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Abstract: In this paper, a stochastic SIRS epidemic model with saturating contact rate is constructed.
First, for the deterministic system, the stability of the equilibria is discussed by using eigenvalue theory.
Second, for the stochastic system, the threshold conditions of disease extinction and persistence are
established. Our results indicate that a large environmental noise intensity can suppress the spread
of disease. Conversely, if the intensity of environmental noise is small, the system has a stationary
solution which indicates the disease is persistent. Eventually, we introduce some computer simulations
to validate the theoretical results.
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1. Introduction

Recently, a new type of pneumonia caused by the coronavirus, named COVID-19, is spreading
around the world. The issue of infectious diseases has once again aroused people’s great concern.
How to prevent and control infectious diseases has been an important subject facing human beings
[1-8]. The SIR model assumes that the infected person can obtain permanent immunity after recovery.
However, for smallpox, cholera, malaria and other diseases, individuals recovered from treatment can
return to the susceptible category after temporary immunization, which can be described by SIRS
model. Moreover, for some bacterial infectious diseases, such as meningitis and sexually transmitted
diseases, some individuals can not produce effective antibodies after treatment and may be infected
again. Others may gain temporary immunity, but then lose immunity and become susceptible [9—-12].
Literature [10] established an SIRS model with a general population-size dependent contact rate A(N)
and proportional transfer rate from the infective class to susceptible class. The authors studied the
threshold conditions of disease extinction and discussed the stability of disease-free equilibrium and
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endemic equilibrium.

Infection rate is an important index to measure the intensity of disease transmission. Employing
an appropriate infection rate based on a specific disease for the mathematical model plays a vital role
in the disease prevention and control. In the literature [13], Thieme and Castillo-Chavez proposed the
incidence %ﬁwm, where N () represents the total population. On that basis, Heesterbeek et al. [14]
gave the following saturating contact rate

DN (1)
o(N() = :
1+bN(t)+ V1 +2bN (1)
Obviously, o (N (¢)) is a non-decreasing function of N (7). o) 6 g non-increasing function of N (¢).

N(1)
If N (¢) is sufficiently small, o (N (¢)) ~ bN . Conversly, if N (z) is fully large, o (N (¢)) ~ 1. Compared

with the bilinear incidence S (¢) I (¢) and the standard incidence B Sls,'()tl)(t), the saturating contact rate is
more closer to the transmission of many diseases. The saturated contact rate is widely used in the
study of infectious disease modeling. For example, Zhang et al. [15] constructed an SEIS model with
general saturated incidence rate, and proved the global asymptotic stability of the endemic
equilibrium by using the autonomous convergence theorem. Lan et al. [16] considered an SIS
epidemic model with saturating contact rate, by using Itd6’s formula, the conditions for disease
extinction and the existence of stationary solutions were obtained. In reference [11], Li et al.
established an SIRS epidemic model with a general incidence, which considered both the transfer
from the infected to the susceptible and the transfer from the recovered to the susceptible. Motivated
by the above literature, we formulate a deterministic SIRS epidemic model with saturating contact

rate and transfer from infectious to susceptible:

B0 = A—uS (1) - BEEL + 711 (1) + 6R (1),

di(n) _ BbS(I@®)
Tat T g(NG©) —Utyt+rt+ta)l@, (1.1)

B =yl (- w+R®),
where g (N (t)) = 1+bN (£)+ V1 + 2bN (f), N (t) = S (£)+1 (t) + R (¢) is the total population. S (£), I (¢),
R (¢) represent the number of susceptible individuals, infected individuals and recovered individuals,
respectively. A is the recruitment rate of susceptible individuals. u denotes the natural mortality rate.
a represents the mortality rate caused by diseases. y; is the transfer rate from the infected individuals
to the susceptible individuals. v, is the transfer rate from the infected individuals to the recovered
individuals, and ¢ denotes the immunity loss rate.

Due to the influence of environmental noise, the prevalence and transmission of diseases is often
random. For example, the change of temperature and the influence of climate will lead to the
fluctuation of mortality, morbidity and so on. In recent years, mathematical models of infectious
diseases described by stochastic differential equations have been widely concerned [17-22]. There are
many ways to construct a stochastic differential equation model, such as adding random perturbations
to the parameters of deterministic system [23-26], or introducing proportional perturbations to state
variables [27-31]. Recently, considering the effect of two different white noises on the model
parameters, reference [32] established a stochastic SIS model with two correlated Brownian motions,
in which the threshold of disease extinction as well as the variance and mean of the stationary
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distribution were investigated. In this paper, we consider that the incidence coeflicient 8b is disturbed
by white noise, that is b — Bb + odB (t), where o is the intensity of white noise, B (¢) is defined as
the standard Brownian motion in the complete probability space (Q, 7, {F };»0, P). Thus, the above
model (1.1) is transformed into the following SIRS stochastic epidemic model:

ds (1) = [A - uS (1) = Z200 4y, 1 (1) + 6R (1) | dt — M0 dB (1),

dl (1) = |20 — (u+ ) + vy + @) 1 ()] dt + S4B (1), (1.2)

dR (1) = [yl (t) = (u+ S) R (1)] dt.

As far as we know, there have been a lot of studies on the epidemic model disturbed by
environmental noise, but there are few stochastic models considering saturating contact rate and
transfer from infectious to susceptible, especially the existence of stationary solution. The paper is
organized as follows: In section 2, we give some notations and related lemmas. The thresholds of
deterministic system and stochastic system are established in sections 3 and 4, respectively. Sufficient
condition for the existence of stationary solution in the stochastic system (1.2) is provided in
section 5. In section 6, we verify the results of theoretical derivation by numerical simulations.

2. Preliminaries

Throughout this paper, we let R® = {x; > 0,i = 1,2, 3}. For an integrable function 4 on [0, +o0), we
define (h(¢¥)) = % fot h(mr)dr. By using the methods from Liu et al. [33], we can prove that the region

u+a

F:{(S 0,1 ,R(®) R, <N(t)§%}

is a positively invariant set of system (1.2).

Lemma 2.1. For any given initial value (S (0),1(0),R(0)) € Ri, then the model (1.2) has a unique
positive solution (S (t),1(t), R (¢)) on t > 0, and the solution will remain in R® with probability 1.

Next, we will introduce some contents of stationary Markov process. The n-dimensional stochastic
differential equation can be expressed by the following formula

l
dx(t) = f(x(@),t)dt + Z gi(x(®,dB; (1), Yt > 1, (2.1)
i=1

with the initial value x (t)) = xo € R". Integrating from O to ¢ for both sides of the Eq (2.1), one can
obtain that

t [ t
x(t) = xo + f f(x(0),60)do + Z f g8i(x(0),0)dB; (0, YVt > 1. (2.2)
fo i=1 Yo

Assume that the vectors f (x, 1), g (x,1),..., g (x,)(t > ty, x € R") are continuous functions of (x, ¢),
satisfying the following conditions for some constant D,

!
A 1f = fo0l+ 218 (x,0) =g (v, 0l < D|x -y,
=1 (2.3)

i
(A2) f (el + ; lgi (x, D) < D (1 + |x]).
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According to the literature [34] Theorem 3.7, we have the following Lemma.

Lemma 2.2. Suppose that the coefficients of (2.2) are independent of t, and the conditions (2.3) hold
in Ug (VG > 0). There exists a function V (x) € C* with the following properties in R"

Vx)>20 and supLV(x)=-Mg— —0o(G — ), 2.4

|x|>G

where C? represents a class of functions that are twice continuously differentiable relative to x in R".
Further, we assume that there is at least one x € R", such that the process X* (t) is regular. Then there
exists a solution of system (2.2) which is a stationary Markov process.

For Lemma 2.2, we need to note the following two points.

Remark 2.1 (i) Condition (2.3) can be replaced by the global existence of solution of
system (2.2) (see [35] Remark 5);

(i1) Condition (2.4) can be replaced by the weaker condition LV (x) < —1 (see [34] Chapter 4).

3. Dynamics of system (1.1)

In this section, we concentrate on the stability of the equilibria. Firstly, using N (¢) as a variable
instead of the variable S (7), we convert system (1.1) into the following form

PO = A~uN@® -al @),

A0 = B0 (N (1)~ 1(1) = R(1) — (u+y1 + 12 + ) [ (1), (3.1)

G =l W+OR®).

Obviously, the system (3.1) exists a boundary equilibrium Py = (%, 0, O). Define

ABb

Ry = .
' u+y +y+a)g(s)

By direct calculation, if Ry > 1, we get system (3.1) has a positive equilibrium P* = (N*, I*, R*) with

. A —uN" . Y2(A—uN")
Ir'=———, RR="—"———=
a a(u+9)

where N* is the unique positive root of the following function

A—uN 7y, (A—uN)
a a(u+0)

¢(N):,8b[N— —(u+y+y2+a)g(N).

In fact, we have
A A
¢ ” =u+yi+y,+a)g o (Rp—1)>0

and

AN BmA A
¢(u+a)_ (u+a)(u+o) (u+yl+y2+a)g(u+a)<0.
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do(N) _ 0y ;
Let =57 =0, it can be got

a(u+8)(u+y|+yr2+a) 2 —1
/j[(a+u)(u+6)+uy2] —a(u+o)(u+y+y2+a)

N.. = ,
2b

which implies that ¢ (N) is increasing if N > N, and ¢ (N) is decreasing if N < N,.. Therefore,
function ¢ (N) has a unique positive root, then the system (3.1) exists a unique positive equilibrium
P = (N*,I",R").

Theorem 3.1. For system (3.1), we have

(i) If Ry < 1, then Py = (%, 0, O) is a unique stable equilibrium, which implies the disease of system
(3.1) goes extinct.

(ii) If Ry > 1, then P* = (N*,I",R") is a stable positive equilibrium, which implies the disease of
system (3.1) is permanent.

Proof. (i) The Jacobian matrix of system (3.1) evaluated at Py = (£,0,0) is

—u —-a 0
Jo=1] 0 %—(w+71+72+@) 0 )
0 0% —(u+90)

which has three eigenvalues:

A1 =-u<0, b=—(u+9) <0, /13:(M+)/1+’}/2+CL’)(RQ—1)<O.

Therefore, according to stability theory, P is stable if Ry < 1.
(i1) The Jacobian matrix at P* = (N*, I*, R*) is

-u —«a 0
dz dax ans s

0 v —(u+9)

J' =

where

BbI* [g (N*) = (N* = I = R") (b + ——2—)|]

a — VI1+2bN*
“ g2 (N*)
% - bN*
_ pbl (1+ 1 +2bN* — m) +,8b1*(1*+R*) (b+ b )
g* (N*) g* (N*) V1 + 2bN*
~ BbI* | Bbr +R*)( N b ) o
g (N*) V1 + 2bN* g2 (N¥) Vi+2bN*)
Bb(N* — R* = 2I) BbI*
= - = — O’
an (V) u+yi+yn+a (V) <
bI*
ayy = _ﬁN*) =day < 0.
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Hence, the characteristic equation of J* is

/13 +Cl1/7.2+612/1+613 =0,

where
bI*
a, = u+B +u+06>0,
g(N)
BbI* BbI* (I' + R¥) ( b )l
a = « + WEY™ b+ ——
g (N*) V1 + 2bN* 8> (N¥) V1 + 2bN*
+Qu+06+vy,) +u(u+06)>0
ST
and
bl* bl* (I" + R* b
az; = a(u+9o) B +ﬁ 2( il )(b+ )]
g (N*) V1 + 2bN* g (N%) V1 + 2bN*
+u(u+06 +y,) >0
T
Then,
ajay —a; = auar — [Qu+6) Qu+ 6+ yy) +uys]an — aayax
+Qu+ 8 +yy) a5, + u(u+6) (2u + 6) > 0.
Therefore, the equilibrium P* is stable when it exists. This completes the proof of Theorem 3.1. O

4. The threshold of the system (1.2)

In the previous section, we have obtained the threshold for ordinary differential equation (ODE)
system (1.1). Similarly, the threshold of stochastic differential equation (SDE) system (1.2) is also
crucial, which determines the extinction and persistence of the disease. Define the following parameter

b
Ry = NS ,
g2A2
I/t(l/l'i"}/l +Yvt+a+ %)g(%)

where g (x) = 1+bx+ VI + 2bx. In this section, we will prove that R; is the threshold of system (1.2).
Now, we give the following definition.

Definition 4.1.
(i) The disease 1(t) is said to be extinct if lim I(t) = 0;
t—+00

(ii) The disease 1(t) is said to be permanent in mean if there is a positive constant ¢ such that
lim inf (/(#)) > ¢.
t—o0
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4.1. Extinction

Theorem 4.1. Set (S (1),1(t),R (1)) be a solution of system (1.2) with any given initial value
(5 (0),1(0),R(0)) €T

(i) If % > rnax{ il ﬁbug( )} holds, then

2(u+y1+yr+a)’

In(t 2p?
lim su nt()_ﬁz——(u+y1+yz+a/)<0 a.s.,
1—00

ug(A
(i) IR} < 1 and o < 2225 holds, then

0_2 2
2u’g? (%)

which implies that the disease dies out with probability 1. In addition, we have

1
lim sup (Ry—1)<0 a.s.,

[—o0

nl ()
t

S[l/l+’)/1+’)/2+a’+

lim (S (1)) = é a.s.,
[—00 u

Iim (R () =0 a.s..
[—o0

Proof. Set v=InI (1), by the Itd’s formula, one can get

BbS (1) o282 (1) J oS ()

I R R R LA
S (0 oS (1)
= ¢ 4.1
(g(N(t)))dHg(N(r))dB(t)’ (4.1)

where @ (x) = —%zxz +Bbx — (u+ 7y, + 7y, + a).
Case (i): If condition (i) is satisfied, then

q)( S (1) ) _ 02( S (1) ﬁb) ,322

g(N (@) cN@D) o? F_(u+71+)/2+a')

ﬁZ 2
297 u+yi+y+a). (4.2)

Substituting (4.2) into (4.1), one can obtain that

212
— - (uU+yi+n+a
252 (u+yi+v )

asS (1)

d(nl(?)) < TN @)

dt +

dB(1). 4.3)

By using the strong law of large numbers for martingales, we obtain

T oS dé
. N
lim 0 g(N(E)) - 0.

t—00
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Integrating from O to ¢, dividing by ¢, and taking superior limit on both sides of Eq (4.3) yields

27,2
pmH0<ﬁb

tlirp.o su S5 u+yr+y,+a)<0. a.s. “4.4)
U A .
Case (ii): If condition (i1) R < 1 and o’ < ﬁbgT(”) are satisfied, then

@(Sm) &(Sm _my Bb?

+to5—-w+yi+yn+a

g(N (1) 2\eN@) 0?20
2
o} A Bb B*b?
< —— — =+ -(u+y +y +
- 2 \ug (A) 0'2] 2072 tyr+y:+a
202
= lu+y+y+a+——|(Ry - 1). (4.5)
2u”g? (%) 0
From Eq (4.1), one can get
In/ (¢ 2A2
imsup D iy spra+r -2 _|R-1)<0  as. (4.6)
=00 2u2g? (%)

The inequalities (4.4) and (4.6) imply lim / () = O and the disease goes to extinction.
t—00
Next, adding up the three equations of system (1.2), integrating both sides from O to ¢ and dividing
by t, one can see that

S(t)—S(O)+I(t)—I(O)+ 0 R({@)—-R(Q) 3
t t u+o t Bl

A—u@u»—@+a+”

Y2
u+5)““”' @.7)

So, from Eq (4.7) we have

u+a

+

A
@a»:;—( ufgaa»—G@, 4.8)

u

where O (1) = 1 [5(’)25(0) + 1(’);1(0) + u%w]. Obviously, tlgg O (f) = 0 and we have

A
lim (S (¢)) = — a.s..
—0o0 u

Similarly, from the third equation of the system (1.2) yields

Y2 R() -R(0)
R()) = I(t)y - ———. 4.9
(R () u+6<()> wro)r (4.9)
Let t — oo, we get that
tlim R())=0 a.s.
This finishes the proof. O
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4.2. Permanence in mean

Theorem 4.2. If Ry > 1, the disease is persistence in mean. Moreover, we have
liminf (I (¢)) > I"* > 0,
t—o0

A
11m1nf<——S(t)> (”+“+ b )1**>0,
u u

1—00 + 5

ok

where
u<u+5>[u+%+y2+a+2“( 58 (4) (R - 1)

"= Bb[(u + @) (u+ 6) + you

Proof. In view of Eq (4.1), we have

BbS (1) 2N
g(%) —(l/t+’)/1 +')/2+Q’)—ﬁ2(%) dt +

Integrating from O to ¢ and dividing by 7 on both sides of Eq (4.10), one can get that

oS (1)
gN (@)

d(Inl(t) > dB(1).

T oS

In/()-Inl©) _ pb A S e

S@O)-u+yi+yn+a)-

’ s

Substituting Eq (4.8) into Eq (4.11), we can get

2ulg? (%) t

In(t)—1Inl(0) o?A? S BbO (1)
p > M+’)/1+’)/2+C¥+W2(A)](Ro—l)—ug(é)
G % prlwr @)yl

t u(u+5)g(%)

Hence,
o2 A2
Inl(t) > u+'y]+yz+oz+—(Rs 1)t + F ()
2u*g? ( )
_,B [(u + @) (u+ ) + yu] I(g)df
u(u+5)g(;)

(4.10)

(4.11)

(4.12)

(4.13)

where F (1) = In1(0) + fot 75 &) dé — SO Obviously, lim F(’) =0 a.s.. From Lemma 1 in [12], we

sN) ug(2)” P

obtain
u(u+6)[u+yl+)/2+a/+2”( )] ( )(R(S)—l)

Bb[(u+ @) (u+ 6) + you] =1

liminf (7 (¢)) >
[—0o0
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According to Egs (4.8) and (4.9), we can see that

A
1iminf<——S(t)>=(u+“+L)1iminf<l(t)>z(”+a+ 72 )1**
t—o00 u l/t+6 PRI u

u u+o
and
liminf (R (1)) = "2 Jiminf @) > 72 g,
1—00 U+ 0 - u+o
The proof of Theorem 4.2 is completed. O

Remark 4.1. According to Theorem 4.1 (i), if the intensity of white noise is large enough that the

A
.. 2 B2b? ﬁbug(;)
condition o e’ A

> max{ } holds, then the disease goes to extinction. Therefore, a

large environmental nose intensity can suppress the spread of disease. In addition, by comparing the
thresholds of systems (1.2) and (1.1), it can be found that if the intensity of environmental noise o>=0,
then R} = Ry, if o2 # 0, then R} < Ry. When Rj < 1 < Ry, the deterministic system (1.1) has a stable
positive equilibrium, while the disease of the stochastic system (1.2) dies out with probability 1. This
means that the presence of environmental noise is conducive to disease control.

5. The existence of stationary solution

Theorem S.1. If R} > 1, there exists a solution of system (1.2) which is a stationary Markov process.

Proof. Let (S (¢),1(t),R(¢)) be a solution of system (1.2) with any given initial value
(S (0),1(0),R(0)) € I'. Then we construct a C2-function G as following:

4bcy g (A)

u

——R (t))
u

G @®,1(0),R(1)

M[— InZ () —ciInS () — c28> (N (1)) +
+0

A A
—InS (t)—lnR(l)—ln(N(t)— —)—ln(— —N(t))
u+a u
= MVi+Vy+V3+4+V,+ Vs,

where Vi = —Inf () = ¢;InS (1) - e8> (N (@) + 222D R (1), v, = —InS (), V3 = ~nR (@), Vi =

2,2 2,2
u+'yl+72+a+A7”A A~
2L«2g2(i)

u+y)+y2+a+
LERRS Zuzgz(%)

T eS) . The Misa

and ¢, =

u+a u

“In(N®O-2).Vs=-n(2-N@®). ¢ =
positive constant and satisfies the following condition

AZ 2 bA 2A2
-3M u+71+y2+a+—g(3R3—1)+ﬁ + -2 +4du+o+a<-2. (5.1
e ()] VT ) 2 ()

u

Furthermore, G (S (¢),1(¢), R (?)) is a continuous function, which exists a minimum point (S_ 0 I_O, 150).

Next, we define a nonnegative C 2_function V
V(S 0.10.R0)=G (S 0,10, RW) = G(So.To,Ro).

Mathematical Biosciences and Engineering Volume 17, Issue 5, 5925-5943.
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Applying It6’s formula for V|, we can see

o282 (1)
g2 (N (1)
12 1% (1)
2g* (N (1)

)(A —uN () —al (7))

LV] =

+

—(utyr+y2+a)l@)

BbS (0 1(1)
g(N(®)

1 [ﬁbS @ 1)
I gWN@)

-—— [A—MS (1) -

+y11(t) + OR (t)] +

—2bcyg (N (1)) (1 +
4bcy g %
- g ) [yal (1) = (u + &) R (0)]

bS A AZ 2
_f(N ((tt))) - éc’l(t) —2bACg(N()) + (u+y1 +y2+ @) + g

272
) ) 2onc () - e ) 0
2)

4bcyy)8
1)+ ———=
u+o

A2o? ] N c102 1% (1)
2w (4)] 26 (55

1
V1 +2bN (1)

+

IA

+2bacyg (N (1)) (1 + 1(t)

1
V1 +2bN (1)

u+yr+y+a+

—3~2A2Bb%cics + 3

IA

+0

u

+ Clﬁb
L(ﬁ)

A%o? : c 0% (1)
= —3[”"‘71 +Yy,+ta+ 2u2g2(%):|( 3R‘O— 1)+m

A
+ 4beag (;) (a/ + ufé)} 16). (5.2)

A) .\ 4bcyysg (%)

+ 4baczg( }1 (®)

+[ Cl’i\b
8()
Similarly, we have

272
LV, = _L+M+ BbI()  yil() OR(t) oI (1)

S (1) gN@®) S SO * 27 (N (1))

A BbA o?A?
< - , 5.3
< ~g@p et ug(%) + e (A) (5.3)

u

1
LV; = — +u+90, 5.4

A—uN (@) —al(?) a(S () +R(®1)
=ut+a-—
N(t)_L N([)—L

uta u+a

LV, = - (5.5
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_A-uN@)-al@) _ B al (1)
LVs = %—N(r) =u —%—N(t). (5.6)

Therefore, in view of Egs (5.2)—(5.6), we get that

A2 2 M 212 A
LV < -3M u+’yl+y2+a+—o- (3Rs_1)+ 10 (t)_
2ug? (2) 282(2)  S®
A A 2A2
+M[ CLBAb +4bczg(—)(a+—y2 )I(t)+u+ ’BbA + 7 A
¢(ivs) e ug(3)  20” (%)
_Vzl(t)+u+6+u+a_a(S (t)+R(t))+u_ al (f)
R N -2 AN
A M 212
< —2+M[ ap +4bc2g(—)(a+—72 )1(;)+—C1(’A(t)
g(m) u u+o ZgZ(M)

A ol aSO+RO)  al®)
S@®  R@® Nn--2  A_NQ@

Mclo'zlz(t)u_aA ol aSO+R@)  al®)
22(A) SO RO No-Z  4-N©®O

u+a

= 2+ MA (1) +

_ capb A Y2
where A = ) + 4bc, g (;) (a + m).
Define the following bounded closed set

A

D, = {(s O, I, RO)eT:e<S )< %,8§I(t) < %,82 <R®< y

A
+83SN(I)§——83},
u+a u

where ¢ is a sufficiently small constant satisfying the following inequalities (5.7)—(5.11)

A Mco®A? A
o Mam 2T Ry, (5.7)
U 22g? (A) £

ut+a

M 2.2
24 Mas+ 2998 . (5.8)

2 (i2)

A Mcyo2A2
Sy il AL SR AP (5.9)
u 2u2g2 (A) &

u+a

A Mcio2A? 1+
Loy Maoc A al - &, (5.10)
U 2ylg? (A) £

u+a
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A Mc,o*N? a

-2+ MA—+ — - — < —1. 5.11
U 2y2g? (%) g G.11)
For convenience, we divide I'\ D, into five domains
Dy = {(S®,I0®,R®))el,0<S5 () <el,
D, = {(S®,I®),R1)el,0<1) <e¢},
D; = {(S®).1(®),R®)eTI(®)280<R()<eY,
A A
D, = {(S .11, R®) €T, S (1) 2e1(1) 2R >, <N@® < +s2},
u+a u+a
» A, A
Ds = {S@®, 10, RMO)elLSO=2el(®)2e, ROz, —-<NO<—,.
u u
So, we only need to prove LV < —1 on the above five domains.
Case1: If (S (1),1(¢),R(t)) € Dy, from Eq (5.7), one can obtain that
Mco?I? (¢ A
LV < =2+ MA@+ 612(7 - ()—S t
2g (m) ()
A Mcio®’A* A
< 2+MAS+ 22 Scg (5.12)
U 2u2g? (m) g
Caseii: If (S (¢),1(¢),R(t)) € D,, in view of Eq (5.8), we have
Mc,o?I? (t
LV < -2+ MAI(t)+ LA()
28 (%)
Mc,o&?
< —2+Mﬂs+ﬁs—1. (5.13)
28 ()
Case iii: If (S (¢),1(t),R(?)) € D3, according to Eq (5.9), we obtain
Mc,0?I? 1
v < -2+ M@+ AT O ylO
2g2 (ﬁ) R(1)
A Mc,o?A?
< —2+M/l—+LA—ﬁs—l. (5.14)
U 2g? (m) g
Caseiv: If (S (#),1(¢),R(¢)) € Dy, by Eq (5.10), one can see that
Mc,o*1? H+R
v < 2+ M+ Ma7 L0 aE O+ R@)
202(L) No-Z&
A Mc,o*A? 1
< el Mac A _elte) (5.15)

U 2y2g? (A) g2

u+a
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Case v: If (S (¢),1(¢),R(?)) € Ds, in view Eq (5.11), we derive

Mc,a?I% (t) 0!

o 2w (L) E-NG

IA

-2+ MAI () +

ut+a
A Mco*A?
—2+M/l—+L—g2 <-1. (5.16)
u 2u2g2 (L) &

IA

u+a

Consequently, for a sufficiently small &, we have

LV(S (),I(t),R@) <=1, for Y(S®,I(t),R() el'\D..

In view of Lemma 2.2, there exists a solution of system (1.2) which is a stationary Markov process.
This completes the proof. O

Remark 5.1. Theorem 5.1 shows that if the intensity of white noise is small enough to make R > 1,
then the system (1.2) has a stationary solution. That is to say, disease will exist for a long time and
form endemic disease.

6. Conclusions and numerical simulations

In this paper, we study the dynamics of a stochastic SIRS epidemic model with saturating contact
rate. Firstly, the threshold of disease extinction for deterministic system (1.1) is obtained by using
the Jacobian matrix. If Ry < 1, system (1.1) has a unique stable equilibrium and the disease goes to
extinct. If Ry > 1, system (1.1) forms endemic disease after a sufficiently long time. Secondly, the
threshold parameter R} of stochastic system (1.2) is established. If the intensity of the white noise is
small enough to satisfy the condition R > 1, the disease is persistent. Otherwise, the disease will die
out. Finally, we prove that there exists a stationary solution under condition Rj > 1 in system (1.2).

In order to demonstrate the above theoretical derivation, we use MATLAB software to carry out
some numerical simulations. Next, we choose the relevant parameters of system (1.1) as follows:

A=1,u=0.1,5b=06,6=0.13, vy, =0.1, v, =0.08, a = 0.12.

Firstly, we simulate the deterministic system and set 8 = 0.66. By an ordinary computation,
Ry = 0.9335 < 1. From the first condition of the Theorem 3.1, one can obtain that the system (1.1)
has a unique stable equilibrium point Ey = (10,0, 0) (Figure 1). Furthermore, if we increase S to 0.8,
in this case, we have Ry = 1.1315 > 1. The condition (ii) in Theorem 3.1 is established, then by
Theorem 3.1, the disease of system (1.1) is persistent (Figure 2).
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—s()
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R()
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. "
20 40 60 80 100 120

o

Figure 1. Numerical simulation of the deterministic system (1.1), where A = 1, u = 0.1, b =
0.6, 6 =0.13, y1 =0.1, , =0.08, @ =0.12,8 = 0.66, Ry = 0.9335 < 1.

deterministic system

\

0 20 40 60 80 100 120

Figure 2. Computer simulation of the deterministic system (1.1), where A =1, u = 0.1, b =
0.6, 6 =0.13, y; =0.1, y,=0.08, « =0.12,8 =0.8,Ry = 1.1315 > 1.

Next, we perform numerical simulations on stochastic system. We keep the parameters of
deterministic system (1.1) unchanged, and only select different intensities of white noise o in
system (1.2).

Case i: In order to verify the conclusion (i) of the Theorem 4.1, we let o = 0.8. By computing,
we can obtain o = 0.64, g(&) = 10.6056 and max {522 24 — 0,501, which implies

2(u+y1+y2+a@)’ A

gy Bhug($)
2(u+y1+y2+a)’ A

the parameters satisfy the condition (i) o > max{ } This shows that the disease in

system (1.2) dies out with probability 1 (Figure 3).
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(b) ©

I(t) of deterministic system —— R() of deterministic system
——1(t) of stochastic system —R() of stochastic system
<> ——<R>

0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
t t t

Figure 3. Time series diagram of (S(¢), I(¢), R(¢)), where A = 1, u = 0.1, b = 0.6, 6 =
0.13, vy =0.1, v, =0.08, « =0.12,8=0.8,0 = 0.8, Ry = 1.1315 > 1.

Case ii: In Figure 4, we assume that o = 0.45. It is not difficult to obtain that o satisfies the second

A
condition of Theorem 4.1. Then, we have R} = 0.9236 < 1 and 02025 = 02 < 26 = 05091, As
can be seen from Figure 4, the disease is going extinct.

@) b ©
10 @ 25 ® 14 ©
1t of deterministic system —— R() of deterministic system
9 ——I(9) of stochastic system 12 ——R() of stochastic system
s -
s 2
1
2 S(1) of deterministic system
—— (1) of stochastic system
——<s> 15
6 08
5 06
1
4
0.4
3 05
02
2
1 0 0
0 2 40 60 80 100 120 140 160 180 200 0 2 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

t t t

Figure 4. Time series diagram of (S(¢), I(¢), R(¢)), where A = 1, u = 0.1, b = 0.6, 6 =
0.13, y1 = 0.1, ¥, =0.08, @ = 0.12, = 0.8,0 = 0.45,Ry = 1.1315 > 1, R = 0.9236.

Case iii: If o = 0.1, by calculation, we get R) = 1.1190 > 1. According to Theorem 4.2, the
disease in system (1.2) is permanent in the time mean (Figure 5). Furthermore, by Theorem 5.1, the
system (1.2) has a stationary solution (Figure 6).

(@) (b) ©

12 T T T T T T T T T 2 1
— S(t) of deterministic system 1(t) of deterministic system — R(t) of deterministic system
S(t) of stochastic system 18 —— (1) of stochastic system 0.9 ——R() of stochastic system
10 <S> <> ———<R>
16 08

07
06
05
04
03

0.2

0.1

0 0 o
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
t t t

Figure 5. Time series diagram of (S(¢), I(7), R(¢)), where A = 1, u = 0.1, b = 0.6, 6 =
0.13, y1 = 0.1, . = 0.08, « =0.12, = 0.8,0 = 0.1,Ry = 1.1315 > 1, R} = 1.1190.
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