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Abstract: In this paper, a stochastic SIRS epidemic model with saturating contact rate is constructed.
First, for the deterministic system, the stability of the equilibria is discussed by using eigenvalue theory.
Second, for the stochastic system, the threshold conditions of disease extinction and persistence are
established. Our results indicate that a large environmental noise intensity can suppress the spread
of disease. Conversely, if the intensity of environmental noise is small, the system has a stationary
solution which indicates the disease is persistent. Eventually, we introduce some computer simulations
to validate the theoretical results.
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1. Introduction

Recently, a new type of pneumonia caused by the coronavirus, named COVID-19, is spreading
around the world. The issue of infectious diseases has once again aroused people’s great concern.
How to prevent and control infectious diseases has been an important subject facing human beings
[1–8]. The SIR model assumes that the infected person can obtain permanent immunity after recovery.
However, for smallpox, cholera, malaria and other diseases, individuals recovered from treatment can
return to the susceptible category after temporary immunization, which can be described by SIRS
model. Moreover, for some bacterial infectious diseases, such as meningitis and sexually transmitted
diseases, some individuals can not produce effective antibodies after treatment and may be infected
again. Others may gain temporary immunity, but then lose immunity and become susceptible [9–12].
Literature [10] established an SIRS model with a general population-size dependent contact rate λ(N)
and proportional transfer rate from the infective class to susceptible class. The authors studied the
threshold conditions of disease extinction and discussed the stability of disease-free equilibrium and
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endemic equilibrium.
Infection rate is an important index to measure the intensity of disease transmission. Employing

an appropriate infection rate based on a specific disease for the mathematical model plays a vital role
in the disease prevention and control. In the literature [13], Thieme and Castillo-Chavez proposed the
incidence β%(N(t))S (t)I(t)

N(t) , where N (t) represents the total population. On that basis, Heesterbeek et al. [14]
gave the following saturating contact rate

% (N (t)) =
bN (t)

1 + bN (t) +
√

1 + 2bN (t)
.

Obviously, % (N (t)) is a non-decreasing function of N (t). %(N(t))
N(t) is a non-increasing function of N (t).

If N (t) is sufficiently small, % (N (t)) ∼ bN . Conversly, if N (t) is fully large, % (N (t)) ∼ 1. Compared
with the bilinear incidence βS (t) I (t) and the standard incidence βS (t)I(t)

N(t) , the saturating contact rate is
more closer to the transmission of many diseases. The saturated contact rate is widely used in the
study of infectious disease modeling. For example, Zhang et al. [15] constructed an SEIS model with
general saturated incidence rate, and proved the global asymptotic stability of the endemic
equilibrium by using the autonomous convergence theorem. Lan et al. [16] considered an SIS
epidemic model with saturating contact rate, by using Itô’s formula, the conditions for disease
extinction and the existence of stationary solutions were obtained. In reference [11], Li et al.
established an SIRS epidemic model with a general incidence, which considered both the transfer
from the infected to the susceptible and the transfer from the recovered to the susceptible. Motivated
by the above literature, we formulate a deterministic SIRS epidemic model with saturating contact
rate and transfer from infectious to susceptible:


dS (t)

dt = Λ − uS (t) − βbS (t)I(t)
g(N(t)) + γ1I (t) + δR (t) ,

dI(t)
dt =

βbS (t)I(t)
g(N(t)) − (u + γ1 + γ2 + α) I (t) ,

dR(t)
dt = γ2I (t) − (u + δ) R (t) ,

(1.1)

where g (N (t)) = 1+bN (t)+
√

1 + 2bN (t), N (t) = S (t)+ I (t)+R (t) is the total population. S (t), I (t),
R (t) represent the number of susceptible individuals, infected individuals and recovered individuals,
respectively. Λ is the recruitment rate of susceptible individuals. u denotes the natural mortality rate.
α represents the mortality rate caused by diseases. γ1 is the transfer rate from the infected individuals
to the susceptible individuals. γ2 is the transfer rate from the infected individuals to the recovered
individuals, and δ denotes the immunity loss rate.

Due to the influence of environmental noise, the prevalence and transmission of diseases is often
random. For example, the change of temperature and the influence of climate will lead to the
fluctuation of mortality, morbidity and so on. In recent years, mathematical models of infectious
diseases described by stochastic differential equations have been widely concerned [17–22]. There are
many ways to construct a stochastic differential equation model, such as adding random perturbations
to the parameters of deterministic system [23–26], or introducing proportional perturbations to state
variables [27–31]. Recently, considering the effect of two different white noises on the model
parameters, reference [32] established a stochastic SIS model with two correlated Brownian motions,
in which the threshold of disease extinction as well as the variance and mean of the stationary
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distribution were investigated. In this paper, we consider that the incidence coefficient βb is disturbed
by white noise, that is βb → βb + σdB (t), where σ2 is the intensity of white noise, B (t) is defined as
the standard Brownian motion in the complete probability space (Ω,F , {F }t≥0, P). Thus, the above
model (1.1) is transformed into the following SIRS stochastic epidemic model:

dS (t) =
[
Λ − uS (t) − βbS (t)I(t)

g(N(t)) + γ1I (t) + δR (t)
]

dt − σS (t)I(t)
g(N(t)) dB (t) ,

dI (t) =
[
βbS (t)I(t)

g(N(t)) − (u + γ1 + γ2 + α) I (t)
]

dt +
σS (t)I(t)
g(N(t)) dB (t) ,

dR (t) =
[
γ2I (t) − (u + δ) R (t)

]
dt.

(1.2)

As far as we know, there have been a lot of studies on the epidemic model disturbed by
environmental noise, but there are few stochastic models considering saturating contact rate and
transfer from infectious to susceptible, especially the existence of stationary solution. The paper is
organized as follows: In section 2, we give some notations and related lemmas. The thresholds of
deterministic system and stochastic system are established in sections 3 and 4, respectively. Sufficient
condition for the existence of stationary solution in the stochastic system (1.2) is provided in
section 5. In section 6, we verify the results of theoretical derivation by numerical simulations.

2. Preliminaries

Throughout this paper, we let R3
+ = {xi > 0, i = 1, 2, 3}. For an integrable function h on [0,+∞), we

define 〈h(t)〉 = 1
t

∫ t

0
h(π)dπ. By using the methods from Liu et al. [33], we can prove that the region

Γ =

{
(S (t) , I (t) ,R (t)) ∈ R3

+,
Λ

u + α
≤ N (t) ≤

Λ

u

}
is a positively invariant set of system (1.2).

Lemma 2.1. For any given initial value (S (0) , I (0) ,R (0)) ∈ R3
+, then the model (1.2) has a unique

positive solution (S (t) , I (t) ,R (t)) on t ≥ 0, and the solution will remain in R3
+ with probability 1.

Next, we will introduce some contents of stationary Markov process. The n-dimensional stochastic
differential equation can be expressed by the following formula

dx (t) = f (x (t) , t) dt +

l∑
i=1

gi (x (t) , t) dBi (t) , ∀t ≥ t0, (2.1)

with the initial value x (t0) = x0 ∈ R
n. Integrating from 0 to t for both sides of the Eq (2.1), one can

obtain that

x (t) = x0 +

∫ t

t0
f (x (θ) , θ) dθ +

l∑
i=1

∫ t

t0
gi (x (θ) , θ) dBi (θ) , ∀t ≥ t0. (2.2)

Assume that the vectors f (x, t), g1 (x, t),..., gl (x, t)(t ≥ t0, x ∈ Rn) are continuous functions of (x, t),
satisfying the following conditions for some constant D,

(A1) | f (x, t) − f (y, t)| +
l∑

i=1
|gi (x, t) − gi (y, t)| ≤ D |x − y| ,

(A2) | f (x, t)| +
l∑

i=1
|gi (x, t)| ≤ D (1 + |x|) .

(2.3)
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According to the literature [34] Theorem 3.7, we have the following Lemma.

Lemma 2.2. Suppose that the coefficients of (2.2) are independent of t, and the conditions (2.3) hold
in UG (∀G > 0). There exists a function V (x) ∈ C2 with the following properties in Rn

V (x) ≥ 0 and sup
|x|>G

LV (x) = −MG → −∞ (G → ∞) , (2.4)

where C2 represents a class of functions that are twice continuously differentiable relative to x in Rn.
Further, we assume that there is at least one x ∈ Rn, such that the process Xx (t) is regular. Then there
exists a solution of system (2.2) which is a stationary Markov process.

For Lemma 2.2, we need to note the following two points.
Remark 2.1 (i) Condition (2.3) can be replaced by the global existence of solution of

system (2.2) (see [35] Remark 5);
(ii) Condition (2.4) can be replaced by the weaker condition LV (x) ≤ −1 (see [34] Chapter 4).

3. Dynamics of system (1.1)

In this section, we concentrate on the stability of the equilibria. Firstly, using N (t) as a variable
instead of the variable S (t), we convert system (1.1) into the following form

dN(t)
dt = Λ − uN (t) − αI (t) ,

dI(t)
dt =

βbI(t)
g(N(t)) (N (t) − I (t) − R (t)) − (u + γ1 + γ2 + α) I (t) ,

dR(t)
dt = γ2I (t) − (u + δ) R (t) .

(3.1)

Obviously, the system (3.1) exists a boundary equilibrium P0 =
(

Λ
u , 0, 0

)
. Define

R0 =
Λβb

u (u + γ1 + γ2 + α) g
(

Λ
u

) .
By direct calculation, if R0 > 1, we get system (3.1) has a positive equilibrium P∗ = (N∗, I∗,R∗) with

I∗ =
Λ − uN∗

α
, R∗ =

γ2 (Λ − uN∗)
α (u + δ)

,

where N∗ is the unique positive root of the following function

φ (N) = βb
[
N −

Λ − uN
α

−
γ2 (Λ − uN)
α (u + δ)

]
− (u + γ1 + γ2 + α) g (N) .

In fact, we have

φ

(
Λ

u

)
= (u + γ1 + γ2 + α) g

(
Λ

u

)
(R0 − 1) > 0

and

φ

(
Λ

u + α

)
= −

βbγ2Λ

(u + α) (u + δ)
− (u + γ1 + γ2 + α) g

(
Λ

u + α

)
< 0.
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Let dφ(N)
dN = 0, it can be got

N∗∗ =

{
α(u+δ)(u+γ1+γ2+α)

β[(α+u)(u+δ)+uγ2]−α(u+δ)(u+γ1+γ2+α)

}2
− 1

2b
,

which implies that φ (N) is increasing if N ≥ N∗∗, and φ (N) is decreasing if N < N∗∗. Therefore,
function φ (N) has a unique positive root, then the system (3.1) exists a unique positive equilibrium
P∗ = (N∗, I∗,R∗).

Theorem 3.1. For system (3.1), we have
(i) If R0 < 1, then P0 =

(
Λ
u , 0, 0

)
is a unique stable equilibrium, which implies the disease of system

(3.1) goes extinct.
(ii) If R0 > 1, then P∗ = (N∗, I∗,R∗) is a stable positive equilibrium, which implies the disease of

system (3.1) is permanent.

Proof. (i) The Jacobian matrix of system (3.1) evaluated at P0 =
(

Λ
u , 0, 0

)
is

J0 =


−u −α 0
0 Λβb

ug( Λ
u ) − (u + γ1 + γ2 + α) 0

0 γ2 − (u + δ)

 ,
which has three eigenvalues:

λ1 = −u < 0, λ2 = − (u + δ) < 0, λ3 =(u + γ1 + γ2 + α) (R0 − 1) < 0.

Therefore, according to stability theory, P0 is stable if R0 < 1.
(ii) The Jacobian matrix at P∗ = (N∗, I∗,R∗) is

J∗ =


−u −α 0
a21 a22 a23

0 γ2 − (u + δ)

 ,
where

a21 =
βbI∗

[
g (N∗) − (N∗ − I∗ − R∗)

(
b + b

√
1+2bN∗

)]
g2 (N∗)

=
βbI∗

(
1 +
√

1 + 2bN∗ − bN∗
√

1+2bN∗

)
g2 (N∗)

+
βbI∗ (I∗ + R∗)

g2 (N∗)

(
b +

b
√

1 + 2bN∗

)
=

βbI∗

g (N∗)
√

1 + 2bN∗
+
βbI∗ (I∗ + R∗)

g2 (N∗)

(
b +

b
√

1 + 2bN∗

)
> 0,

a22 =
βb (N∗ − R∗ − 2I∗)

g (N∗)
− (u + γ1 + γ2 + α) = −

βbI∗

g (N∗)
< 0,

a23 = −
βbI∗

g (N∗)
= a22 < 0.
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Hence, the characteristic equation of J∗ is

λ3 + a1λ
2 + a2λ + a3 = 0,

where

a1 = u +
βbI∗

g (N∗)
+ u + δ > 0,

a2 = α

 βbI∗

g (N∗)
√

1 + 2bN∗
+
βbI∗ (I∗ + R∗)

g2 (N∗)

(
b +

b
√

1 + 2bN∗

)
+ (2u + δ + γ2)

βbI∗

g (N∗)
+ u (u + δ) > 0

and

a3 = α (u + δ)
 βbI∗

g (N∗)
√

1 + 2bN∗
+
βbI∗ (I∗ + R∗)

g2 (N∗)

(
b +

b
√

1 + 2bN∗

)
+u (u + δ +γ2)

βbI∗

g (N∗)
> 0.

Then,

a1a2 − a3 = αua21 −
[
(2u + δ) (2u + δ + γ2) + uγ2

]
a22 − αa21a22

+ (2u + δ + γ2) a2
22 + u (u + δ) (2u + δ) > 0.

Therefore, the equilibrium P∗ is stable when it exists. This completes the proof of Theorem 3.1. �

4. The threshold of the system (1.2)

In the previous section, we have obtained the threshold for ordinary differential equation (ODE)
system (1.1). Similarly, the threshold of stochastic differential equation (SDE) system (1.2) is also
crucial, which determines the extinction and persistence of the disease. Define the following parameter

Rs
0 =

Λβb

u
(
u + γ1 + γ2 + α + σ2Λ2

2u2g2( Λ
u )

)
g
(

Λ
u

) ,
where g (x) = 1 + bx +

√
1 + 2bx. In this section, we will prove that Rs

0 is the threshold of system (1.2).
Now, we give the following definition.

Definition 4.1.
(i) The disease I(t) is said to be extinct if lim

t→+∞
I(t) = 0;

(ii) The disease I(t) is said to be permanent in mean if there is a positive constant φ such that
lim
t→∞

inf 〈I(t)〉 ≥ φ.
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4.1. Extinction

Theorem 4.1. Set (S (t) , I (t) ,R (t)) be a solution of system (1.2) with any given initial value
(S (0) , I (0) ,R (0)) ∈ Γ.

(i) If σ2 > max
{

β2b2

2(u+γ1+γ2+α) ,
βbug( Λ

u )
Λ

}
holds, then

lim
t→∞

sup
ln I (t)

t
≤
β2b2

2σ2 − (u + γ1 + γ2 + α) < 0 a.s.,

(ii) If Rs
0 < 1 and σ2 <

βbug( Λ
u )

Λ
holds, then

lim
t→∞

sup
ln I (t)

t
≤

u + γ1 + γ2 + α +
σ2Λ2

2u2g2
(

Λ
u

) (Rs
0 − 1

)
< 0 a.s.,

which implies that the disease dies out with probability 1. In addition, we have

lim
t→∞
〈S (t)〉 =

Λ

u
a.s.,

lim
t→∞
〈R (t)〉 = 0 a.s..

Proof. Set
∼

V = ln I (t), by the Itô’s formula, one can get

d (ln I (t)) =

[
βbS (t)
g (N (t))

− (u + γ1 + γ2 + α) −
σ2S 2 (t)

2g2 (N (t))

]
dt +

σS (t)
g (N (t))

dB (t)

= Φ

(
S (t)

g (N (t))

)
dt +

σS (t)
g (N (t))

dB (t) , (4.1)

where Φ (x) = −σ
2

2 x2 + βbx − (u + γ1 + γ2 + α).
Case (i): If condition (i) is satisfied, then

Φ

(
S (t)

g (N (t))

)
= −

σ2

2

(
S (t)

g (N (t))
−
βb
σ2

)2

+
β2b2

2σ2 − (u + γ1 + γ2 + α)

≤
β2b2

2σ2 − (u + γ1 + γ2 + α) . (4.2)

Substituting (4.2) into (4.1), one can obtain that

d (ln I (t)) ≤
[
β2b2

2σ2 − (u + γ1 + γ2 + α)
]

dt +
σS (t)

g (N (t))
dB (t) . (4.3)

By using the strong law of large numbers for martingales, we obtain

lim
t→∞

∫ t

0
σS (ξ)

g(N(ξ))dξ

t
= 0.
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Integrating from 0 to t , dividing by t , and taking superior limit on both sides of Eq (4.3) yields

lim
t→∞

sup
ln I (t)

t
≤
β2b2

2σ2 − (u + γ1 + γ2 + α) < 0. a.s. (4.4)

Case (ii): If condition (ii) Rs
0 < 1 and σ2 <

βbug( Λ
u )

Λ
are satisfied, then

Φ

(
S (t)

g (N (t))

)
= −

σ2

2

(
S (t)

g (N (t))
−
βb
σ2

)2

+
β2b2

2σ2 − (u + γ1 + γ2 + α)

≤ −
σ2

2

 Λ

ug
(

Λ
u

) − βb
σ2


2

+
β2b2

2σ2 − (u + γ1 + γ2 + α)

=

u + γ1 + γ2 + α +
σ2Λ2

2u2g2
(

Λ
u

) (Rs
0 − 1

)
. (4.5)

From Eq (4.1), one can get

lim
t→∞

sup
ln I (t)

t
≤

u + γ1 + γ2 + α +
σ2Λ2

2u2g2
(

Λ
u

) (Rs
0 − 1

)
< 0 a.s.. (4.6)

The inequalities (4.4) and (4.6) imply lim
t→∞

I (t) = 0 and the disease goes to extinction.
Next, adding up the three equations of system (1.2), integrating both sides from 0 to t and dividing

by t, one can see that

S (t) − S (0)
t

+
I (t) − I (0)

t
+

δ

u + δ

R (t) − R (0)
t

= Λ − u 〈S (t)〉 −
(
u + α +

uγ2

u + δ

)
〈I (t)〉 . (4.7)

So, from Eq (4.7) we have

〈S (t)〉 =
Λ

u
−

(u + α

u
+

γ2

u + δ

)
〈I (t)〉 − Θ (t) , (4.8)

where Θ (t) = 1
u

[
S (t)−S (0)

t +
I(t)−I(0)

t + δ
u+δ

R(t)−R(0)
t

]
. Obviously, lim

t→∞
Θ (t) = 0 and we have

lim
t→∞
〈S (t)〉 =

Λ

u
a.s..

Similarly, from the third equation of the system (1.2) yields

〈R (t)〉 =
γ2

u + δ
〈I (t)〉 −

R (t) − R (0)
(u + δ) t

. (4.9)

Let t → ∞, we get that
lim
t→∞
〈R (t)〉 = 0 a.s.

This finishes the proof. �
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4.2. Permanence in mean

Theorem 4.2. If Rs
0 > 1, the disease is persistence in mean. Moreover, we have

lim
t→∞

inf 〈I (t)〉 ≥ I∗∗ > 0,

lim
t→∞

inf
〈
Λ

u
− S (t)

〉
≥

(u + α

u
+

γ2

u + δ

)
I∗∗ > 0,

lim
t→∞

inf 〈R (t)〉 ≥
γ2

u + δ
I∗∗ > 0,

where

I∗∗ =

u (u + δ)
[
u + γ1 + γ2 + α + Λ2σ2

2u2g2( Λ
u )

]
g
(

Λ
u

) (
Rs

0 − 1
)

βb
[
(u + α) (u + δ) + γ2u

] .

Proof. In view of Eq (4.1), we have

d (ln I (t)) ≥

βbS (t)

g
(

Λ
u

) − (u + γ1 + γ2 + α) −
σ2Λ2

2u2g2
(

Λ
u

) dt +
σS (t)

g (N (t))
dB (t) . (4.10)

Integrating from 0 to t and dividing by t on both sides of Eq (4.10), one can get that

ln I (t) − ln I (0)
t

≥
βb

g
(

Λ
u

) 〈S (t)〉 − (u + γ1 + γ2 + α) −
σ2Λ2

2u2g2
(

Λ
u

) +

∫ t

0
σS (ξ)

g(N(ξ))dξ

t
. (4.11)

Substituting Eq (4.8) into Eq (4.11), we can get

ln I (t) − ln I (0)
t

≥

u + γ1 + γ2 + α +
σ2Λ2

2u2g2
(

Λ
u

) (Rs
0 − 1

)
−
βbΘ (t)

ug
(

Λ
u

)
+

∫ t

0
σS (ξ)

g(N(ξ))dξ

t
−
βb

[
(u + α) (u + δ) + γ2u

]
u (u + δ) g

(
Λ
u

) 〈I (t)〉 . (4.12)

Hence,

ln I (t) ≥

u + γ1 + γ2 + α +
σ2Λ2

2u2g2
(

Λ
u

) (Rs
0 − 1

)
t + F (t)

−
βb

[
(u + α) (u + δ) + γ2u

]
u (u + δ) g

(
Λ
u

) ∫ t

0
I (ξ)dξ. (4.13)

where F (t) = ln I (0) +
∫ t

0
σS (ξ)

g(N(ξ))dξ −
βbtΘ(t)
ug( Λ

u ) . Obviously, lim
t→∞

F(t)
t = 0 a.s.. From Lemma 1 in [12], we

obtain

lim
t→∞

inf 〈I (t)〉 ≥
u (u + δ)

[
u + γ1 + γ2 + α + Λ2σ2

2u2g2( Λ
u )

]
g
(

Λ
u

) (
Rs

0 − 1
)

βb
[
(u + α) (u + δ) + γ2u

] = I∗∗.

Mathematical Biosciences and Engineering Volume 17, Issue 5, 5925–5943.



5934

According to Eqs (4.8) and (4.9), we can see that

lim
t→∞

inf
〈
Λ

u
− S (t)

〉
=

(u + α

u
+

γ2

u + δ

)
lim
t→∞

inf 〈I (t)〉 ≥
(u + α

u
+

γ2

u + δ

)
I∗∗

and
lim
t→∞

inf 〈R (t)〉 =
γ2

u + δ
lim
t→∞

inf 〈I (t)〉 ≥
γ2

u + δ
I∗∗.

The proof of Theorem 4.2 is completed. �

Remark 4.1. According to Theorem 4.1 (i), if the intensity of white noise is large enough that the

condition σ2 > max
{

β2b2

2(u+γ1+γ2+α) ,
βbug( Λ

u )
Λ

}
holds, then the disease goes to extinction. Therefore, a

large environmental nose intensity can suppress the spread of disease. In addition, by comparing the
thresholds of systems (1.2) and (1.1), it can be found that if the intensity of environmental noise σ2=0,
then Rs

0 = R0; if σ2 , 0, then Rs
0 < R0. When Rs

0 < 1 < R0, the deterministic system (1.1) has a stable
positive equilibrium, while the disease of the stochastic system (1.2) dies out with probability 1. This
means that the presence of environmental noise is conducive to disease control.

5. The existence of stationary solution

Theorem 5.1. If Rs
0 > 1, there exists a solution of system (1.2) which is a stationary Markov process.

Proof. Let (S (t) , I (t) ,R (t)) be a solution of system (1.2) with any given initial value
(S (0) , I (0) ,R (0)) ∈ Γ. Then we construct a C2-function G as following:

G (S (t) , I (t) ,R (t)) = M

− ln I (t) − c1 ln S (t) − c2g2 (N (t)) +
4bc2g

(
Λ
u

)
u + δ

R (t)


− ln S (t) − ln R (t) − ln

(
N (t) −

Λ

u + α

)
− ln

(
Λ

u
− N (t)

)
= MV1 + V2 + V3 + V4 + V5,

where V1 = − ln I (t) − c1 ln S (t) − c2g2 (N (t)) +
4bc2g( Λ

u )
u+δ

R (t), V2 = − ln S (t), V3 = − ln R (t), V4 =

− ln
(
N (t) − Λ

u+α

)
, V5 = − ln

(
Λ
u − N (t)

)
, c1 =

u+γ1+γ2+α+ Λ2σ2

2u2g2( Λ
u )

u and c2 =
u+γ1+γ2+α+ Λ2σ2

2u2g2( Λ
u )

2bΛg( Λ
u ) . The M is a

positive constant and satisfies the following condition

− 3M

u + γ1 + γ2 + α +
Λ2σ2

2u2g2
(

Λ
u

) ( 3
√

Rs
0 − 1

)
+

βbΛ

ug
(

Λ
u

) +
σ2Λ2

2u2g2
(

Λ
u

) + 4u + δ + α ≤ −2. (5.1)

Furthermore, G (S (t) , I (t) ,R (t)) is a continuous function, which exists a minimum point
(
−

S 0,
−

I0,
−

R0

)
.

Next, we define a nonnegative C2-function V

V (S (t) , I (t) ,R (t)) = G (S (t) , I (t) ,R (t)) −G
(
−

S 0,
−

I0,
−

R0

)
.
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Applying Itô’s formula for V1, we can see

LV1 = −
1

I (t)

[
βbS (t) I (t)

g (N (t))
− (u + γ1 + γ2 + α) I (t)

]
+
σ2S 2 (t)
g2 (N (t))

−
c1

S (t)

[
Λ − uS (t) −

βbS (t) I (t)
g (N (t))

+ γ1I (t) + δR (t)
]

+
c1σ

2I2 (t)
2g2 (N (t))

−2bc2g (N (t))
(
1 +

1
√

1 + 2bN (t)

)
(Λ − uN (t) − αI (t))

+
4bc2g

(
Λ
u

)
u + δ

[
γ2I (t) − (u + δ) R (t)

]
≤ −

βbS (t)
g (N (t))

−
c1Λ

S (t)
− 2bΛc2g (N (t)) + (u + γ1 + γ2 + α) +

Λ2σ2

2u2g2
(

Λ
u

)
+c1u +

c1βbI (t)

g
(

Λ
u+α

) +
c1σ

2I2 (t)

2g2
(

Λ
u+α

) + 2bΛc2g
(
Λ

u

)
− 4bc2g

(
Λ

u

)
R (t)

+2bαc2g (N (t))
(
1 +

1
√

1 + 2bN (t)

)
I (t) +

4bc2γ2g
(

Λ
u

)
u + δ

I (t)

≤ −3 3
√

2Λ2βb2c1c2 + 3

u + γ1 + γ2 + α +
Λ2σ2

2u2g2
(

Λ
u

) +
c1σ

2I2 (t)

2g2
(

Λ
u+α

)
+

 c1βb

g
(

Λ
u+α

) + 4bαc2g
(
Λ

u

)
+

4bc2γ2g
(

Λ
u

)
u + δ

 I (t)

= −3

u + γ1 + γ2 + α +
Λ2σ2

2u2g2
(

Λ
u

) ( 3
√

Rs
0 − 1

)
+

c1σ
2I2 (t)

2g2
(

Λ
u+α

)
+

 c1βb

g
(

Λ
u+α

) + 4bc2g
(
Λ

u

) (
α +

γ2

u + δ

) I (t) . (5.2)

Similarly, we have

LV2 = −
Λ

S (t)
+ u +

βbI (t)
g (N (t))

−
γ1I (t)
S (t)

−
δR (t)
S (t)

+
σ2I2 (t)

2g2 (N (t))

≤ −
Λ

S (t)
+ u +

βbΛ

ug
(

Λ
u

) +
σ2Λ2

2u2g2
(

Λ
u

) , (5.3)

LV3 = −
γ2I (t)
R (t)

+ u + δ, (5.4)

LV4 = −
Λ − uN (t) − αI (t)

N (t) − Λ
u+α

= u + α −
α (S (t) + R (t))

N (t) − Λ
u+α

, (5.5)
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LV5 =
Λ − uN (t) − αI (t)

Λ
u − N (t)

= u −
αI (t)

Λ
u − N (t)

. (5.6)

Therefore, in view of Eqs (5.2)–(5.6), we get that

LV ≤ −3M

u + γ1 + γ2 + α +
Λ2σ2

2u2g2
(

Λ
u

) ( 3
√

Rs
0 − 1

)
+

Mc1σ
2I2 (t)

2g2
(

Λ
u+α

) − Λ

S (t)

+M

 c1βb

g
(

Λ
u+α

) + 4bc2g
(
Λ

u

) (
α +

γ2

u + δ

) I (t) + u +
βbΛ

ug
(

Λ
u

) +
σ2Λ2

2u2g2
(

Λ
u

)
−
γ2I (t)
R (t)

+ u + δ + u + α −
α (S (t) + R (t))

N (t) − Λ
u+α

+ u −
αI (t)

Λ
u − N (t)

≤ −2 + M

 c1βb

g
(

Λ
u+α

) + 4bc2g
(
Λ

u

) (
α +

γ2

u + δ

) I (t) +
Mc1σ

2I2 (t)

2g2
(

Λ
u+α

)
−

Λ

S (t)
−
γ2I (t)
R (t)

−
α (S (t) + R (t))

N (t) − Λ
u+α

−
αI (t)

Λ
u − N (t)

:= −2 + MλI (t) +
Mc1σ

2I2 (t)

2g2
(

Λ
u+α

) − Λ

S (t)
−
γ2I (t)
R (t)

−
α (S (t) + R (t))

N (t) − Λ
u+α

−
αI (t)

Λ
u − N (t)

,

where λ =
c1βb

g( Λ
u+α ) + 4bc2g

(
Λ
u

) (
α +

γ2
u+δ

)
.

Define the following bounded closed set

Dε =

{
(S (t) , I (t) ,R (t)) ∈ Γ : ε ≤ S (t) ≤

Λ

u
, ε ≤ I (t) ≤

Λ

u
, ε2 ≤ R (t) ≤

Λ

u
,

Λ

u + α
+ ε3 ≤ N (t) ≤

Λ

u
− ε3

}
,

where ε is a sufficiently small constant satisfying the following inequalities (5.7)–(5.11)

− 2 + Mλ
Λ

u
+

Mc1σ
2Λ2

2u2g2
(

Λ
u+α

) − Λ

ε
≤ −1, (5.7)

− 2 + Mλε +
Mc1σ

2ε2

2g2
(

Λ
u+α

) ≤ −1, (5.8)

− 2 + Mλ
Λ

u
+

Mc1σ
2Λ2

2u2g2
(

Λ
u+α

) − γ2

ε
≤ −1, (5.9)

− 2 + Mλ
Λ

u
+

Mc1σ
2Λ2

2u2g2
(

Λ
u+α

) − α (1 + ε)
ε2 ≤ −1, (5.10)
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− 2 + Mλ
Λ

u
+

Mc1σ
2Λ2

2u2g2
(

Λ
u+α

) − α

ε2 ≤ −1. (5.11)

For convenience, we divide Γ\Dε into five domains

D1 = {(S (t) , I (t) ,R (t)) ∈ Γ, 0 < S (t) < ε} ,
D2 = {(S (t) , I (t) ,R (t)) ∈ Γ, 0 < I (t) < ε} ,
D3 =

{
(S (t) , I (t) ,R (t)) ∈ Γ, I (t) ≥ ε, 0 < R (t) < ε2

}
,

D4 =

{
(S (t) , I (t) ,R (t)) ∈ Γ, S (t) ≥ ε, I (t) ≥ ε,R (t) ≥ ε2,

Λ

u + α
< N (t) <

Λ

u + α
+ ε2

}
,

D5 =

{
(S (t) , I (t) ,R (t)) ∈ Γ, S (t) ≥ ε, I (t) ≥ ε,R (t) ≥ ε2,

Λ

u
− ε2 < N (t) <

Λ

u

}
.

So, we only need to prove LV ≤ −1 on the above five domains.
Case i: If (S (t) , I (t) ,R (t)) ∈ D1, from Eq (5.7), one can obtain that

LV ≤ −2 + MλI (t) +
Mc1σ

2I2 (t)

2g2
(

Λ
u+α

) − Λ

S (t)

≤ −2 + Mλ
Λ

u
+

Mc1σ
2Λ2

2u2g2
(

Λ
u+α

) − Λ

ε
≤ −1. (5.12)

Case ii: If (S (t) , I (t) ,R (t)) ∈ D2, in view of Eq (5.8), we have

LV ≤ −2 + MλI (t) +
Mc1σ

2I2 (t)

2g2
(

Λ
u+α

)
≤ −2 + Mλε +

Mc1σ
2ε2

2g2
(

Λ
u+α

) ≤ −1. (5.13)

Case iii: If (S (t) , I (t) ,R (t)) ∈ D3, according to Eq (5.9), we obtain

LV ≤ −2 + MλI (t) +
Mc1σ

2I2 (t)

2g2
(

Λ
u+α

) − γ2I (t)
R (t)

≤ −2 + Mλ
Λ

u
+

Mc1σ
2Λ2

2u2g2
(

Λ
u+α

) − γ2

ε
≤ −1. (5.14)

Case iv: If (S (t) , I (t) ,R (t)) ∈ D4, by Eq (5.10), one can see that

LV ≤ −2 + MλI (t) +
Mc1σ

2I2 (t)

2g2
(

Λ
u+α

) − α (S (t) + R (t))
N (t) − Λ

u+α

≤ −2 + Mλ
Λ

u
+

Mc1σ
2Λ2

2u2g2
(

Λ
u+α

) − α (1 + ε)
ε2 ≤ −1. (5.15)
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Case v: If (S (t) , I (t) ,R (t)) ∈ D5, in view Eq (5.11), we derive

LV ≤ −2 + MλI (t) +
Mc1σ

2I2 (t)

2g2
(

Λ
u+α

) − αI (t)
Λ
u − N (t)

≤ −2 + Mλ
Λ

u
+

Mc1σ
2Λ2

2u2g2
(

Λ
u+α

) − α

ε2 ≤ −1. (5.16)

Consequently, for a sufficiently small ε, we have

LV (S (t) , I (t) ,R (t)) ≤ −1, f or ∀ (S (t) , I (t) ,R (t)) ∈ Γ\Dε.

In view of Lemma 2.2, there exists a solution of system (1.2) which is a stationary Markov process.
This completes the proof. �

Remark 5.1. Theorem 5.1 shows that if the intensity of white noise is small enough to make Rs
0 > 1,

then the system (1.2) has a stationary solution. That is to say, disease will exist for a long time and
form endemic disease.

6. Conclusions and numerical simulations

In this paper, we study the dynamics of a stochastic SIRS epidemic model with saturating contact
rate. Firstly, the threshold of disease extinction for deterministic system (1.1) is obtained by using
the Jacobian matrix. If R0 < 1, system (1.1) has a unique stable equilibrium and the disease goes to
extinct. If R0 > 1, system (1.1) forms endemic disease after a sufficiently long time. Secondly, the
threshold parameter Rs

0 of stochastic system (1.2) is established. If the intensity of the white noise is
small enough to satisfy the condition Rs

0 > 1, the disease is persistent. Otherwise, the disease will die
out. Finally, we prove that there exists a stationary solution under condition Rs

0 > 1 in system (1.2).

In order to demonstrate the above theoretical derivation, we use MATLAB software to carry out
some numerical simulations. Next, we choose the relevant parameters of system (1.1) as follows:

Λ = 1, u = 0.1, b = 0.6, δ = 0.13, γ1 = 0.1, γ2 = 0.08, α = 0.12.

Firstly, we simulate the deterministic system and set β = 0.66. By an ordinary computation,
R0 = 0.9335 < 1. From the first condition of the Theorem 3.1, one can obtain that the system (1.1)
has a unique stable equilibrium point E0 = (10, 0, 0) (Figure 1). Furthermore, if we increase β to 0.8,
in this case, we have R0 = 1.1315 > 1. The condition (ii) in Theorem 3.1 is established, then by
Theorem 3.1, the disease of system (1.1) is persistent (Figure 2).
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Figure 1. Numerical simulation of the deterministic system (1.1), where Λ = 1, u = 0.1, b =

0.6, δ = 0.13, γ1 = 0.1, γ2 = 0.08, α = 0.12, β = 0.66,R0 = 0.9335 < 1.
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Figure 2. Computer simulation of the deterministic system (1.1), where Λ = 1, u = 0.1, b =

0.6, δ = 0.13, γ1 = 0.1, γ2 = 0.08, α = 0.12, β = 0.8,R0 = 1.1315 > 1.

Next, we perform numerical simulations on stochastic system. We keep the parameters of
deterministic system (1.1) unchanged, and only select different intensities of white noise σ in
system (1.2).

Case i: In order to verify the conclusion (i) of the Theorem 4.1, we let σ = 0.8. By computing,

we can obtain σ2 = 0.64, g
(

Λ
u

)
= 10.6056 and max

{
β2b2

2(u+γ1+γ2+α) ,
βbug( Λ

u )
Λ

}
= 0.5091, which implies

the parameters satisfy the condition (i) σ2 > max
{

β2b2

2(u+γ1+γ2+α) ,
βbug( Λ

u )
Λ

}
. This shows that the disease in

system (1.2) dies out with probability 1 (Figure 3).
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Figure 3. Time series diagram of (S (t), I(t),R(t)), where Λ = 1, u = 0.1, b = 0.6, δ =

0.13, γ1 = 0.1, γ2 = 0.08, α = 0.12, β = 0.8, σ = 0.8,R0 = 1.1315 > 1.

Case ii: In Figure 4, we assume that σ = 0.45. It is not difficult to obtain that σ satisfies the second
condition of Theorem 4.1. Then, we have Rs

0 = 0.9236 < 1 and 0.2025 = σ2 <
βbug( Λ

u )
Λ

= 0.5091. As
can be seen from Figure 4, the disease is going extinct.
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Figure 4. Time series diagram of (S (t), I(t),R(t)), where Λ = 1, u = 0.1, b = 0.6, δ =

0.13, γ1 = 0.1, γ2 = 0.08, α = 0.12, β = 0.8, σ = 0.45,R0 = 1.1315 > 1,Rs
0 = 0.9236.

Case iii: If σ = 0.1, by calculation, we get Rs
0 = 1.1190 > 1 . According to Theorem 4.2, the

disease in system (1.2) is permanent in the time mean (Figure 5). Furthermore, by Theorem 5.1, the
system (1.2) has a stationary solution (Figure 6).
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Figure 5. Time series diagram of (S (t), I(t),R(t)), where Λ = 1, u = 0.1, b = 0.6, δ =

0.13, γ1 = 0.1, γ2 = 0.08, α = 0.12, β = 0.8, σ = 0.1,R0 = 1.1315 > 1,Rs
0 = 1.1190.
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Figure 6. The density function distribution of (S (t), I(t),R(t)) with σ = 0.1,Rs
0 = 1.1190.
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