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Abstract: We propose a SIR system that includes a Poisson measure term to model the quarantine of
infected individuals. An inequality concerning the term representing the transmission rate is given to
establish the stochastic stability of the disease free equilibrium. It is further shown that if R0 > 1 then
the long-run behavior the system will reside within a neighborhood of the equilibrium in the underlying
deterministic version of this system.

Keywords: SIR model; Lyapunov function; stochastic process; stochastic stability; numerical
simulation

1. Introduction

Many authors have considered continuous time stochastic epidemiological models. For instance,
the papers [1] , [2], and [3] analyzed various but similar SIR models perturbed by a Gaussian term in
the form of an Itô integral, [4] considered a two-group SIR model with similar Gaussian perturbations,
and [5] analyzed a SIS model also perturbed by an Itô integral. However, none of these models have
taken into account anomalies that affect the system. Recently, there have been some efforts to incor-
porate anomalies into the dynamic by incorporating a Poisson integral to capture the instantaneous
impact. The paper [6] assumed temporary immunity was captured by random jumps in a SIR model,
while [7] and [8] both considered general environmental that may instantaneously affect different SIR
models, and [9] assumed a SIS model with a Poisson integral capturing outside effects. Excluding the
manuscript in [9], all of the models consider a compensated-Poisson integral. While there is a clear ef-
fect on the dynamic, the compensated-Poisson integral disappears in expectation and may not properly
capture the phenomena.

Kuske, Gordillo and Greenwood in [3] investigated an SIR model perturbed by multiple and inde-
pendent Brownian terms, and through a linear approximation, give conditions for a unique stationary
measure establishing that an epidemic will occur. Roa, Wang, and Li [1] also considered an SIR, but
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the authors assume a nonlinear incident rate, and after analyzing the deterministic model, perturb the
system twice with a two-dimensional Brownian motion, one for an endemic and the other for the dis-
ease free equilibrium. The authors then show that these systems are well defined and give conditions
for almost sure convergence to an endemic and the disease free equilibrium. Yu, Jiang, and Shi [4] an-
alyze a Brownian perturbed two-group SIR model with a stationary point at the deterministic endemic
and determine sufficient conditions for the endemic equilibrium to be stochastically stable. The models
examined in [2] and [3] are very close to the models considered in this paper and are explored in detail
below.

For a fixed population of size N, we consider the following SIR model of the form

S ′(t) = −βS (t)I(t) − µS (t) + µ

I′(t) = βS (t)I(t) −
(
λ + µ

)
I(t)

R′(t) = λI(t) − µR(t)
(1.1)

where S (t), I(t), and R(t) denote respectively the frequencies of the susceptible, infected, and removed;
ergo, S (t) + I(t) + R(t) = 1. The constant µ represents the birth and death rate (newborns are assumed
to be susceptible), λ is the recovery rate for the individuals that are infected, and β represents the
transmission rate. (Please see [10] for further information.)

In this system, when β ≤ λ + µ the disease free equilibrium is globally asymptotically stable. If

β > λ+µ then the endemic equilibrium
(
µ + λ

β
,
µ

β

( β

µ + λ
− 1

)
,
λ

β

( β

µ + λ
− 1

))
is globally asymptotically

stable.
We investigate a stochastic version of this SIR model under a Gaussian noise of interactions and

include quarantine as a random event described by a Poisson process. Take the function j(y) to be
continuously differentiable where min j(y) > 0, and max j(y) < 1. Define N(dt, dy) as a Poisson
measure with ν(·) as its intensity measure, and W(t) as an independent standard Brownian motion.
This system is described by the right-continuous stochastic differential equation

dS (t) =
(
− βS (t)I(t) − µS (t) + µ

)
dt − σS (t)I(t)dW(t),

dI(t) =

(
βS (t)I(t) −

(
λ + µ

)
I(t)

)
dt + σS (t)I(t)dW(t) −

∫
R

j(y)I(t−)N(dt, dy),

dR(t) =
(
λI(t) − µR(t)

)
dt +

∫
R

j(y)I(t−)N(dt, dy).

(1.2)

Since the Itô term is well known and represents the noise in the transmission process, we focus
on the Poisson integral and give intuition for this term. Suppose that a specific percentage of the
population is quarantined randomly with respect to a Poisson distribution. Denoting this percentage
as C and N(·) as a Poisson distribution then the stochastic effect of the quarantine at time t is C · N(t).
However, this kind of modeling is not robust enough in capturing the lack of efficiently of placing a
subpopulation in quarantine. This is especially true of a population adjusting to an endemic.

To incorporate different impact sizes into the evolution, we briefly discuss the Poisson process as
a temporal and spatial random measure, and interpret an integral under this measure. For further
information, please see Applebaum [11]. For a Lévy process X(s) and B ∈ B

(
R\{0}

)
, define ∆X(s) :=

X(s)−X(s−), N(t, B) := #
{
0 ≤ s ≤ t : ∆X(s) ∈ B

}
, and ν(B) := E [N(1, B)]. The measure ν(·) is denoted
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as the intensity measure. If ν
(
R
)

= ∞ it is possible for an anomaly to happen an infinite number of
times in a finite time interval. Therefore, the assumption that ν

(
R
)
< ∞ is quite natural.

Taking χB(·) to be the identity function over the measurable set B then at time t the total effect is

∫ t

0

∫
B

j(y)N(ds, dy) =
∑

0≤s≤t

j (∆X(s)) χB (∆X(s)) .

When the deterministic integral −
∫ t

0

∫
R

j(y)ν(dy)ds, (ds is the Lebesgue measure) is added to the

Poisson integral the expectation of this effect is zero. Specifically, for Ñ(ds, dy) := N(ds, dy)−ν(dy)ds,

the expected net effect of the “adjusted” quarantine E
[
−

∫ t

0

∫
R

j(y)I(t−)Ñ(ds, dy)
]

= 0. See Sato [12],

Bertoin [13], or Applebaum [11] for further information. This observation will be utilized in the
analysis of the dynamic.

For completeness of the model, for the triple (Ω,F , P) we assume the filtration {Ft}t∈R+
is right-

continuous and F0 contains all of the null sets of F .
Tornatore, Buccellato, and Vetro [2] analyzed System (1.2) when j ≡ 0 and displayed when β <

min
{
λ + µ −

σ2

2
, 2µ

}
the dynamic converged to the disease free equilibria of the noiseless version

of the system. The authors displayed through simulations that this inequality is a good threshold.
A stochastic SIR with delay was then analyzed and determined that if the same condition holds the
process will converge to the disease free equilibria almost surely. Further, Tornatore and Buccellato

[14] show that if β > λ + µ +
σ2

2
then a strong endemic will occur.

Since this seminal paper [2], many authors have further refined their results by considering similar
dynamics (see [15], [16], and [17]). When the various parameters were set to zero, the models in [15]

and [16] showed that the model given in [2] converges to the disease free equilibria when β < λ+µ−
σ2

2
.

Furthermore, for R0 :=
β

λ + µ
the deterministic endemic equilibrium, the authors in [16] showed that

the dynamics stay within a neighborhood of R0 if β > λ + µ, i.e., if R0 > 1. Interestingly, Chen, Li and

Liu [17] showed that the dynamics are stable to the disease free equilibrium when β < λ + µ +
σ2

2
.

In this paper it will be shown that System (1.2) is well-defined, and we give conditions for stability
of the disease free equilibrium for both dynamics, as well as give conditions for System (1.2) to be
within a neighborhood of the endemic equilibrium of the underlying deterministic system.

While the methods applied are well-known in the analysis of stochastic differential equations, anal-
ysis of the dynamic are not necessarily restricted these and similar methods. For instance, Calatayud,
Cortés and Jornet [18] establish an algorithm that will quickly approximate the probability density
function. The authors utilize polynomial expansions, the random variable transformation (RVT) tech-
nique, and multidimensional integration schemes to derive a solution with an algorithm. The authors
display the efficacy of their algorithm with an application to a SIR model. The authors in [19] also
focus on the probability density function in a more rigorous manner via a randomized Markov chain
SIR-type model.
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2. Stochastic extinction of the disease

Define E(t) =
(
S (t), I(t),R(t)

)
and ∆3 =

{
x ∈ R3 : x1, x2, x3 > 0 and x1 + x2 + x3 = 1

}
as the simplex.

To ensure the process is well-defined, we show that System (1.2) is invariant to the simplex. In other
words, given an initial condition that lies in simplex, System (1.2) will stay in the simplex for all finite
time.

Denoting L as the infinitesimal generator for System (1.2), L has the form

Lg
(
x
)

=
(
− βx1x2 − µx1 + µ

) ∂g
∂x1

(x) +
(
βx1x2 −

(
λ + µ

)
x2

) ∂g
∂x2

(x) +
(
λx2 − µx3

) ∂g
∂x3

(x)

+
1
2
σ2x2

1x2
2
∂2g
∂x2

1

(x) +
1
2
σ2x2

1x2
2
∂2g
∂x2

2

(x) −
1
2
σ2x2

1x2
2
∂2g

∂x1∂x2
(x) −

1
2
σ2x2

1x2
2
∂2g

∂x2∂x1
(x)

+

∫
R

[
g
(
x +

(
0,− j(y)x2, j(y)x2

))
− g(x)

]
ν(dy),

where g
(
x
)

is a twice differentiable function.

Proposition 2.1. For all finite t, given that x ∈ ∆3, Px
(
E(t) ∈ ∆3

)
= 1.

Proof. We will invoke Theorem 2.1 in Meyn and Tweedie [20] and apply a norm-like function (V :
∆3 → R+ that is measurable and V

(
x
)
→ ∞ when x tends to the boundary) such that, for some c > 0,

LV ≤ cV .
Define V

(
x
)

= − log(x1) − log(x2) − log(x3). Then for x ∈ ∆3

LV
(
x
)

= −
1
x1

(
− βx1x2 − µx1 + µ

)
−

1
x2

(
βx1x2 −

(
λ + µ

)
x2

)
−

1
x3

(
λx2 − µx3

)
+

1
x2

1

σ2

2
x2

1x2
2

+
1
x2

2

σ2

2
x2

1x2
2 +

∫
R

[
− log

(
x2 − j(y)x2

)
− log

(
x3 + j(y)x2

)
+ log

(
x2

)
+ log

(
x3

)]
ν(dy)

= βx2 + µ −
µ

x1
− βx1 + λ + µ + −λ

x2

x3
+ µ +

σ2

2
x2

2 +
σ2

2
x2

1 +

∫
R

[
log

( 1
1 + j(y)x2/x3

)
− log

(
1 − j(y)

)]
ν(dy)

≤ β + 3µ + λ + σ2 +

∫
R

− log
(
1 − j(y)

)
ν(dy).

Clearly, there exists a positive constant c such that LV
(
x
)
≤ cV

(
x
)
. �

To determine conditions for convergence to the disease free equilibrium, we use the stochastic
Lyapunov method. Examining the process, one can see that the only stationary position is the point
e1 = (1, 0, 0).

Theorem 2.1. If β < min
{
λ + µ +

∫
R

j(y)ν(dy) −
∫
R

j2(y)
2

ν(dy) −
σ2

2
, 2µ

}
then for x ∈ ∆3,

Px

(
lim
t→∞
E(t) = e1

)
= 1.
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Proof. Define the positive function f
(
x
)

= c1
(
x1 − 1

)2
+ c2x2

2 + c3x2
3, where c3

(
λ +

∫
R

j(y)ν(dy)
)

2µ − β
< c1

and
c1

(
σ2 + 2β

)
+ c3

∫
R

j2(y)ν(dy)

2λ + 2µ + 2
∫
R

j(y)ν(dy) −
∫
R

j2(y)ν(dy) − σ2 − 2β
< c2. Then

L f (x) =
(
− βx1x2 − µx1 + µ

)
2c1

(
x1 − 1

)
+

(
βx1x2 −

(
λ + µ

)
x2

)
2c2x2 +

(
λx2 − µx3

)
2c3x3

+
1
2
σ2x2

1x2
22c1 +

1
2
σ2x2

1x2
22c2

+

∫
R

[
c2

(
x2 − j(y)x2

)2
− c2x2

2

]
ν(dy) +

∫
R

[
c3

(
x3 + j(y)x2

)2
− c3x2

3

]
ν(dy)

= −2µc1
(
x1 − 1

)2
− 2µc3x2

3 + 2c1βx1x2
(
1 − x1

)
+

{
2c2

(
βx1 −

(
λ + µ

)
+
σ2

2
x2

1 +

∫
R

[
− j(y) +

j2(y)
2

]
ν(dy)

)
+ c1σ

2x2
1 + c3

∫
R

j2(y)ν(dy)
}

x2
2.

Noticing
(
x1 − 1

)2
=

(
1− x1

)2
=

(
x2 + x3

)2
= x2

2 + 2x2x3 + x2
3 it is clear that c3

( ∫
R

j(y)ν(dy) +λ
)
2x2x3 ≤

c3

( ∫
R

j(y)ν(dy) + λ
)(

x1 − 1
)2, and also that 2c1βx1x2

(
1− x1

)
≤ 2c1βx2

(
1− x1

)
≤ 2c1βx2

2 + c1β
(
x1 − 1

)2.

Hence

L f (x) ≤
{
− c1

(
2µ − β

)
+ c3

( ∫
R

j(y)ν(dy) + λ
)}(

x1 − 1
)2
− 2µc3x2

3

+

{
2c2

(
β −

(
λ + µ

)
+
σ2

2
+

∫
R

[
− j(y) +

j2(y)
2

]
ν(dy)

)
+ c1

(
β + σ2

)
+ c3

∫
R

j2(y)ν(dy)
}

x2
2.

Therefore there exists a positive constant k such that L f ≤ −k f . Theorem 4 and Remark 2 in [21]
(page 325) yields that for an ε > 0 there exists a neighborhood of e1, say U, such that for x ∈ U ∩ ∆3

we have Px

(
lim
t→∞
E(t) = e1

)
≥ 1 − ε.

Fix an arbitrary ε > 0 and define τε = inf
{
t ≥ 0 : S (t) ≥ 1 − ε

}
. We will show that Ex

[
τε

]
< ∞,

which will assert our theorem. Define ε0 = sup
{
S
(
τε

)}
. Since the process does not hit the boundary in

finite time, we have that ε0 < 1 a.s. For the function f above, L f
(
x
)
≤ −α

(
1 − x1

)2, for some α > 0.
Now for x ∈ ∆3, such that x1 < 1 − ε, and 0 < t < ∞, Dynkin’s formula yields

0 ≤ Ex
[
f
(
τε ∧ t

)]
= f (x) − Ex

[ ∫ τε∧t

0
L f

(
E(t)

)
ds

]
≤ f (x) − Ex

[ ∫ τε∧t

0

(
1 − S (t)

)2
ds

]
≤ f (x) − α

(
1 − ε0

)2Ex
[
τε ∧ t

]
.

Thus Ex
[
τε

]
< ∞.

Now take an arbitrary ε > 0 and x ∈ ∆3 and define M =
{

limt→∞ E(t) = e1

}
. The strong Markov

property then yields
Px

(
M

)
= Ex

[
EE(τε )

[
χM

]]
≥ 1 − ε.

Since ε was arbitrary, the theorem follows.
�
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3. Conditions for an epidemic

Following the method applied in [16], we will show that if the deterministic condition R0 > 1

holds, i.e.,
β

λ + µ
> 1, then the dynamic remains within a neighborhood of the deterministic epidemic

equilibrium. Although the result in [17] might seem to contradict this result, since β < λ + µ +
σ2

2
is

the condition needed for almost sure convergence to the disease free equilibria, this does not mean this
equilibrium is not in the neighborhood given by [16]. What we can say for certain is that when the
disease free equilibria is not in this neighborhood, an endemic will occur.

Define
(
S ∗, I∗,R∗

)
as the deterministic endemic equilibrium. Since our process is in the simplex,

we will show that process is “near”
(
S ∗, I∗

)
, which would imply that the process is in a neighborhood

of
(
S ∗, I∗,R∗

)
. The result is very similar to [16], where the jump perturbation adds to the radius of

the ball around the deterministic endemic equilibria. In particular, the term kJ displays how when a
random percentage of the infected population is consistently quarantined this decreases the impact to
the general population.

Clearly, when both perturbations are small, an endemic will occur.

Theorem 3.1. If R0 > 1, then

lim sup
t→∞

1
t

∫ t

0

[(
S (t) − S ∗

)2
+

(
I(t) − I∗

)2
]
dt ≤

kI∗

2µ

(
σ2

2
+ kJ

)
,

where k = 2
(
λ + 2µ

)
/β and kJ =

∫
R

(
j(y)2/kI∗ + 2 j(y)(S ∗ + I∗)/kI∗ − log

(
1 − j(y)

))
ν(dy).

Proof. Define f
(
t
)

=
(
S (t) − S ∗ + I(t) − I∗

)2
+ k

(
I(t) − I∗ − I∗ log

(
I(t)/I∗

))
, (which is similar to the

function defined in [16]). Then by Itô’s extended lemma we have

d f
(
t
)

= 2
(
S (t) − S ∗ + I(t) − I∗

)(
− µS (t) + µ − (λ + µ)I(t)

)
dt

+ k
(
1 − I∗/I(t)

)(
βS (t)I(t) − (λ + µ)I(t)

)
dt + kI∗

σ2

2
S (t)2dt

+ σS (t)
(
I(t) − I∗

)
dW(t)

+

∫
R

[(
S (t) − S ∗ + I(t) − j(y)I(t) − I∗

)2
−

(
S (t) − S ∗ + I(t) − I∗

)2
]
N(dt, dy)

+

∫
R

[
k
(
I(t) − I∗ − I∗ log

((
I(t) − j(y)I(t)

)
/I∗

)
− k

(
I(t) − j(y)I(t) − I∗ − I∗ log

(
I(t)/I∗

))]
N(dt, dy).

First we simplify and manipulate the drift, then we will simplify and manipulate the Poisson inte-
grand. Notice that k

(
1 − I∗/I(t)

)(
βS (t)I(t) − (λ + µ)I(t)

)
= βk

(
I(t) − I∗

)(
S (t) − S ∗

)
and(

S (t) − S ∗ + I(t) − I∗
)(
− µS (t) + µ − (λ + µ)I(t)

)
=

(
S (t) − S ∗ + I(t) − I∗

)(
− µS (t) + µ

λ + µ

β
− (λ + µ)I(t) + −µ

λ + µ

β
+ µ

)
=

(
S (t) − S ∗ + I(t) − I∗

)(
− µ(S (t) − S ∗) − (λ + µ)(I(t) − I∗)

)
.
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Hence

2
(
S (t) − S ∗ + I(t) − I∗

)(
− µS (t) + µ − (λ + µ)I(t)

)
+ k

(
1 − I∗/I(t)

)(
βS (t)I(t) − (λ + µ)I(t)

)
+ kI∗

σ2

2
S (t)2

= −2µ
(
S (t) − S ∗

)2
− 2(λ + µ)

(
I(t) − I∗

)2
+

[
− 2(λ + 2µ) + βk

](
S (t) − S ∗

)(
I(t) − I∗

)
+ kI∗

σ2

2
S (t)2

= −2µ
(
S (t) − S ∗

)2
− 2(λ + µ)

(
I(t) − I∗

)2
+ kI∗

σ2

2
S (t)2.

(3.1)

For the Poisson integrands, we have∫
R

[(
S (t) − S ∗ + I(t) − j(y)I(t) − I∗

)2
−

(
S (t) − S ∗ + I(t) − I∗

)2
]
N(dt, dy)

=

∫
R

[
j(y)2I(t)2 − 2 j(y)I(t)

(
S (t) − S ∗ + I(t) − I∗

)]
N(dt, dy)

and ∫
R

[
k
(
I(t) − I∗ − I∗ log

(
(I(t) − j(y)I(t)/I∗

)
− k

(
I(t) − j(y)I(t) − I∗ − I∗ log

(
I(t)/I∗

))]
N(dt, dy)

=

∫
R

k
[
− j(y)I(t) − I∗ log

(
1 − j(y)I(t)

)]
N(dt, dy).

Thus the Poisson integral is∫
R

[
j(y)2I(t)2 − 2 j(y)I(t)

(
S (t) − S ∗ + I(t) − I∗

)
+ k

[
− j(y)I(t) − I∗ log

(
1 − j(y)I(t)

)]]
N(dt, dy)

=

∫
R

[
j(y)2I(t)2 − 2 j(y)I(t)

(
S (t) − S ∗ + I(t) − I∗

)
+ k

[
− j(y)I(t) − I∗ log

(
1 − j(y)I(t)

)]]
Ñ(dt, dy)

+

∫
R

[
j(y)2I(t)2 − 2 j(y)I(t)

(
S (t) − S ∗ + I(t) − I∗

)
+ k

[
− j(y)I(t) − I∗ log

(
1 − j(y)I(t)

)]]
ν(dy)dt.

(3.2)

The last equality comes from the integrand being bounded and ν
(
R
)
< ∞.

Taking (3.1) and the deterministic measure in (3.2) we see that

− 2µ
(
S (t) − S ∗

)2
− 2(λ + µ)

(
I(t) − I∗

)2
+ kI∗

σ2

2
S (t)2

+

∫
R

[
j(y)2I(t)2 − 2 j(y)I(t)

(
S (t) − S ∗ + I(t) − I∗

)
+ k

[
− j(y)I(t) − I∗ log

(
1 − j(y)I(t)

)]]
ν(dy)

≤ −2µ
[(

S (t) − S ∗
)2

+
(
I(t) − I∗

)2
]

+ kI∗
[
σ2

2
+

∫
R

(
j(y)2/kI∗ + 2 j(y)(S ∗ + I∗)/kI∗ − log

(
1 − j(y)

))
ν(dy)

]
.

By the Strong Law of Large Numbers for local martingales, we have almost surely that

lim
t→∞

1
t

∫ t

0

∫
R

[
j(y)2I(t)2−2 j(y)I(t)

(
S (t)−S ∗+ I(t)− I∗

)
+k

[
− j(y)I(t)− I∗ log

(
1− j(y)I(t)

)]]
Ñ(dt, dy) = 0
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and

lim
t→∞

1
t

∫ t

0
σS (t)

(
I(t) − I∗

)
dW(t) = 0.

Therefore, since

0 ≤ f (t) − f (0) ≤ −2µ
∫ t

0

[(
S (t) − S ∗

)2
+

(
I(t) − I∗

)2
]
dt +

∫ t

0
kI∗

(σ2

2
+ kJ

)
dt +

∫ t

0
σS (t)

(
I(t) − I∗

)
dW(t)

+

∫ t

0

∫
R

[
j(y)2I(t)2 − 2 j(y)I(t)

(
S (t) − S ∗ + I(t) − I∗

)
+ k

[
− j(y)I(t) − I∗ log

(
1 − j(y)I(t)

)]]
Ñ(dt, dy),

we are able to conclude that

lim sup
t→∞

1
t

∫ t

0

[(
S (t) − S ∗

)2
+

(
I(t) − I∗

)2
]
dt ≤

(
λ + 2µ

)
I∗

βµ

(σ2

2
+ kJ

)
.

�

4. Conclusion

In this paper quarantine of infected individuals was modeled with a Poisson measure. Due to the im-
perfections of human interactions, we have given a model that better represents the effect of quarantine.
After the derivation of the model, we determined that this dynamic was well defined. In Theorem 2.1

we showed that if the inequality β < min
{
λ+µ+

∫
R

j(y)ν(dy)−
∫
R

j2(y)
2

ν(dy)−
σ2

2
, 2µ

}
holds then the

dynamic will converge almost surely to the disease free equilibrium. The condition for the disease free

equilibrium maybe counterintuitive since the term in the right side of the inequality, −
∫
R

j(y)2

2
ν(dy),

shows that quarantine does not fully affect the dynamic. However, what this tells us is that the quaran-
tine does not have a complete effect on the dynamic of the disease and, in some instances, may only
slightly dampen the impact to the population.

In Theorem 3.1, computational conditions for an endemic where given. The condition for an en-
demic is rather encompassing, as it includes all possible strengths of recurrence. The result shows the
complexity the quarantine adds to the dynamic encompassed in the complex term kJ. The term kJ dis-
plays how the quarantine has an effect on the entire populace, and in particular how a large quarantine
does not completely stop the evolution of the disease and how a small quarantine has a larger effect
than expected.
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Numerical Simulation

(a) R0 > 1 and Theorem 2.1 Holds

(b) R0 > 1 and Theorem 2.1 Does Not Holds

(c) R0 > 1 and Theorem 2.1 Does Not Holds

Figure 1. Figure 1(a): the initial condition are S (0) = .3, I(0) = .6, and R(0) = .1, with
the parameter values β = .5, λ = .1, µ = .3, σ = .1, ν

(
R
)

= 1, and j(y) ≡ .17. From these
parameters R0 = 1.25 and .5 < min{.55055, .6} holds. Figure 1(b): the initial condition are
S (0) = .9, I(0) = .1, and R(0) = 0, with the parameter values β = .5, λ = .1, µ = .2, σ = .1,
ν
(
R
)

= 1, and j(y) ≡ .1. From these parameters R0 ≈ 1.666 and .5 ≮ min{.39, .4} does not
holds. Figure 1(c): the initial condition are S (0) = .9, I(0) = .1, and R(0) = 0, with the
parameter values β = .7, λ = .2, µ = .3, σ = .1, ν

(
R
)

= 1, and j(y) ≡ .25. From these
parameters R0 = 1.4 and .7 ≮ min{.71375, .6} does not holds.

For the computer simulations below, Figures 1(a) and 1(b) display the subtleties with Theorem 2.1
on the long run behavior of the system. The last simulation, Figure 1(c), shows intuition behind the
random quarantine on how and this term severely affects the dynamic and increases the size of the
neighborhood of the deterministic endemic equilibrium, as shown in Theorem 3.1.
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