GSO 3.99E − 01 4.48E − 01 4.23E − 01 1.37E − 02 81.73 1 
SSO 3.93E − 01 4.33E − 01 4.15E − 01 1.05E − 02 81.73 1 
FPA 3.82E − 01 4.18E − 01 4.02E − 01 9.55E − 03 79.8 4 
GA 3.99E − 01 5.16E − 01 4.53E − 01 3.16E − 02 81.72 2 

WOA 3.79E − 01 4.25E − 01 4.06E − 01 1.40E − 02 81.73 1 
TSWOA 3.38E − 01 3.83E − 01 3.64E − 01 1.10E − 02 80.77 3 
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Figure 8. The convergent curve of Survival. 

 

Figure 9. The variance diagram of Survival. 

6.2.4. Liver classification problem 

The experimental results of the Liver classification problem are shown in Table 6, and Figures 
10 and 11 display the convergence and variance graphs of all algorithms, severally. As displayed 
from Table 6, the mean value of MSE obtained by the TSWOA algorithm is slightly smaller than the 
mean value of MSE obtained by GOA and WOA. In the Liver dataset, the accuracy of the TSWOA 
algorithm was higher than that of other comparison algorithms, ranking first. It can be distinctly 
displayed from Figure10 that at the beginning of the iteration, the TSWOA algorithm not only 
converges faster but also has a better mean value of MSE than other comparison algorithms. As 
shown in Table 18, the p value of the TSWOA algorithm and other algorithms are all less than 0.05, 
indicating the excellent performance of the modified algorithm in processing the Liver dataset. 
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Table 6. The experimental results of Liver. 

Algorithms Best Worst Mean Std Accuracy Rank 
GOA 4.46E − 01 4.72E − 01 4.62E − 01 8.53E − 03 60.17 3 
GSO 4.86E − 01 5.41E − 01 5.14E − 01 1.54E − 02 55.93 6 
SSO 4.84E − 01 5.25E − 01 4.99E − 01 9.82E − 03 56.80 4 
FPA 4.49E − 01 5.30E − 01 4.95E − 01 1.82E − 02 62.71 2 
GA 5.06E − 01 6.91E − 01 5.93E − 01 5.33E − 02 49.15 7 

WOA 4.51E − 01 4.83E − 01 4.73E − 01 8.92E − 03 56.78 5 
TSWOA 3.65E − 01 4.41E − 01 3.94E − 01 1.90E − 02 72.88 1 

 

Figure 10. The convergent curve of Liver. 

 

Figure 11. The variance diagram of Liver. 
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6.2.5. Seeds classification problem 

The MSE results obtained by all algorithms listed in Table 7 display that there is little difference 
between the mean values obtained by the TSWOA algorithm and the FPA algorithm, and the 
performance of the two algorithms is much better than other algorithms. Meanwhile, the accuracy of 
both the TSWOA algorithm and the FPA algorithm is 95.77, which is far higher than the accuracy of 
other comparison algorithms. Figure 12 exhibits that the convergence rate of the TSWOA algorithm is 
much faster than that of GOA, GSO, SSO, GA, and WOA, but slightly worse than that of FPA. Before 
250 iterations, the convergence speed and convergence accuracy of the TSWOA algorithm was much 
higher than that of other comparison algorithms, but in the later iteration period, the convergence 
accuracy of the FPA algorithm was slightly higher than that of TSWOA algorithm. Wilcoxson’s 
rank-sum test in Table 18 shows that the value of the TSWOA algorithm and the FPA algorithm are 
greater than 0.05, but the comparison results of other comparison algorithms are less than 0.05. 

Table 7. The experimental results of Seeds. 

Algorithms Best Worst Mean Std Accuracy Rank 
GOA 2.69E − 01 8.34E − 01 4.68E − 01 1.89E − 01 77.46 4 
GSO 5.58E − 01 1.20E + 00 9.45E − 01 1.99E − 01 43.66 6 
SSO 1.42E − 01 4.56E − 01 3.14E − 01 7.22E − 02 83.10 2 
FPA 7.19E − 02 2.59E − 01 1.45E − 01 4.49E − 02 95.77 1 
GA 1.82E − 01 7.39E − 01 4.33E − 01 1.45E − 01 70.42 5 

WOA 1.10E − 01 4.37E − 01 2.34E − 01 9.62E − 02 81.69 3 
TSWOA 2.59E − 02 6.68E − 01 1.62E − 01 1.72E − 01 95.77 1 

 

Figure 12. The convergent curve of Seeds. 
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Figure 13. The variance diagram of Seeds. 

6.2.6. Wine classification problem 

The results in Table 8 display that the TSWOA algorithm obtains better results than the WOA 
algorithm and the other five algorithms. Table 8 shows that, as far as MSE is concerned, the mean 
value of TSWOA algorithm is the smallest and the classification accuracy of the algorithm is 96.72, 
which is much higher than that of other comparison algorithms, indicating that TSWOA algorithm 
can achieve better classification accuracy than other comparison algorithms. Figure 14 exhibits the 
convergence curve of the average MSE of all the seven algorithms, which distinctly indicates that 
GOA, GA, and WOA quickly fall into local optima and their convergence speed has stopped when 
the number of iterations is 300. Meanwhile, about 500 iterations of FPA and TSWOA reached the 
corresponding minimum value, but the MSE of TSWOA was smaller than that of FPA. According to 
the test results in Table 18, the results of the TSWOA algorithm are significantly different from that 
of GOA, GSO, SSO, GA and WOA algorithms. 

Table 8. The experimental results of Wine. 

Algorithms Best Worst Mean Std Accuracy Rank 
GOA 2.79E − 01 9.92E − 01 6.72E − 01 2.18E − 01 67.21 5 
GSO 6.34E − 01 1.58E + 00 1.18E + 00 2.46E − 01 44.26 7 
SSO 1.81E − 01 6.75E − 01 4.57E − 01 1.35E − 01 81.97 4 
FPA 1.11E − 01 2.65E − 01 1.69E − 01 4.59E − 02 85.25 2 
GA 4.27E − 01 9.20E − 01 6.81E − 01 1.38E − 01 52.46 6 

WOA 1.66E − 01 3.54E − 01 2.68E − 01 5.62E − 02 83.61 3 
TSWOA 1.73E − 02 5.13E − 01 1.62E − 01 1.62E − 01 96.72 1 
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Figure 14. The convergent curve of Wine. 

 

Figure 15. The variance diagram of Wine. 

6.2.7. Iris classification problem 

The experimental results of the Iris classification problem are exhibited in Table 9, and Figures 
16 and 17 display the convergence and variance graphs of all algorithms, severally. The mean value 
of MSE obtained by the algorithm shown in Table 9 exhibits that the value obtained by FPA is 
superior to that of other comparison algorithms, while the value obtained by TSWOA ranks the 
second. However, the accuracy obtained by TSWOA and GA is much higher than other algorithms. 
Figure 16 shows that before the 240 iterations, the convergence speed and convergence accuracy of 
the TSWOA algorithm is much higher than that of other comparison algorithms. But, after the 240 
iterations, the convergence accuracy of FPA is greater than that of TSWOA. Meanwhile, GOA, GA, 
SSO and WOA algorithms quickly fall into local optimization. As displayed in Figure 16, TSWOA 
has a better variance value than other algorithms. According to the p-value test in Table 18, the 
results of TSWOA are obviously differences from those of GOA, GSO, SSO, GA, and WOA. 
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Table 9. The experimental results of Iris. 

Algorithms Best Worst Mean Std Accuracy Rank 
GOA 3.04E − 01 7.35E − 01 4.68E − 01 1.17E − 01 84.31 6 
GSO 4.51E − 01 8.96E − 01 6.77E − 01 1.39E − 01 70.59 7 
SSO 2.08E − 01 4.64E − 01 3.44E − 01 6.76E − 02 96.08 3 
FPA 2.02E − 02 1.81E − 01 9.64E − 02 4.04E − 02 96.03 4 
GA 1.39E − 01 7.28E − 01 4.20E − 01 1.76E − 01 98.03 2 

WOA 8.79E − 02 3.81E − 01 2.47E − 01 7.70E − 02 94.12 5 
TSWOA 2.63E − 02 6.47E − 01 1.51E − 01 1.90E − 01 98.04 1 

 

Figure 16. The convergent curve of Iris. 

 

Figure 17. The variance diagram of Iris. 

6.2.8. Statlog classification problem 

The results in Table 10 exhibit that, in terms of MSE, the mean value and variance of the 
TSWOA algorithm are the smallest compared with other comparison algorithms. At the same time, 
the accuracy in Table 10 indicates that the TSWOA algorithm can achieve a better classification 
effect than other comparison algorithms. Figure 18 displays the convergence curves of MSE obtained 
by all the seven algorithms, which clearly shows that GSO, GA, SSO, and WOA quickly fall into 
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local optima and their convergence speed has stopped when the number of iterations is 200. However, 
the TSWOA algorithm has been in a declining state in the process of 500 iterations. Figure 19 
exhibits that the TSWOA algorithm has a relatively stable variance. Table 18 also displays the 
superiority of TSWOA, which is obviously different from all algorithms. 

Table 10. The experimental results of Statlog. 

Algorithms Best Worst Mean Std Accuracy Rank 
GOA 2.54E − 01 5.79E − 01 4.57E − 01 1.19E − 01 79.35 4 
GSO 5.28E − 01 7.44E − 01 6.35E − 01 5.78E − 02 46.74 7 
SSO 3.26E − 01 5.25E − 01 4.12E − 01 4.83E − 02 75 5 
FPA 2.75E − 01 3.88E − 01 3.13E − 01 3.37E − 02 80.69 3 
GA 4.14E − 01 6.90E − 01 5.67E − 01 8.57E − 02 70.65 6 

WOA 2.44E − 01 3.51E − 01 2.94E − 01 2.98E − 02 83.69 2 
TSWOA 1.12E − 01 2.00E − 01 1.40E − 01 2.23E − 02 83.70 1 

 

Figure 18. The convergent curve of Statlog. 

 

Figure 19. The variance diagram of Statlog. 
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6.2.9. Cancer classification problem 

Figure 20 exhibits the convergence of the seven algorithms. As displayed from Figure 20, 
compared with other comparison algorithms, TSWOA obtained the minimum mean value. FPA is 
approximately the same mean value obtained by WOA, while the convergence accuracy and speed of 
the TSWOA algorithm are better than other algorithms. At the same time, it can also be observed that 
during the optimization process, GA and GOA obtained the same minimum mean, while GSO 
performed the worst, stagnating in the early stage. Table 11 shows the comparison of the mean values 
of different algorithms. It can be clearly found from Table 11 that after 500 iterations, the mean value 
obtained by TSWOA is the smallest. WOA and FPA obtained the same classification effect and 
ranked first, while TSWOA, GA, and SSO obtained the same classification effect and ranked second. 
The results above show that TSWOA provides very competitive results in the classification effect 
and the p-value in Table 18 further displays that the TSWOA algorithm is significantly superior to all 
comparison algorithms in the classification effect of the Cancer dataset. 

Table 11. The experimental results of Cancer. 

Algorithms Best Worst Mean Std Accuracy Rank 
GOA 6.23E − 02 2.69E − 01 1.72E − 01 7.95E − 02 97 3 
GSO 7.96E − 02 3.78E − 01 2.49E − 01 6.78E − 02 89 4 
SSO 7.09E − 02 1.72E − 01 1.13E − 01 2.69E − 02 98 2 
FPA 5.01E − 02 8.68E − 02 6.79E − 02 9.31E − 03 99 1 
GA 7.79E − 02 3.61E − 01 1.70E − 01 7.30E − 02 98 2 

WOA 5.29E − 02 1.37E − 01 7.53E − 02 2.57E − 02 99 1 
TSWOA 2.78E − 02 2.50E − 01 4.86E − 02 4.93E − 02 98 2 

 

Figure 20. The convergent curve of Cancer. 
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Figure 21. The variance diagram of Cancer. 

6.2.10. Diabetes classification problem 

The experimental results of the diabetes classification problem are displayed in Table 12, and 
Figures 22 and 23 exhibit the convergence and variance of all algorithms, severally. As exhibited from 
Table 12, as far as MSE is a concern, TSWOA provides the best mean value and the standard deviation 
of MSE, the result is better than other comparison algorithms, and the accuracy of classification of 
Diabetes data set is better than that of other comparison algorithms. Figure 22 shows that TSWOA not 
only has a fast convergence rate but also has a better mean value than other comparison algorithms. In 
addition, In Figure 23, TSWOA has the smallest variance value. Table 18 also displays the superiority 
of TSWOA, which is significantly different from all comparison algorithms. 

Table 12. The experimental results of Diabetes. 

Algorithms Best Worst Mean Std Accuracy Rank 
GOA 3.59E − 01 4.04E − 01 3.83E − 01 1.41E − 02 75.87 3 
GSO 4.24E − 01 6.03E − 01 5.15E − 01 4.54E − 02 64.75 7 
SSO 4.18E − 01 5.03E − 01 4.52E − 01 2.35E − 02 65.51 6 
FPA 3.85E − 01 4.75E − 01 4.44E − 01 2.48E − 02 80.08 2 
GA 4.81E − 01 6.40E − 01 5.41E − 01 4.49E − 02 67.05 5 

WOA 3.54E − 01 4.29E − 01 3.90E − 01 2.20E − 02 73.18 4 
TSWOA 3.04E − 01 3.29E − 01 3.19E − 01 6.10E − 03 81.23 1 
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Figure 22. The convergent curve of Diabetes. 

 

Figure 23. The variance diagram of Diabetes. 

6.2.11. Gene classification problem 

The results in Table 13 display that the mean valve of MSE obtained by the TSWOA algorithm 
is better than that of the WOA algorithm and the other five algorithms. The accuracy of the modified 
algorithm is 33.33, which is much higher than that of other algorithms and ranks first, indicating that 
the training of the Gene dataset with the TSWOA algorithm can achieve better classification 
accuracy than other comparison algorithms. Figure 24 exhibits the convergence graphs of all the 
seven algorithms, which distinctly exhibit that the three algorithms, GSO, GOA, and GA, quickly fall 
into local optima and their convergence speed has stopped in the early stage of the iteration. However, 
during the optimization process, TSWOA did not stop still and continued to search for the 
appropriate minimum. Figure 25 also shows that TSWOA has superior performance. Table 18 
displays that TSWOA is obviously different from the other six algorithms. In this case, all values are 
less than 0.05. 
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Table 13. The experimental results of Diabetes. 

Algorithms Best Worst Mean Std Accuracy Rank 
GOA 8.09E − 01 9.28E − 01 9.10E − 01 2.68E − 02 2.66 6 
GSO 9.31E − 01 9.41E − 01 9.38E − 01 2.67E − 03 1.77 7 
SSO 3.58E − 01 4.74E − 01 4.08E − 01 3.07E − 02 5.56 5 
FPA 2.43E − 01 3.86E − 01 3.12E − 01 3.80E − 02 13.89 3 
GA 4.55E − 01 5.85E − 01 5.04E − 01 3.23E − 02 11.11 4 

WOA 2.74E − 01 4.12E − 01 3.24E − 01 3.58E − 02 16.67 2 
TSWOA 1.46E − 02 3.29E − 01 9.43E − 02 8.36E − 02 33.33 1 

 

Figure 24. The convergent curve of Diabetes. 

 

Figure 25. The variance diagram of Diabetes. 

6.2.12. Parkinson classification problem 

The experimental results of Parkinson's classification problem are shown in Table 14, and the 
convergence and variance of all algorithms are exhibited in Figures 26 and 27. It displayed from Table 
14 that the mean value of MSE obtained by the proposed algorithm is the minimum, indicating that the 



6016 

Mathematical Biosciences and Engineering  Volume 17, Issue 5, 5987–6025. 

training effect of the improved algorithm is the best. In the test data, the accuracy of the modified 
algorithm is 74.24, higher than that of other algorithms, ranking first. In Figure 26, the convergence 
speed of our algorithm is faster than that of other algorithms. It displayed in Figure 27 that TSWOA 
has a better variance value than other algorithms. Two abnormalities appeared in the experiment, 
whose average value was less than that of other algorithms. The p-value test results in Table 18 further 
indicate that the results of TSWOA are obviously superior to all comparison algorithms. 

Table 14. The experimental results of Parkinsons. 

Algorithms Best Worst Mean Std Accuracy Rank 
GOA 1.48E − 01 2.66E − 01 2.01E − 01 3.06E − 02 68.18 5 
GSO 2.63E − 01 5.20E − 01 4.22E − 01 8.04E − 02 56.06 7 
SSO 1.75E − 01 2.54E − 01 2.16E − 01 2.21E − 02 69.7 4 
FPA 9.30E − 02 1.86E − 01 1.36E − 01 1.99E − 02 70.21 3 
GA 2.07E − 01 3.81E − 01 3.03E − 01 5.03E − 02 65.15 6 

WOA 1.32E − 01 2.81E − 01 1.85E − 01 3.76E − 02 71.21 2 
TSWOA 1.48E − 02 2.33E − 01 7.63E − 02 6.08E − 02 74.24 1 

 

Figure 26. The convergent curve of Parkinson. 

 

Figure 27. The variance diagram of Parkinson. 
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6.2.13 Splice classification problem 

Table 15 displays the experimental results of the splice classification problem, the convergence 
and variance diagrams of all algorithms are exhibited in Figures 28 and 29, severally. It displayed in 
Table 15 that the mean value of MSE obtained by the modified algorithm is the minimum. The mean 
values obtained by GOA and GSO are almost the same. In the Splice dataset, the accuracy of the 
proposed algorithm is 80, which is higher than the accuracy of other algorithms, so it ranks first. In 
Figure 28, our algorithm has a great advantage over other algorithms in terms of convergence speed 
and convergence accuracy. Meanwhile, GSO, GOA, and GA soon fell into local optima. In Figure 29, 
compared with other algorithms, TSWOA has a better variance value. Experimental results found no 
singularities, and the mean value of the TSWOA algorithm was lower than that of the other 

algorithms. In Table 18, p -value test results display that the TSWOA algorithm is superior to all 

comparison algorithms. 

Table 15. The experimental results of Splice. 

Algorithms Best Worst Mean Std Accuracy Rank 
GOA 9.41E − 01 9.46E − 01 9.43E − 01 1.12E − 03 37.24 7 
GSO 9.42E − 01 9.47E − 01 9.45E − 01 1.48E − 03 40.13 6 
SSO 6.96E − 01 8.64E − 01 7.92E − 01 4.40E − 02 41.18 4 
FPA 4.56E − 01 6.67E − 01 5.27E − 01 4.71E − 02 70 2 
GA 7.91E − 01 8.84E − 01 8.52E − 01 2.53E − 02 41.17 5 

WOA 4.65E − 01 5.58E − 01 5.10E − 01 2.79E − 02 51.47 3 
TSWOA 1.59E − 01 2.37E − 01 1.97E − 01 2.30E − 02 80 1 

 

Figure 28. The convergent curve of Splice. 



6018 

Mathematical Biosciences and Engineering  Volume 17, Issue 5, 5987–6025. 

 

Figure 29. The variance diagram of Splice. 

6.2.14. WDBC classification problem 

The results in Table 16 show that, as far as MSE is concerned, the mean value and variance of 
the TSWOA algorithm are the smallest, indicating that the TSWOA algorithm can achieve better 
classification effect than other comparison algorithms. In the test data, the accuracy of the modified 
algorithm is 95.15, which is higher than the accuracy of other algorithms, so it ranks first. Figure 30 
exhibits that GSO, GA, GOA, and WOA fall into local optimality early in the optimization process, 
resulting in premature convergence of the algorithm. However, in the optimization process, TSWOA 
did not stop and continued to search for the corresponding optimal value. All the results exhibit that 
TSWOA is superior to other algorithms, with the fastest convergence speed and the smallest value. 
As can be displayed in Figure 31, compared with other algorithms, TSWOA has a better variance 
value. It can be concluded in Table 18 that TSWOA is obviously different from other comparison 
algorithms. 

Table 16. The experimental results of WDBC. 

Algorithms Best Worst Mean Std Accuracy Rank 
GOA 1.32E − 01 2.83E − 01 2.15E − 01 4.11E − 02 90.9 5 
GSO 4.09E − 01 5.38E − 01 5.15E − 01 2.92E − 02 79.39 6 
SSO 9.51E − 02 3.26E − 01 2.20E − 01 5.60E − 02 93.31 4 
FPA 1.02E − 01 1.57E − 01 1.24E − 01 1.80E − 02 93.33 3 
GA 3.05E − 01 6.79E − 01 4.93E − 01 1.11E − 01 78.79 7 

WOA 9.98E − 02 3.17E − 01 1.69E − 01 5.68E − 02 94.55 2 
TSWOA 3.07E − 02 9.93E − 02 4.28E − 02 1.77E − 02 95.15 1 

 



6019 

Mathematical Biosciences and Engineering  Volume 17, Issue 5, 5987–6025. 

 

Figure 30. The convergent curve of WDBC. 

 

Figure 31. The variance diagram of WDBC. 

6.2.15. Zoo classification problem 

The MSE results obtained by the algorithm di splayed in Table 17 exhibit that there is little 
difference between the mean values obtained by FPA and TSWOA, and the performance of these two 
algorithms is much better than that of other algorithms. However, the classification accuracy of the 
modified algorithm is slightly lower than that of WOA in test data. In the Zoo dataset, the accuracy 
of the modified algorithm is 64.71, which ranks second. The convergence of the seven algorithms is 
displayed in Figure 32. As can be shown from Figure 32, in the later iteration, TSWOA, WOA and 
FPA obtained convergence accuracy with little difference. However, GSO and GA tend to fall into 
local optima in the early stage. As can be seen from Figure 33, compared with other algorithms, 
TSWOA has a good mean value in training data. The results above exhibit that TSWOA provides 
very competitive results. It can be concluded from Table 18 that, except for FPA, the values obtained 
by TSWOA are significantly different from the other five algorithms. 
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Table 17. The experimental results of Zoo. 

Algorithms Best Worst Mean Std Accuracy Rank 
GOA 2.36E + 00 4.47E + 00 3.60E + 00 5.67E − 01 23.70 7 
GSO 3.46E + 00 5.54E + 00 5.41E + 00 4.59E − 01 30.73 5 
SSO 4.83E − 01 2.06E + 00 1.15E + 00 5.21E − 01 44.12 4 
FPA 1.79E − 01 4.63E − 01 3.32E − 01 7.42E − 02 63.61 3 
GA 1.20E + 00 1.99E + 00 1.53E + 00 2.12E − 01 26.47 6 

WOA 1.97E − 01 5.52E − 01 4.23E − 01 9.97E − 02 67.65 1 
TSWOA 1.34E − 01 7.61E − 01 3.75E − 01 1.85E − 01 64.71 2 

 

Figure 32. The convergent curve of Zoo. 

 

Figure 33. The variance diagram of Zoo. 
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Table 18. valuesp   calculated for Wilcoxon’s rank-sum test on fifteen data set. 

Functions 
TSWOA vs 

GOA GSO SSO FPA GA WOA 
Blood 6.80E − 08 6.80E − 08 6.80E − 08 6.80E − 08 6.80E − 08 6.80E − 08 
Scale 6.92E − 07 7.90E − 08 1.05E − 06 1.20E − 06 5.23E − 07 1.20E − 06 

Survival 7.90E − 08 6.80E − 08 6.80E − 08 7.90E − 08 6.80E − 08 7.90E − 08 
Liver 6.80E − 08 6.80E − 08 6.80E − 08 6.80E − 08 6.80E − 08 6.80E − 08 
Seeds 4.68E − 05 1.23E − 07 1.63E − 03 6.76E − 02 2.60E − 05 7.71E − 03 
Wine 6.01E − 07 6.80E − 08 1.10E − 05 3.30E − 01 1.23E − 07 2.39E − 02 
Iris 1.41E − 05 5.23E − 07 8.29E − 05 3.23E − 01 3.71E − 05 1.01E − 03 

Statlog 6.80E − 08 6.80E − 08 6.80E − 08 6.73E − 08 6.80E − 08 6.80E − 08 
Cancer 1.05E − 06 2.22E − 07 2.06E − 06 1.59E − 05 9.13E − 07 9.75E − 06 

Diabetes 6.80E − 08 6.80E − 08 6.80E − 08 6.80E − 08 6.80E − 08 6.80E − 08 
Gene 6.80E − 08 6.80E − 08 6.80E − 08 9.37E − 07 6.80E − 08 6.92E − 07 

Parkinson 5.87E − 06 6.80E − 08 1.80E − 06 2.17E − 04 1.06E − 07 2.30E − 05 
Splice 6.80E − 08 6.80E − 08 6.80E − 08 6.79E − 08 6.80E − 08 6.80E − 08 
WDBC 6.80E − 08 6.80E − 08 7.90E − 08 6.73E − 08 6.80E − 08 6.80E − 08 

Zoo 6.78E − 08 6.78E − 08 7.93E − 07 6.55E − 01 6.78E − 08 2.61E − 01 

6.3. Result analysis 

As can be seen from Tables 3–17, except Survival, Cancer, and Zoo, the accuracy of the 
modified algorithm is the greatest, indicating that the classification failure rate of TSWOA is small in 
optimizing MLP. In terms of Survival, Cancer, and Zoo, the accuracy of TSWOA is also in the top 
three. Moreover, the rest are ranked first. From Figures 4–33, it can be seen that the improved 
algorithm has faster convergence speed, higher accuracy, and stronger stability for optimizing MLP. 
The reasons are as follows: 

For any optimization algorithm, it is important to obtain the balance between its exploration and 
exploitation. Exploration makes the algorithm to have feasible solutions and exploitation provides 
search intensity for any optimization problem. As displayed in section 3. It is vital to have the 
arguments   in the position update of WOA. By changing the value of the arguments , a better 
balance can be realized between the global search and local search. However, in the WOA,  is 
declining linearly from 2 to 0 with consistently of the iterations. At the beginning of the iteration, the 
arguments can be a max value that is beneficial to global search, but the algorithm has a poor 
search efficiency. At the end of the iteration, a small value is acquired, which is beneficial to the 
convergence of the algorithm, but the algorithm is prone to a local optimum. Based on the problems 
above, the teaching phase of TLBO is add to the basic whale optimization algorithm and selects the 
best agent to guide other agents to move towards the current optimal position. On the one hand, we 
heighten the exploitation capacity of the algorithm and improve the quality of candidate solutions. 
On the other hand, it evades the stagnation state of the algorithm and decreases the risk of the 
algorithm running into local optimum. In order to strengthen the exploration capacity of the 
algorithm, the simplex method is added to the algorithm, which not only increases the variety of the 
population but also enlarges the search scope of the solution space, guiding the algorithm to find the 



6022 

Mathematical Biosciences and Engineering  Volume 17, Issue 5, 5987–6025. 

most promising area of the solution space. Therefore, this modified algorithm can be applied as a 
new MLP optimizing method. 

7. Conclusions and future directions 

In this paper, an improved teaching learning-based whale optimization algorithm was presented 
to optimize MLP. The modified TSWOA algorithm utilizes the teacher phase of TLBO to heighten 
the exploration and increase the overall quality of candidate solutions. The simplex method is added 
to TWOA to enlarge the diversification of search agents, which ensures that the algorithm can 
availably explore the search location, and make the algorithm quickly converge to the global optimal. 
This method was adopted to optimize connection weights and biases of multi-layer perceptron (MLP) 
neural network for the classification problems, compared with several recognized meta-heuristic 
algorithms. The experimental results display that the modified TSWOA is quite effective in 
optimizing MLP. Future research may apply TSWOA to optimize convolutional neural networks for 
image processing. Another opportunity is to further heighten the performance of TSWOA to get a 
better balance between exploration and exploitation and apply it to solve the real problems. 
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