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Abstract: Considering the influence of media lagging publicity on the awareness rate of epidemic 

situation, this paper introduces the accumulation of epidemic awareness variables, establishes the 

SISM infectious disease model influenced by media publicity, and gives the sufficient conditions for 

the global asymptotic stability of the model disease-free equilibrium, the stability of the endemic 

disease equilibrium and the existence of the Hopf bifurcation. The variation trend of different effects 

of delayed media publicity on the outbreak is simulated. Based on the data of A (H1N1), the 

interference degree of the parameters in the model is analyzed. The results show that shortening the 

lag time of the media report and increasing the implementation rate and the transfer rate of media 

propaganda can effectively control the epidemic and gradually end the epidemic. 

Keywords: SISM model; time delay; Hopf bifurcation; numerical simulation 

 

1. Introduction  

At present, infectious diseases are still one of the most important diseases threatening human 

health. Faced with emerging and emerging infectious diseases, such as novel coronavirus pneumonia 

(NCP), AIDS, Ebola virus, avian influenza, hepatitis B, and tuberculosis. In the absence of specific 

drug treatment and vaccine prevention, inappropriate behavior may accelerate the speed and extent 

of disease spread [1−3]. We need to take active precautions to avoid the potential risk of infection. 

Conscious defensive behaviors, such as paying attention to personal hygiene, wearing masks, and 

staying away from gathering places, are especially important during epidemics. As the epidemic 
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evolves, people are getting information about the disease from close friends, public health authorities 

and the media. People from different social backgrounds may take different actions to protect 

themselves, but awareness of the disease will accumulate. When a type of disease begins to spread, 

the importance people attach to it determines their actions. Quarantine measures should also be 

considered during a severe outbreak. Studies of infectious disease models with conscious constraints 

on human behavior have shown that even the absence of effective treatments can slow transmission [4]. 

Therefore, during multiple epidemics, authorities have strengthened people's awareness of the 

disease through media publicity and taken necessary measures to reduce exposure to the source of 

infection. For example, the 2009 influenza A (H1N1), the global spread of COVID-19 in 2020. 

Through the theoretical analysis and simulation of the model, it was found that with the increase in 

the proportion of infected people, people's awareness of prevention also increased, and people's 

susceptibility decreased. However, due to the slow response mechanism to information, and the 

attenuating degree of attention to the disease, the epidemic would also show oscillating behavior. But 

increased awareness could control the epidemic threshold for outbreaks [5]. 

It is found that people's consciousness accumulation is closely related to media propaganda. In 

the face of the epidemic, authorities should regularly update and release information, and publicize 

the ways of infection and prevention methods through various media in a timely manner, so as to 

promote people's awareness of prevention and reduce their contact with the source of infection. In 

addition, measures such as isolation have been taken to control the floating population. Media 

publicity plays an extremely important role in controlling the spread of the epidemic [6,7]. 

In recent years, considering that the media contributes to the accumulation of awareness, the 

idea of media propaganda and reducing the exposure rate of susceptible people were substituted into 

the infectious disease model. Some achievements have been made in predicting the epidemic trend 

and formulating prevention and control strategies by using the epidemic model with the media 

publicity effect. In response to a sudden outbreak, media campaigns can increase awareness and 

encourage people to take preventive measures, thereby reducing infection rates. The results show that 

when the contact rate between healthy people and infected people is reduced to a manageable level, 

the number of infected people can be greatly reduced and the peak time of the epidemic can be 

delayed [8,9]. For some seasonal and chronic infectious diseases, the expected epidemic prevention 

effect can also be achieved by adjusting the media propaganda strategy [10,11]. In the early days of 

the outbreak, media publicity will increase people's awareness of the disease and make susceptible 

persons take active quarantine measures. However, the long-term media publicity response may be 

attenuated, which will gradually reduce the awareness of epidemic preparedness among susceptible 

persons. Therefore, many scholars divided susceptible people into two categories: unguarded 

consciousness and guarded consciousness. Due to the difference in the cumulative density M of 

consciousness, the contact rates of the two susceptible persons SS and infected persons I would also 

be different. The SISM infectious disease model was established, the conditions for the existence of 

the model equilibrium were given, and the global stability of the equilibrium was proved by 

constructing Liapunov function [12,13]. Misra et al. considered that media publicity made 

susceptible people form a conscious group to avoid contact with infected people, proposed a 

nonlinear mathematical model of the influence of media publicity on the spread of influenza and 

other infectious diseases, and provided stability conditions of the equilibrium point. Their results 

showed that media publicity could control the spread of infectious diseases, but that immigration was 

likely to spread them [14]. Wang Xiaona et al. considered that unconscious susceptible persons 
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become conscious susceptible persons after the effect of media information, and established a 

time-lag model of media reports for the control of a class of infectious diseases with an incubation 

period. They found that changes in awareness caused by media activities could prevent contact with 

infected people and effectively stop the spread of infectious diseases. However, due to the 

consumption of consciousness with time and the lag of the incubation period, Hopf bifurcation 

would also occur [15]. In [16], a nonlinear mathematical model with time delay was proposed by 

considering that media reports would contribute to the accumulation of disease knowledge of 

susceptible persons and make them consciously stay away from the infected persons. The lag in 

reporting caused by the slow acquisition of statistical data of infected cases was studied, we found 

that the lag would make the model unstable and cause the emergence of Hopf bifurcation. Numerical 

simulations showed that accumulation of consciousness did not eradicate infection, but it helped 

control the epidemic. According to people's cognitive differences in diseases, Samanta and Rana et al. 

divided susceptible people into conscious and unconscious groups, believing that there were 

differences in their possibility of being infected. They proposed a mathematical model to analyze the 

existence and stability of the equilibrium point. It is found that the change of consciousness 

accumulation rate may produce Hopf bifurcation, and the numerical simulation also supported the 

analysis results. The results of the model also showed that the media promoted people to change their 

behavior and played a role in controlling the epidemic of infectious diseases [17]. Greenhalgh and 

Rana et al. studied a double-delay infectious disease model by introducing two time-delay factors, 

one for the time lag in memory fading of aware people and one for the delay between cases of 

disease occurring and mounting awareness programs. The existence of Hopf bifurcation was proved. 

Numerical simulation verified the rationality of the model [18]. Considering the lag of consciousness 

accumulation caused by media publicity delay, some scholars proposed an infectious disease model 

with time delay, proved the global asymptotic stability of the two equilibrium points of the model, 

and found that the media coverage of infectious diseases would affect consciousness accumulation. 

The numerical simulation results also showed that media publicity could reduce the proportion of 

disease transmission rate and realization rate [19,20]. When a disease occurs, people take a series of 

preventive measures to avoid infection. The accumulation of disease awareness is particularly 

important, as it is affected by the lag time of media reports, the incubation period of the disease, and 

the duration of consciousness fatigue. Through the study of infectious disease model with time delay, 

it is of great significance to explore the role of media publicity in controlling the spread of infectious 

diseases. 

In section 2 of this paper, considering the incubation period of the disease and the influence of 

the time lag of media publicity on the awareness rate of the epidemic, a SISM infectious disease 

model with double-time delay is established. In section 3, the stability of two equilibrium points and 

the existence condition of the Hopf branch are studied. In section 4, the influence of media 

propaganda time delay on the change of epidemic law is numerically simulated. In section 5, after 

the outbreak of A (H1N1), the model is used to analyze the influence of media coverage lag on the 

outbreak control.  

2. Model establishment 

After the occurrence of the disease, the health and epidemic prevention departments take 

various prevention and control methods to isolate the source of infection and prevent the spread of 
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the epidemic. The scholars used the infectious disease model to study the dynamical behavior of the 

epidemic situation, simulated the epidemic evolution under different prevention and control 

measures, and put forward the suggested strategies for further improving the prevention and control 

effect [21−23]. The incubation period of many infectious diseases is infectious, and a lack of 

understanding of the mode of transmission can lead to the potential spread of the epidemic. 

Therefore, it is particularly important to strengthen media propaganda in time to improve the 

awareness rate. The media publicity has a lag time h and the incubation period   after infection. 

The SISM infectious disease model affected by media publicity with double-time delay is as follows: 

1
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where 1( )S t , 2 ( )S t  and ( )I t  represent the density of the susceptible individuals without 

preventive consciousness, the density of susceptible persons with preventive consciousness and the 

density of infected persons at time t  respectively. ( )M t  indicates the cumulative density of 

consciousness caused by the media at time t .   represents the population input rate c  represents 

the natural mortality rate for the total population.   indicates an effective exposure rate between 

the susceptible person and the infected person. 0  represents the rate of transfer of from aware 

susceptible individuals to unaware.   represents the rate of transfer of from unaware susceptible 

individuals to aware. v  indicates the recovery rate of the infected person, with probability p  

restored to the conscious susceptibility.   indicates the implementation rate of media propaganda. 0  

denotes the dissipation rate of ineffective media coverage. All parameters are non-negative. 

Let 1 2( ) ( ) ( ) ( )N t S t I t S t   , summing up the four equations of model (1), we have 
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Let max( , )l h  , supposing that C  represents all continuous mapping: 3:[ ,0]l R  
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constitutes a Banach space, and denoting norm 1 2 3
0 0 0

max{ sup ( ) , sup ( ) , sup ( )}
l l l  

      
        

 , 

where 1 2 3( , , )    . 

According to the mean of biology, it follows that 1 2 3( , , ) C      , 

}3,2,1],0,[,0)({  ilC i  .  

The initial condition of model (3) is  

1 2 2 3( ) ( ), ( ) ( ), ( ) ( ), 0I S M l                          (4) 

3. The main research results 

Theorem 1 If ))(),(),(( 2 tMtStI  is a solution to model (3) and satisfies the initial condition (4), 

then )(),(),( 2 tMtStI  is non-negative and ultimately bounded. 

Proof. From the first equation of model (3), when 0t , we get 

)()()( tIvctI 
                           (5) 

An integration of inequality (5) yields 
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From the third equation of model (3), we get 
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From the second equation of model (3), we get 
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Solving the Eq (6), we get 
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Thus, When 0t , the solution to model (3) is nonnegative. 

According to Eq (2) and the third equation of model (3), we get 
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Solving the equation, we get 
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Hence, all solutions to model (3) are bounded. For 0t , there is a feasible region 
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We obtain the disease-free equilibrium 0 (0,0,0)E and the endemic equilibrium
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Theorem 2 The model (3) exists disease-free equilibrium 0 (0,0,0)E . If 0 1R  , then the 

model (3) exists a unique endemic equilibrium 
* * * *

2( , , )E I S M . 

Theorem 3 If 0 1R  , then the disease-free equilibrium 0E of model (3) is globally 

asymptotically stable in  . 

Proof. The linearization equation of model (3) at 0E  as follows 
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                  (7) 

The corresponding characteristic equation of Eq (7) is 

 

with characteristic roots 1 0   , 2 0( )c    .  

Next, we consider equation as follows 

0  ekcv                             (8) 
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Suppose that the Eq (8) has a complex root with non-negative real part i    , i.e., 0  . 

Substituting it into Eq (8), and separating real and imaginary parts of Eq (8) gives that 
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We square both sides of the Eq (9) and add squared above equations to obtain the following 

equation 
2 2 2( ) ( )v c e                                  (10) 
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Eq (10), then the roots of Eq (8) only have a negative real part. Consequently, the disease-free 

equilibrium of model (3) is locally asymptotically stable. 
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0M . Therefore, }{ 0E . By the LaSalle invariance principle for delay systems [24], the 

equilibrium point 
0E  of model (3) is globally asymptotically stable in  . This completes the proof. 

Let *I I i  , 
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The characteristic equation of Eq (11) is  
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According to the different values of parameter , it can be divided into the following 

situations to discuss the characteristic roots of Eq (12) and judge the stability of model (3) the 

equilibrium  of endemic diseases. 

Case (I) 0h    

Simplifying the characteristic Eq (12), we have 
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Suppose that ( )( 0)i h      is purely imaginary complex roots of Eq (14). Substituting it 

into Eq (13), and separating real and imaginary parts of Eq (14) gives that  

,h
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3 * * * *
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We square both sides of each equation above and add the squared above equations to obtain the 

following equation 

2 2 3 2 2 2

1 2 3( ) ( ) ( ) =0f q q q                              (16) 

where 

2 * * 2 *

1 0 0 0( ) 2 ( )q M c I I c pv             , 

2 * * 2 * * 2

2 0 0 0 0 0( ) ( )[ ( ) 2 ]q M c I I c pv I c pv                  ,

2 2 *2 2 2 2 *2 2

3 0 0( ) ( )q I c pv I v c         . 

It is knowing that 3(0)f q  and 2

2lim ( )f





  . 

When 3 0q  , then Eq (16) at least exists a positive root. 

When 3 0q  , we take the derivative to both sides of the Eq (16) about 2 , so  

2 2 2 2

1 2( ) 3( ) 2 ( )f q q                              (17) 

Let   be discriminant, then 
2

1 24( 3 )q q   . 

When 0  , Eq (17) has no real root, then Eq (16) has no positive real root. 

When 0  , if 1 20, 0q q  , Eq (17) has no positive real root, then Eq (16) has no positive 

real root; if 1q  and 2q are the other cases, Eq (17) has at least a positive real root 2 . So 
2( ) 0f   , then Eq (16) has at least a positive root. 

Suppose that Eq (16) has finite positive roots 
2 2[0, ] ( 1,2, , )k k m   in the interval 2[0, ] , 

substituting it into the second formula of Eq (15). We obtain  

* * 2

0 0 0 0

*

( ) ( )1 2
arccos

( ) ( )

         ( 1,2,3,... ; 0,1,2,...)

j k
k

k k

c M I c pv j
h

v c I v c

k m j

        

   

      
   

  

 

 

Let 
j

kh  satisfy ( ) 0,  ( )j j

k k kh h     and 
0

1 min{ }jkh h . 

Then, we have 

Theorem 5 If 0 1R  , 0  , 0h   hold, then 

(I) When 3 0q  , 0   or 0   and 0( 1,2)iq i  , for all 0h  , the endemic 

equilibrium *E  of model (3) is asymptotically stable. 

(II) When 3 0q   or 0  , ( 1,2)iq i   are non-positive at the same time, the limit point 

of 2( )f   is 2 , and when 2( ) 0f   , for each 
0

1[0, )h h , the endemic equilibrium *E

of model (3) is asymptotically stable. When 
0

1h h , the characteristic roots of Eq (14) have 

a positive real part, then the endemic equilibrium *E  of model (3) is unstable. 
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(III) If condition (Ⅱ) holds, when ( 1,2,3,..., ;  )j

kh h k m j N   , then there exists Hopf 

bifurcation around the endemic equilibrium *E  of the model (3). 

Proof. (I) According to the roots existence conditions of cubic polynomial, when 3 0q  , 

0   or 0   and 0( 1,2)iq i  , then Eq (15) has no positive root. By the Cook Theorem [25] 

we know that all characteristic roots of Eq (13) have negative real parts, then *E  is asymptotically 

stable, conclusion (I) holds. 

(II) Suppose that ( ) ( ) ( )h h i h    is the positive root of Eq (13). When 0  , 1q  and 2q

are non-positive at the same time, 2( )f  has a positive root 2 , and 2( ) 0f   , it follows that Eq (15) 

exists positive roots 
2( 1,2, , )k k m   in [0, ] , let 0 satisfy 

0 0

1 1 0( ) 0,  ( )h h    . According 

to the continuous dependence of characteristic root ( )h  to h  and the choice of 
0

1h , it follows 

that the critical value 
0

1h  is h  which makes the characteristic root firstly through to the imaginary 

axis. According to the Cook Theorem [25], for each 
0

1[0, )h h , it follows that all the roots of Eq (13) 

have a strict negative real part, so *E  is asymptotically stable. When 
0

1h h , then the characteristic 

roots of Eq (13) exist positive real part, the endemic equilibrium *E  of model (3) is unstable, 

conclusion (II) holds. 

(III) If condition (II) holds, now differentiating Eq (13) with respect to h , we get 

2 * * *

0 0 0 0

* * *

0 0

{3 2[ ] [ (

      2 ) ( ) ( + )}( ) ( + ) h

M c I M

c I v I c pv v c d dh v c I e 

        

      

      

       
 

Solving the above equation, we have 

1 * *

0 0

*

* * *

0 0 0

*

* *

0 0 0

* *

[3 2( )]

( + )

[ ( 2 ) ( )]
                

( + )

( ) ( )
                

h

h

h h

e M c Id

dh I v c

e M c I v I c pv

I v c

c M e c M e h

I I





 

    



     



    

  


     

 
 

      


    
  

          (18) 

Substituting ki   into Eq (17) and combining Eq (14), we get 

1
* *

0 0 0

* *

* *

0 0

*

*

0 0

Re ( ) + +
sin( ) sin( ) 

2[ ]cos( )+3 sin( )
                               +

( + )

( 2
                              

j
k

j

k
k k

k kh h

k k k

d h M c c M
h h

dh I I

M c I h h

I v c

M c v

     
 

   

      



  





    
   

 

   

   


* *

0

*

2

* 2

) ( )
sin( )

( + )

( )
                           

[ ( + )]

k

k

k

I I c pv
h

I v c

f

I v c

  


 





  



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Due to the choice of k  and the property of quadratic function, we get 
2( ) 0kf   . 

Combining transversality condition [12],  
1

Re ( ) 0j

ksign d h dh


 holds. According to Hopf 

bifurcation theorem [26], it follows that Hopf bifurcation appears if h  through to 
j

kh , conclusion (III) 

holds. This completes the proof of Theorem 4. 

Case (III) 0  , 0h   

Simplifying the characteristic Eq (11), we have 

3 * * 2 * *

0 0 0 0

* * *

0 0 0 0

* * 2 *

0 0 0 0

*

0 0

( 2 ) [ ( 2 )

( ) ( )( )] [( )( )

( )]+ ( ) ( )[ ( )

( )] 0

M c I v M c I v

I c pv v c M c v c M c

I c pv I v c v c M c c

M e 

         

       

        

   

           

          

         

 

     (19) 

Suppose that ( )( 0)i h      is a pair of purely imaginary roots of Eq (19). Substituting it 

into Eq (19), and separating real and imaginary parts, we have  

2 2 3 2 2 2

1 2 3( ) ( ) ( ) 0f p p p                          (20) 

Where 

2 * * 2 *

1 0 0 0( ) 2 ( )p M c I I v pv              

2 * * 2 * 2 * 2 2

2 0 0 0 0

* * 2 *

0 0 0 0

*

0 0

( ) 2 ( ) ( ) ( )

        +2 ( )( )( ) 2 ( )

       2(  ) ( 2 )

p M c I I c v I c pv

I c v M c c pv I c pv

v c M c v

       

      

   

        

       

     

 

2 2 2 *2 * * *

3 0 0 0

2 2 *2 2 2 * *

0 0 0 0 0

( ) 2( ) [( )( ) ( )]

       ( ) 2 ( )( )(  )

p v c I v c I c v M c I c pv

I c pv I c v M c c pv

       

       

         

        
 

When 0 1R  , then 3 0p  . Now differentiating Eq (18) with respect to 2 , we have  

2 2 2 2

1 2( ) 3( ) 2 ( )f p p                              (21) 

Let 
2

1 24( 3 )p p    be the discriminant of Eq (21).  

Suppose that 2  is the positive root of Eq (21), so 2( ) 0f   , and 2( ) 0f   , then Eq (20) 

have positive roots 
2( 1,2, , )l l n   in 2[0, ] , we obtain 

2 3 1 4

1 3 2 4

1
arctan ,( 0,1,2,...; 1,2,3,..., )i

l

l l

m m m m ik
i l n

m m m m




 

 
    

 
 

where 
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3 * * *

1 0 0 0

*

0

[ ( 2 ) ( )

       ( )( )]

l

l

m M I c v I c pv

v c M c

      

  

         

   
 

* * 2 *

2 0 0 0 0

*

0

( 2 ) [( )( )

       ( )]

lm M c v I v c M c

I c pv

       

 

          

  
      (22) 

*

3 0 0( )( )lm v c M c         

2 *

4 0 0[ ( )]( )lm M c v c         

Let 
i

l  satisfy ( ) 0,  ( )i i

l l l      , 
0

1 min{ }il  . We have the following theorem. 

Theorem 6 If 0 1R  , 0  , 0h   holds, we have  

(I) When 0   or 0   and 1 2,  0p p  , for all 0  , the endemic equilibrium *E  of 

model (3) is asymptotically stable; 

(II) When 0  , ( 1,2)ip i   are not positive at the same time, the limit point of 2( )f   is 

2 , and when 2( ) 0f   , for each 
0

1[0, )  , the endemic equilibrium *E  of model (3) is 

asymptotically stable; when 
0

1  , the characteristic roots of Eq (19) have a positive real 

part, then the endemic equilibrium *E  is unstable; 

(III) If condition (II) and  

* * 2 2 *

0 0 1 3 4 2 3 4 0 0

* 2 * * 2

0 0 0 0 1 3

2 * 2 2 2

4 2 3 4 0 4 3 0 0 3 4

2( 2 )[2 ( )] +[ (

2 ) 3 +( )( ) ( )][ (

) 2 ] [2 + ( )]( ) ( ) 0

M c I v m m m m m m M

c I v M c c v I c pv m m

m m m m m m M c c v m m

      

      

   

       

         

        

 

holds, when ( 1,2,3,..., ;  )i

l l n i N    , then there exists Hopf bifurcation around the endemic 

equilibrium *E  of the model (3). 

Proof. The proof of this theorem can be complete by the method analogous to that used above 

proof. 

(III) Now differentiating Eq (18) with respect to  , we get 

1 * *

0 0

2 * *

0 0 0 0

* *

0 0

2 * *

0 0 0 0

* *

0 0

[3 2( 2 )]

( + )[ ( ) ( )]

( 2 )
               

( + ) [ ( ) ( )]

[( )( ) (
              

e M c I vd

d v c M c M c

M c I v e

v c M c M c

e M c v c I c







    

        

   

        

   


      

  
       

   


      

     


2 * *

0 0 0 0

*

0 0

2 * *

0 0 0 0

)]

( + ) [ ( ) ( )]

2
             

[ ( ) ( )]

pv

v c M c M c

M c

M c M c

        

    

         

      

   
 

      

        (23) 

Substituting li   into Eq (22) , we have 
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1
* *

0 0 3 4

2 2

3 4

* * 2

0 0 3 4

2 2

4 3

Re ( ) 2( 2 )( sin + cos )

( )( )

[ ( 2 ) 3 ]( cos sin )
                               +

( )( )

                            

i
l

i

l l l

l l l

l

d M c I v m m

d v c m m

M c I v m m

v c m m

 

       



      







      
 

  

     

 

* *

0 0 3 4

2 2

3 4

*

4 3 0 0

2 2

3 4

* * 2 2

0 0 1 3 4 2 3 4

[( )( ) ( )]( cos sin )
  

( )( )

2 + ( )
                              

( )

2( 2 )[2 ( )]
                        

(

l l

l

l

l

M c c v I c pv m m

v c m m

m m M c

m m

M c I v m m m m m m

v

     



   



   

      


 

  




      


2 2 2 2

3 4

* * 2 2 2

0 0 1 3 4 2 3 4

2 2 2 2

4 3

* * 2 2

0 0 1 3 4 2 3 4

2 2

3 4

) ( )

[ ( 2 ) 3 ][ ( ) 2 ]
                           +

( ) ( )

[( )( ) ( )][ ( ) 2 ]
                          

( ) (

l

l

l

c m m

M c I v m m m m m m

v c m m

M c c v I c pv m m m m m m

v c m m

    



   



 

      

 

       


  2 2

*

4 3 0 0

2 2

3 4

)

2 + ( )
                          0    

( )

l

l

m m M c

m m

   



  
 



 

It follows from the transversality condition that  
1

Re ( ) 0j

ksign d h dh


 holds. According to 

the Hopf bifurcation theorem, it follows that the model (3) undergoes Hopf bifurcation around the 

endemic equilibrium *E  if  through to 
i

l . So conclusion (III) holds. This completes the proof of 

Theorem 6. 

Case (IV) 0,  0h    

Based on the above research methods, two different conditions are discussed. 

(I) Let time delay   be research parameter, and fix 
* 0

1[0, )h h , Eq (10) becomes  

*

3 * * 2 * *

0 0 0 0

* * *

0 0 0 0

* 2 * *

0 0 0 0 0

*

+( + + +2 + ) [ ( + +2 + )

+ ( + ) ( )( + + )] [( )( + +

) ( + )] [ ( + + ) ( + +

)]( ) ( ) 0h

M c I v M c I v

I c pv c v M c c v M

c I c pv M c M

c c v e c v I e 

         

       

         

 

  

    

     

   

          (24) 

Let  ( 0)i     be the root of Eq (24), substituting it into Eq (24). And separating real and 

imaginary part, we have  

2 2 2 2

3 4( ) ( ) ( ) ( ) ( ) 0f X Y m m                           (25) 

where 
3 * * * *

0 0 0

* * * *

* * 2 * *

0 0 0 0

* * * *

0

( ) [( )( ) ( )]

            ( ) ( ) sin

( ) ( 2 ) ( )( )

           ( ) ( ) cos

X v c I c M c M I

I M pv v c I h

Y v c M I v c I c M

I M pv v c I h

         

   

         

    

           


   


          
    

     (26) 

3 4,  m m  are shown in Eq (22). 
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Supposed that there exist positive roots ( 0,1,2,..., )l l n   of ( )f  , substituting it into Eq (26), 

we have 

4 3
1 2 2

3 4

1 2
arccos   ( 0,1,2,...; 0,1,2,..., )i

l

l l

m X m Y i
i l n

m m




 

 
    

 
 

Let 1 1( ) 0,  ( )i i

l l l      , 
0

10 1min{ }i

l  . 

(II) Let time delay h  be research parameter, and fix 
* 0

1[0, )  , Eq (11) becomes  

*

3 * * 2 * *

0 0 0 0

* * *

0 0 0 0

* 2 * *

0 0 0 0 0

*

( 2 ) [ ( 2 )

 ( ) ( )( )] [( )(

 ) ( )] [ ( ) (

 )]( ) ( ) 0h

M c I v M c I v

I c pv v c M c v c M

c I c pv M c M

c v c e v c I e 

         

      

         

 

          

          

          

   

         (27) 

Let ( 0)i     be the root of Eq (27), substituting it into Eq (27). And separating real and 

imaginary parts, we have 
3 * * *

0 0 0

* * *

0 0 0

* 2 * *

0 0

* * 2 *

0 0 0 0

* *

0 0

[ ( 2 ) ( ) (

  )( )] ( )( ) cos

  [ ( ) ]( )sin ( ) sin

 ( 2 ) [( )(

  ) ( )] ( )[ (

M c I v I c pv v

c M c v c M c

M c v c v c I h

M c I v v c M

c I c pv v c M

      

       

      

       

   

          

       

     

        

     2 *

0

* * *

0 0

) )]cos

 ( )( ) sin ( ) cos

c

v c M c v c I h

  

     








   

       

         (28) 

And removing sin h  and cos h , we obtain 

22 2 2 2 2 *

1 1( ) ( ) ( ) ( )f X Y v c I                            (29) 

where 
* * 2 *

1 0 0 0 0

* * 2 *

0 0 0

* *

0 0

( ) ( 2 ) [( )( )

           ( )] ( )[ ( ) )]cos

           ( )( ) sin

Y M c I v M c v c

I c pv v c M c

v c M c

        

      

   

         

       

    

3 * * * *

1 0 0 0

* *

0 0 0

* 2 *

0 0

( ) [ ( 2 ) ( ) (

             )( )] ( )( ) cos (

              )[ ( ) ]sin

X M c I v I c pv M

c v c v c M c v

c M c

        

      

    

          

         

  

 

Supposed that there exist positive roots ( 0,1,2,..., )k k m   of ( )f  , substituting it into Eq (28), 

we have 

1
1 *

1 2
arccos ,   ( 0,1,2,...; 0,1,2,..., )

( )

j

k

k k

Y j
h j k m

v c I



  

 
    

 
 

Let 1 1( ) 0,  ( )j j

k k kh h     and 
0

10 1min{ }j

kh h . 

In similar to the proof of Theorem 5, we obtain 
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Theorem 7 If 0 1,  0,  0R h    holds, we have  

(I) If 
* 0

1[0, )h h , and Eq (25) exists positive roots, when 
0

10[0, )  , the positive equilibrium 

point *E  of model (3) is asymptotically stable. When 
0

10  , the Eq (24) has at least a 

positive real part characteristic root, then the positive equilibrium point *E  of model (3) is 

unstable. When 1  ( 0,1,2,..., ;  )i

l l n i N    , then the model (3) undergoes Hopf bifurcation 

around the positive equilibrium point *E . 

(II) If 
* 0

1[0, )  , and Eq (29) exists positive roots, when 
0

10[0, )h h , the positive equilibrium 

point *E  of model (3) is asymptotically stable. When 
0

10h h , the Eq (27) has at least a 

positive real part characteristic root, then the positive equilibrium point *E  of model (3) is 

unstable. When 1 ,  0,1,2,..., ;  j

kh h k m j N   , then there exists Hopf bifurcation around the 

endemic equilibrium *E  of the model (3). 

According to the conclusion of Theorems 5−7, the change of time delay affects the stability of 

the equilibrium point, and branching phenomenon occurs. In [27,28], the switching criterion of 

stability is given according to the distribution of characteristic roots for the stability problem of 

systems with double delays. The influence of time delay on stability switching is further analyzed 

according to Eq (12). 

By simplifying Eq (12), we get 

0)()()( 210   hePePP  
                        (30) 

where 

)(

))(()))(()(

)2(()2()(

0

*

0

*

00

*

0

*

*

0

*

0

2*

0

*

0

3

0

pvcI

cMvccMvcpvcI

vIcMvIcMP













 

)))(()(()( 0

*

000

*2

1 cvcMcMP  
 

*

2 )()( IcvP    

According to the conditions of Theorem 4, there is no imaginary root of )(0 P , that is to say, 

0)(0 iP . Substituting  i  into Eq (30), we get 

0)()(1),,( 21   hii eiaeiahia                     (31) 

where 

)(

)(
)(,

)(

)(
)(

0

2
2

0

1
1











iP

iP
ia

iP

iP
ia 

 

Suppose the imaginary roots i  of Eq (31) exist, and   is the set of the roots of Eq (31). 

According to the operation of vector amplitude angle and [28], the time delay   and h  can be 

calculated by given  i  as follows 
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Zjjiah

Znnia





),,())12())((arg(
1

),,())12())((arg(
1

22

11









                

 (32) 

where 1  and 2  respectively represent the angle between vector  ieia )(1  and 1, and the angle 

between vector hieia  )(2  and 1. 

Based on the above analysis and the method of [28], we can know 2,1,0,0)(  iiPi  ，  . 

And )(1 ia  and )(1 ia  can be computed. Thus, the time delay   and h  can be calculated 

from Eq (30). The difference of time delay   and h  leads to the switch of equilibrium stability. 

When the characteristic root   crosses the imaginary axis, the sign of the real part can be 

determined by the sign of the following expression: 

),(),(),(),(),( 11 hIhRhIhRhG                         (33) 

where 

))(Im()
),,(1

Im(),(

))(Im()
),,(1

Im(),(

))(Re()
),,(1

Re(),(

))(Re()
),,(1

Re(),(

21

1

21

1
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i

i

i

hi

i

i

i

eia
h

ha
hI

eia
ha

hI

eia
h

ha
hR

eia
ha

hR




 







 







































































 

According to Theorem 5.4 in [28], the following conclusions can be drawn: 

Property: Suppose that *i  is a pair of imaginary roots of Eq (31), ),( ** h  is a parameter 

determined by Eq (32), the corresponding characteristic root ),(),(),( ****** hihh    of 

model (3) satisfies ***** ),(,0),(   hh . When )0(0),( hG  , the characteristic root 

crosses the imaginary axis from the left (right) side to the right (left) side. 

4. Numerical simulations 

To analyze the rationality of the theorem, we present some numerical computations in the 

section by using MATLAB. To do the numerical simulation of the disease-free equilibrium 0E , we 

choose the parameter values as follows: 0.007c  , 0.2  , 0.6  , 0 0.3  , 0.6p  , 0.29v  , 

0.2  , 0 0.6  . And let (0.4,0.3,0)  be initial value, we can obtain 0 1R  . According to 

Theorem 3, it follows that the disease-free equilibrium 0E  of model (3) is globally asymptotically 

stable, and it has nothing to do with the value of  and h . At this time, the infected people tend to 

be extinct, the epidemic is over. The simulation results are shown in Figure 1. 
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Figure 1. The globally stable mimetic diagram of the disease-free equilibrium 0E . 

The stability of the equilibrium point of endemic disease in model (3) is analyzed as follows. 

We choose the following set of parameter values 0.005c  , 0.5  , 0.5  , 0 0.02  , 0.4p  , 

0.2v  , 0.2  , 0 0.02  . According to the different values of parameter ,h , the equilibrium 

points of endemic diseases are discussed. By calculating the basic reproduction number, we have 

0 1R  , then the unique endemic equilibrium *(0.013,0.487,0.13)E  of model (3) exists. According 

to the different values of time-delay parameters, the simulation results can be divided into the 

following cases. 

Case (I) 0h    

According to the condition of Theorem 4, it follows that the endemic equilibrium *E  of model (3) 

is stable. The numerical simulation is shown in Figure 2. 

 

Figure 2. The stable mimetic diagram of the endemic equilibrium *E .  

Case (II) 0  , 0h   

By calculations, we obtain 0 0.045i i    and 
0

1 146.88h  . And we select 
0

1100h h  , 
0

1372h h  . According to the conditions in Theorem 5, with the increase of h , the stability of 

endemic disease equilibrium point changes from local stability to the emergence of Hopf bifurcation. 

The amplitude of orbit oscillation increases with the increase of h . Its mimetic diagrams are 

illustrated in Figure 3. 
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(a) When h = 100, *E is 

locally stable. 

(b) When h = 146.88, Hopf 

bifurcation exists. 

(c) When h = 372, Hopf 

bifurcation exists. 

Figure 3. When 0  , 0h  , the dynamic routs of model (3). 

Case (III) 0  , 0h   

We obtain 0 0.3627i i    and 
0

1 66.37  . And we select 
0

130   , 
0

1110.32   . 

According to the conditions in Theorem 6, with the increase of  , the stability of the equilibrium 

point of endemic disease in model (3) changes from local stability to the emergence of Hopf 

bifurcation, and the amplitude increases with the increase of  . However, the amplitude decreases 

gradually with the increase of time. Its mimetic diagrams are illustrated in Figure 4. 

   

(a) When 30  , *E is locally 

stable. 

(b) When 66.37  , Hopf 

bifurcation exists. 

(c) When 110.32  , Hopf 

bifurcation exists. 

Figure 4. When 0  , 0h  , the dynamic routs of model (3). 

Case (IV) 0  , 0h   

Firstly, let 100h  , we calculate 
0

10 74.35  , And we select 
0

1050   , 
0

1080,110, 200   . According to the condition of Theorem 7, the trajectory of the endemic 

equilibrium point of model (3) is simulated, as shown in Figure 5. 

With the increase of  , the stability of the equilibrium point changes from stable to unstable 

(Figure 5). To increase the value of  , the curve tends to be stable. Compared with Figure 5a, the 

time of tending to *E  is shorted (Figure 5d). To increase the value of   again, the curve appears 

oscillation (Figure 5e). Based on a given parameter h , it can be seen that delay time   makes the 

endemic equilibrium *E  from stable to unstable or from unstable to stable. As a result, the time 

delay   plays a role in adjusting the stability of endemic equilibrium *E . 
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(a) When 50  , E* is locally stable. (b) When 74.35  , E* is unstable. (c) When 80  , E* is unstable. 

  

 

(d) When 110  , E* is locally stable. (e) When 200  , E* is unstable.  

Figure 5. When 0 , 100h , the dynamic routs of model (3). 

Let 110  , we calculate 
0

10 122.58h  , and we select 
0

10100h h  , 
0

10380,290,240 hh  , 

see Figure 6. 

   

(a) When h = 100, E* is locally stable. (b) When h = 122.58, E* is unstable. (c) When h = 240, E* is unstable. 

  

 

(d) When h = 290, E* is locally stable. (e) When h = 380, E* is unstable.  

Figure 6．When 110 , 0h , the dynamic routs of model (3).  

From Figure 6, we obtain that with the increase of h , the stability of the equilibrium point *E  

changes from a stable state to an unstable state. When h is increased again, it will change from an 

unstable state to a stable state, indicating that time delay h can also adjust the stability of the 

equilibrium point. 
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The numerical simulation shows that the incubation period and the lag of media publicity will 

affect the stability of the equilibrium point of endemic diseases. Comparing case (Ⅱ) with case (Ⅳ), 

we find that when the media's lag time is the same, the incubation period lag increases to a certain 

value, and the stability of the equilibrium point changes from stable state to unstable state. However, 

after the latency period continues to increase, the stability of the equilibrium point changes from an 

unstable state to a stable state, and so on. Comparing case (III) with case (Ⅳ), we find that when the 

incubation period is the same, the media's lag time increases to a certain value, and the stability of 

the equilibrium point changes from stable state to unstable state, the media's lag time continues to 

increase, the stability of the equilibrium point changes from unstable state to stable state. The mutual 

transformation between the stability and instability of the equilibrium point indicates that in practical 

problems, timely adjustment of publicity time should be made according to the incubation time of 

infectious diseases, so as to effectively control the development of the epidemic and finally reach a 

controllable range. 

Situations (Ⅱ)−(Ⅳ) are aimed at a fixed time delay, change another delay discussions, model (3) 

stability switch phenomenon is simulated. Due to the different understanding of infectious diseases, 

the mutual interference between the two-time lags will be caused, which affects the controllability of 

the disease to a certain extent. The numerical simulation method is still used to intuitively understand 

how the value of ),( h  changes the stability of model (3). In the model (3), the values of the above 

parameters are still applied. According to the calculation method in [27,28], the interval 

]01879.0,0(  of the existence of the root of Eq (31) can be obtained. 

The value of   is set as 0.01. On plane ),( h , the curve L of 0),( hG   is simulated 

numerically. The simulation results are shown in Figure 7: 

 

Figure 7. Change in the stability of the equilibrium point on plane ),( h . 

The curve L in Figure 7 divides the first quadrant of the plane into several regions. In different 

regions, the ),( hG   symbol can be calculated according to Eq (33). For example, 0)100,50( G , 

0)100,200( G , 0)100,0( G , 0)0,30( G , 0)240,100( G . Situations (Ⅱ)−(Ⅳ) on the stability 

of the equilibrium point switch conclusions are verified. According to different values of   and h , 

the stability of the equilibrium point is different.  
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5. The application of the model of in influenza A (H1N1) virus 

Influenza A (H1N1) virus includes gene fragments of three kinds of influenza virus of 

human, avian, swine flu, it spreads mainly through body fluids, droplets and air, latent period is 

generally 1 to 7 days [29]. In the early stage of the outbreak of A (H1N1) in 2009, government 

departments at all levels attached great importance to it. Through media propaganda and active 

intervention measures, people were made aware of the transmission route of H1N1, and their 

awareness of prevention was enhanced to protect themselves. The isolation of those with a history of 

contact with the source of the infection allowed the outbreak to be contained and eventually ended in 

a short time [30]. Many scholars use established models of infectious diseases and historical data to 

identify the parameters in the model, and use numerical simulation to predict the trend of the 

epidemic, and analyze and evaluate better epidemic prevention and control plans based on the 

statistics of the number of infected and suspected people reported every day [31,32]. Take A (H1N1) 

as an example to simulate the impact of media publicity on epidemic prevention and control. 

The parameters of population birth rate, mortality rate, natural growth rate, constant input rate 

and natural mortality rate in the model are selected from paper [33−36]. The selection of parameters 

is shown in Table 1. 

Table 1. Parameters in model (3). 

Parameter Probability of 

recovering to 

a conscious 
infector 

Dissipation rate 

of invalid media 
propaganda 

Transfer rate 

from conscious 

individual to 

unconscious 
individual 

Effective contact 

rate between 

susceptible and 
infected persons 

Natural 

mortality 

Recovery 

rate of 

infected 
patients 

population 

birth rate 

symbol p  

0
 

0
   c  v    

value 0.6 0.7 0.5 0.3 0.007 0.98 0.012 

The following models can be obtained from model (3) and Table 1. 





















)(7.0)(
)(

)(582.0)(507.0)())()(714.1(
)(

)(987.0)())()(714.1(3.0
)(

22
2

2

tMtI
dt

tdM

tItShtMtItS
dt

tdS

tItItItS
dt

tdI







    (34)

 

The awareness transfer rate  , media project implementation rate  , time delay   and h  

in model (34) are undetermined parameters. It is hoped that numerical simulation can be used to 

analyze the impact of these parameters on disease control and to propose feasible and effective 

control strategies. The values of the parameters are shown in Table 2 and the initial values )0,3.0,4.0(  

are selected. The simulation results of model (33) are shown in Figure 8. 
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(a) (b) (c) 

  

 

(d) (e)  

Figure 8. The variation diagram of infected individuals. 

Table 2. The influence of parameter  ,  ,  , h  on disease. 

      h  Simulation diagram The change of infected individuals 

0.6 0.3 7 48 Figure 8a 
The time lag of media is longer, the elimination of 

infected individuals becomes longer 

0.6 
0.3 7 12 

Figure 8b The transfer rate from conscious individual to 

unconscious individual decreases,the elimination 

of infected individuals becomes slower 0.1 Figure 8c 

0.6 

0.3 

2 12 

Figure 8d 

The media project implementation rate increases, 

the elimination of infected individuals becomes 

faster 

1 Figure 8e 
The latent period is longer, the elimination of 

infected individuals becomes longer 

According to the numerical simulation results of model (33), when an outbreak occurs, the 

government should reduce the lag time of media propaganda, increase the propaganda intensity of 

media, let people know the transmission route of the disease as soon as possible, and take preventive 

measures, so as to effectively control the epidemic. 

6. Conclusions and suggestions on epidemic prevention and control 

In this paper, the influence of media propaganda lag was considered, the infectious disease 

model with media propaganda was established, and the sufficient conditions for the existence and 

stability of the model equilibrium were given. Under different conditions of media propaganda time 

delay, the dynamical behavior of the epidemic was simulated, and the simulation results showed that 
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the epidemic can be effectively controlled in a short time when the propaganda time delay is reduced 

and the awareness rate of the epidemic is improved.  

After the outbreak of the epidemic, the media should respond quickly and timely to report the 

relevant information on the epidemic. Epidemic prevention propaganda can improve people's 

awareness rate and strengthen people's awareness of prevention. The hospital should isolate the 

infected in time and provide medical assistance to improve the cure rate. The tracing and isolation of 

those who have close contact with the infected person can effectively reduce or even prevent the 

further spread of the virus. By increasing the media propaganda, increasing the rate of consciousness 

transfer and media implementation, the proportion of the infected people is significantly reduced, 

and the disease can be well controlled. People are also advised to strengthen self-protection, pay 

attention to personal hygiene, change bad habits, and avoid going to public places as much as 

possible to reduce the chance of being infected. 
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