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Abstract: This paper deals with a mathematical analysis of two-steps model of anaerobic digestion
process, including dynamics of soluble microbial products (SMP). We propose to investigate effects
of the new variable SMP on qualitative properties of the process in different generic cases. Equilibria
of the model are graphically established considering qualitative properties of the kinetics and, their
stability are proved theoretically and/or verified by numerical simulations. It will shown that the model
has a rich qualitative behavior as equilibria bifurcation and multi-stability according to the considered
bifurcation parameter.
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1. Introduction

Mathematical modeling of bioprocesses is a powerful tool to (i) explain observed phenomena,
(ii) understand some mechanisms of the system and predict its evolution, (iii) better control the
process operations and (iv) build the ”roots” for dialogue and discussion with biologists. In recent
years, many studies were carried out on the mathematical models analysis of biological ecosystems
using chemostat. A number of mathematical modeling methods that are relevant to the field of
microbial ecology and bioprocesses was presented in [1]. Di and Yang [2], evaluated how structures
and parametrization of synthetic microbial communities with two or three species could affect their
productivity and stability. Qualitative analysis of local and global stability of steady states of a
syntrophic relationship between two consortium of bacteria in a chemostat is detailed in [3, 4].

The technology of Anaerobic Digestion is highly promising with the potential to substantially
improve efficiency in wastewater treatment, digestate handling and bioenergy production. Anaerobic
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digestion is a complex process, which is widely described by the most complete model ADM1
(Anaerobic Digestion Model n.1) [5]. Because of its high complexity and strong non-linearity, ADM1
cannot be used for analytical analysis of the steady states of the system. In the literature, a number of
studies have been made on equilibria and the nature of their stability of reduced and simplified models
of anaerobic digestion processes using operating diagram analysis, which allows to describe the
behavior of the system with respect to the control parameters. Khedim et al. [6], investigated how
operating parameters (dilution rate and substrate inflow concentration) could ensure an optimal
production of biogas in a Microalgae Anaerobic Digestion process. As regards [7], authors showed
that the stability of the positive equilibrium of a two-tiered microbial food-chain is not affected when
maintenance is included in the model and for a large class of kinetics. A generalised form of a
three-tiered microbial food-web was proposed in [8]; when maintenance is not considered in the
model, it was shown that one can explicitly determine the stability of the system and, boundaries
between the different stability regions are characterized by analytical expressions.

A review of mathematical modeling of anaerobic digestion with respect to the theory, applications
and technologies is given in [9], where it is argued that mathematical analysis tools can be
appropriately applied to reduced-order models of anaerobic digestion to investigate the qualitative
behavior of the system. Even if modeling of anaerobic digestion is increasing in complexity and new
challenges should be addressed [10], for a simplified modeling, the biological process may be
described mainly by two-steps reactional framework as given in [11]: in the first step (acidogenesis),
the acidogenic bacteria consume the organic substrate and produce Volatile Fatty Acids (VFA) and
CO2, while in the second step (methanogenesis), the methanogenic population consumes VFA and
produces methane and CO2. A well known model for such process is the AM2 model [11] which has
four main variables (two substrates and two microbial populations). In [12], it is shown that this
model of two reactions represents 97.8% of biological variability, which justifies its choice to describe
the main mass transfer within the bioreactor. An extended version of the AM2 model was used in [13]
to predict biogas and methane production rates. Also, AM2 was compared to the ADM1 and it was
shown that a tradeoff has to be made between model complexity and tractability. The AM2 model can
successfully support on-line control and supervision strategies, based on state observers and feedback
control [14, 15]. These literature examples of some applications of the AM2 model, show that this
simple model is able to predict the main dynamical behavior of ADM1, which would be considered as
a virtual anaerobic bioreactor for simulation.

Many mathematical studies were carried out on the qualitative behavior of the AM2 model in
generic cases [16, 17], or in particular cases [18–20]. It is shown in [16] that the AM2 model can have
at most six equilibria and it can have a monostability or a bistability behavior, according to the
functioning conditions. A comparison of performance of one-reactor vs two-reactors configurations
for a two-reaction (acidogenesis and methanogenesis) anaerobic digestion model were discussed
in [21]. Using the AM2 model, authors have proven that separation of the reactions in two bioreactors
does not improve the stability of the process nor the soluble organic matter removal capacity.
Weedermann studied the effects of an external toxin on the bahavior of a two-step model of anaerobic
digestion [22]. He showed under what conditions the toxin can alter the steady states of the system
(wash-out of bacteria, fluctuations (limit cycles) or bistabilities).

Even if the AM2 model has proven its usefulness for the control and supervision of anaerobic
digesters, it remains a very simple model, which would not able to explain certain biological
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phenomena as the dynamics of lower concentrations or small bacteria populations [23] and, which has
a limited applicability as typically the case for anaerobic digestion of waste-activated sludge [24].
This is why more or less extented versions of AM2 have been proposed in the literature in order to
better describe anaerobic digestion processes with the integration of new main variables, while
remaining simple from a mathematical modeling point of view. For instance in [24], one proposed the
AM2HN model, which is a modification of AM2 by adding one additional state variable XT (total
particulate substrate), i.e., one additional differential equation in order to include the
disintegration/hydrolysis step and, initial differential equations of AM2 was accordingly modified.
The model proposed in [22] is exactly a perturbation of the AM2 model to study the effects of an
externally introduced toxin. Author added one differential equation of the dynamic of the toxin T ,
which inhibits the growth of bacteria X1 while it is broken by bacteria X2.

A model for anaerobic membrane digesters has been proposed in [25] for control design purposes.
This model named AM2b is based on the modification of the two step model AM2 and integrates
the dynamic of a new variable (SMP: Soluble Microbial Products) in the system. Recently, the AM2b
model was combined with a simple fouling models to describe both biological and membrane dynamics
in an Anaerobic Membrane BioReactors (AnMBR) [26, 27] and to assess system performance and
membrane fouling [28]. A state-of-the-art on coupling of membrane fouling models with biological
dynamics is provided in [29]. Authors reviewed modeling and control aspects of AnMBR and, focused
on existing challenges and future perspectives to improve them. Stochastic versions of the AM2b
model was proposed in [30] and [31], to provide a deeper description of the process when modeling
lower concentrations or small bacteria populations, which can be seen as uncertain and noisy dynamics.

It is shown in [25] that the AM2b model is highly sensitive to the maximum growth rate of
acidogenic bacteria on SMP (which is considered as a bifurcation parameter). This paper is
complementary to [25] and it proposes a detailed mathematical analysis of the qualitative behavior of
the model AM2, especially with respect to the bifurcation parameter. It reports briefly some results
which presented in [25] and, gives pertinently their mathematical backgrounds. The paper is
structured as follows: first, we recall the AM2b model and we prove positivity and boundedness of its
variables. Then, we characterize equilibria in some generic cases and we explain the background of
their graphical determination. Finally, we investigate through numerical simulation equilibria and
their stability of the system, before conclusions and perspectives are formulated.

2. Mathematical model

2.1. Mass balance equations

In Figure 1, we give a schematic representation of the anaerobic membrane bioreactor for which
the model (2.5–2.9) is proposed below and, where the membrane retention of soluble and particulate
components is illustrated.

We consider the anaerobic mathematical model AM2b presented in [25], where we have four
reaction networks:

k1S1

µ1(.)X1
−−−−−→ X1 + k2S2 + b3S + k4CO2 (2.1)

k3S2

µ2(.)X2
−−−−−→ X2 + b4S + k5CO2 + k6CH4 (2.2)
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b1S
µ(.)X1
−−−−→ X1 + b2S2 + k7CO2 (2.3)

D0X1 −−→ D0S, D0X2 −−→ D0S (2.4)

S 1, S 2

S

(1 − β)S

X1, X2

S 1, S 2, βS

output flow: Qout

S 1in, S 2in

input flow: Qin

S 1, S 2, X1, X2, S
withdraw flow: Q1

Biogas

M
em

br
an

e

Figure 1. Schematic representation of the compartment bioreactor-membrane.

In the first reaction, the substrate S 1 (organic matter) is degraded into substrates S 2 (Volatile Fatty
Acids) and S (SMP) by acidogenic bacteria X1 and then in the second reaction, S 2 is converted into
S by methanogenic bacteria X2. The third reaction network consist in degrading S into S 2 by the
consortium X1. A part of S is produced from biomasses decay. During reactions (2.1), (2.2) and (2.3),
there is a production of biogas.

Mass balance equations are given by:

Ṡ 1 = D(S 1in − S 1) − k1µ1(S 1)X1, (2.5)
Ẋ1 =

(
µ1(S 1) + µ(S ) − D0 − D1

)
X1, (2.6)

Ṡ 2 = D(S 2in − S 2) − k3µ2(S 2)X2 +
(
k2µ1(S 1) + b2µ(S )

)
X1, (2.7)

Ẋ2 =
(
µ2(S 2) − D0 − D1

)
X2, (2.8)

Ṡ =
(
b3µ1(S 1) + D0 − b1µ(S )

)
X1 +

(
b4µ2(S 2) + D0

)
X2 − MS , (2.9)

where S 1in and S 2in are input substrate concentrations, D, D0 and D1 are the dilution rate, the decay
rate of biomass and the withdraw rate respectively. M = [βD + (1 − β)D1], where β ∈ [0, 1] represents
the fraction of S leaving the bioreactor (see [25] for more detail on the model development).
Parameters ki and bi are pseudo-stoichiometric coefficients associated to the bioreactions, which
represent degradation and production rates of different substrates. The identifiability and the
estimation of such parameters are discussed in [11] and [12].

We make the following matter conservation principles:

• over a given period of time, the quantity of biomass (or products) produced is always smaller than
the quantity of substrate degraded. Thus, from (2.1–2.3) one has:

k1 ≥ 1 + b3 + k2, (2.10)
k3 ≥ 1 + b4, (2.11)
b1 ≥ 1 + b2. (2.12)

• the quantity S 2 produced from S 1 is higher than the quantity produced from the SMP (see (2.1)
and (2.3)):

k2 > b2. (2.13)
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The kinetics µ1, µ2 and µ are assumed to be dependent on S 1, S 2 and S respectively, satisfying the
following hypotheses:

Hypothesis 2.1. µ1(S 1) and µ(S ) are of class C1 and satisfy the following properties:

• µ1(0) = µ(0) = 0,
• µ

′

1(S 1) > 0 and µ
′

(S ) > 0 for S 1 > 0 and S > 0 respectively,
• µ1(∞) = m1 and µ(∞) = m.

Hypothesis 2.2. µ2(S 2) is of class C1 and satisfies the following properties:

• µ2(0) = µ2(∞) = 0,
• µ2(S 2) has a maximum µ2

(
S M

2

)
> 0 for S 2 = S M

2 ,
• µ

′

2(S 2) > 0 for 0 < S 2 < S M
2 ,

• µ
′

2(S 2) < 0 for S 2 > S M
2 .

The model analysis given in this paper, is valid for all functions verifying the hypothesises (2.1) and
(2.2). Examples of functions satisfying these assumptions are (see appendix 1 of [32]):

• The Monod kinetics µ(ξ) = m ξ

ξ+K , the Tessier kinetics µ(ξ) = m
(
1 − e

−ξ
K

)
, the Moser or the Ming

et al. kinetics µ(ξ) =
mξ2

K+ξ2 (with m and K are constants), which all satisfy hypothesis 2.1.

• The Haldane kinetics µ(ξ) = m ξ
ξ2
Ki

+ξ+K
, or the function µ(ξ) = K

(
e−α1ξ − e−α2ξ

)
(with m, K, Ki and

α2 > α1 are constants), which satisfy hypothesis 2.2.

Positivity and boundedness are very important properties for biological systems. We have to check
that for zero or positive initial conditions, all variables of system (2.5–2.9) are non-negative and
bounded for all time.

Proposition 2.3. The variables (S 1, X1, S 2, X2, S ) of system (2.5–2.9) are positive and bounded.

Proof. The proof is given in Appendix A.1. �

3. Equilibria of model

The equilibria of system are solutions of the following nonlinear algebraic system:

0 = D(S 1in − S 1) − k1µ1(S 1)X1 (3.1)
0 = [µ1(S 1) + µ(S ) − D0 − D1]X1 (3.2)
0 = D(S 2in − S 2) − k3µ2(S 2)X2 + [k2µ1(S 1) + b2µ(S )]X1 (3.3)
0 = [µ2(S 2) − D0 − D1]X2 (3.4)
0 = [b3µ1(S 1) + D0 − b1µ(S )]X1 + [b4µ2(S 2) + D0]X2 − MS (3.5)

We use the following notations:

A =
b4(D0 + D1) + D0

k3(D0 + D1)
, B =

M
D

=
[
β + (1 − β)

D1

D

]
. (3.6)
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If D0 + D1 < µ2(S M
2 ) then S 1∗

2 < S M
2 < S 2∗

2 are the roots of equation µ2(S 2) = D0 + D1 and, we note:

αi :=
A
B

(
S 2in − S i∗

2

)
, βi =

D
k3(D0 + D1)

(
S 2in − S i∗

2

)
, i = 1, 2 (3.7)

From Eq (3.2) one deduce that X1 = 0 or µ1(S 1) + µ(S ) = D0 + D1. The following lemma describes
the equilibria points for which X1 = 0, that is to say, there is a washout of X1.

Lemma 3.1. The equilibria (S ∗1, 0, S
∗
2, X

∗
2, S

∗) of the system (2.5–2.9) are given by:

• the washout equilibrium of X1 and X2, E0
0 = (S 1in, 0, S 2in, 0, 0), which always exists,

• the washout equilibrium of X1 but not of X2,

Ei
1 = (S 1in, 0, S i∗

2 , X
i∗
2 , S

i∗), i = 1, 2

where S i∗
2 are the roots of equation µ2(S 2) = D0 + D1, Xi∗

2 and S i∗ are given by the formulas:

Xi∗
2 = βi, S i∗ = αi, i = 1, 2.

The equilibrium Ei
1 exists if and only if:

S 2in > S i∗
2 . (3.8)

Proof. The proof is given in Appendix A.2.1. �

Remark 1. In this paper, we present a detailed mathematical analysis of the model equilibria. From
biological realism point of view, equilibria Ei

1 would not occur except in certain cases. Indeed, S 2

(VFA) available for the reaction (2.2) is produced in reactions (2.1) and (2.3) when bacteria X1

degrade S 1 (organic substrate) and S (SMP). Also, it can come from outside the bioreactor in S 2in (see
Figure 1). Often, this is not possible in the biological realism, unless we consider a third acetogenic
microorganisms which produce S 2in from external organic matter or, if we carry out a bench-scale
study, by introducing S 2in into the bioreactor.

Now, we consider equilibria for which there is no washout of X1 but washout of X2. We introduce
the following notations:

F(S ) := µ−1
1 (D0 + D1 − µ(S )) , (3.9)

G(S 1) := (S 1in − S 1)
(
B1 −

B2

µ1(S 1)

)
, (3.10)

where:
B1 =

b1 + b3

k1β
, B2 =

b1(D0 + D1) − D0

k1β
, (3.11)

Lemma 3.2. Let E0
2 = (S ∗1, X

∗
1, S

∗
2, 0, S

∗) an equilibrium point of the system (2.5–2.9), such that X∗1 > 0.
Then S ∗1 and S ∗ are solutions of the system of equations:{

S 1 = F(S )
S = G(S 1)

(3.12)
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and X∗1 and S ∗2 are given by the formulas:

X∗1 =
D

k1µ1(S ∗1)
(
S 1in − S ∗1

)
, S ∗2 = S 2in +

k2µ1(S ∗1) + b2µ(S ∗)
k1µ1(S ∗1)

(
S 1in − S ∗1

)
.

The equilibrium E∗ exists if and only if:
S 1in > S ∗1. (3.13)

Proof. The proof is given in Appendix A.2.2. �

Now, we consider equilibria for which there is no washout of X1 nor X2. We introduce the following
notations:

H(S 1) := (S 1in − S 1)
(
C1 −

C2

µ1(S 1)

)
, (3.14)

Hi(S 1) := αi + H(S 1), i = 1, 2. (3.15)

where:
C1 = B1 +

A(k2 − b2)
k1β

, C2 = B2 −
Ab2

k1β
, (3.16)

Lemma 3.3. Let Ei
2 = (S ∗1, X

∗
1, S

i∗
2 , X

i∗
2 , S

∗), i = 1, 2 an equilibrium point of the system (2.5–2.9) such
that X∗1 > 0 and X∗2 > 0. Then one has S i∗

2 , i = 1, 2 are the roots of equation µ2(S 2) = D0 + D1, and S ∗1
and S ∗ are solutions of the system of equations:{

S 1 = F(S ),
S = Hi(S 1), i = 1, 2.

(3.17)

and X∗1 and Xi∗
2 are given by the formulas:

X∗1 =
D

k1µ1(S ∗1)
(
S 1in − S ∗1

)
, Xi∗

2 = βi +
D

k3(D0 + D1)
k2µ1(S ∗1) + b2µ(S ∗)

k1µ1(S ∗1)
(
S 1in − S ∗1

)
The equilibrium E∗ exists if and only if the following conditions hold:

S 1in > S ∗1 and Hi(S ∗1) > G(S ∗1), i = 1, 2. (3.18)

Proof. The proof is given in Appendix A.2.3. �

Remark 2. When the system (3.12) or the system (3.17) has several solutions (S ∗1 j, S
∗
j), one notes E0

2 j

(respectively E1
2 j and E2

2 j), j = 1, 2 the corresponding equilibria (see section 6.3).

4. Graphical determination of equilibria

Equilibria of system (2.5–2.9) are determined, by finding graphically solutions of system (3.12)
and (3.17). Values of S ∗1 and S ∗ should be positive and satisfy conditions (3.13) and (3.18). Thus, we
should study sign of functions G(S 1) and Hi(S 1) and, specify the domain where they are positive.

First, let us give the following lemma:
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Lemma 4.1. We have λH < λG < λ1 where λH, λG and λ1 are defined by:

λ1 = µ−1
1 (D0 + D1), λG = µ−1

1 (DG), λH = µ−1
1 (DH),

with DG = B2/B1 and DH = C2/C1.

Proof. The proof is given in Appendix A.3. �

In Figure 2 on the left, we illustrate positions of λH, λG and λ1. On the right, we show solutions S i∗
2 ,

i = 1, 2 of equation µ2(S 2) = D0 + D1.

S 1

µ1(S 1)

λ1λGλH

DH

DG

D0 + D1

S 2

µ2(S 2)

S 1∗
2 S M

2 S 2∗
2

D0 + D1

µ2(S M
2 )

Figure 2. Positions of values λ1, λG and λH (left). Solutions S i∗
2 , i = 1, 2 of µ2(S 2) = D0 + D1

(right).

The function G(S 1) defined by (3.10) is positive for S 1 between S 1in and λG, the root of:

g(S 1) = B1 −
B2

µ1(S 1)

We have two cases (see Figure 3):

• DG > m1, where g(S 1) is always negative for S 1 < S 1in (Figure 3, left) and values of S 1 > S 1in do
not satisfy the condition (3.13), or
• DG < m1, where g(S 1) > 0 if and only if S 1 > λG (Figure 3, right).

The case corresponding to Figure 3, center, is not considered since it does not satisfy the
condition (3.13).

S 1S 1S 1

S S S

+∞
���

S 1in S 1in λG S 1inλG

Figure 3. Graphical representation of G(S 1), left: if DG > m1, center: if DG < m1 and
S 1in < λG, right: if DG < m1 and S 1in > λG. Gray area represents zone where (3.13) is not
satisfied.
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Proposition 4.2. A necessary condition for (3.12) to have positive solutions is λG < S 1in that is to say
µ1(S 1in) > DG.

Proof. The proof is given in Appendix A.4. �

The function H(S 1) defined by (3.14) is positive for S 1 between S 1in and λH, the root of:

H(S 1) = C1 −
C2

µ1(S 1)

Two cases can be distinguished:

• DH > m1, where H(S 1) is always negative for S 1 < S 1in, or
• DH < m1, where H(S 1) > 0 if and only if S 1in > S 1 > λH (see Figure 4).

In the following, we assume that µ1(S 1in) > DG. Let us notice that:

• H(S 1) is positive if and only if λH < S 1 < S 1in,
• G(S 1) is positive if and only if λG < S 1 < S 1in,
• H(S 1) > G(S 1) for all λH < S 1 < S 1in.

Proposition 4.3. The equilibrium Ei
2, i = 1, 2 exists if and only if the graph of Hi(S 1) intersects the

axis of S 1 on the right of S 1in.

Proof. The proof is given in Appendix A.5. �

S 1S 1S 1

T T

αi

T

S S S

H

G

Hi

H

G

H

Hi

G

S 1inλGλH S 1inλGλH S 1inλGλH

Figure 4. Graphical representation of H(S 1), Hi(S 1) i = 1, 2 and G(S 1), left: H(S 1) and
G(S 1), center: αi > 0 thus Hi(S 1) > H(S 1), right: αi < 0 thus Hi(S 1) < H(S 1). Gray area
represents zone where (3.13) is not satisfied. Character T is to say Trivial Equilibria given
by Lemma 3.1.

5. Necessary conditions of existence of equilibria

The existence of equilibria depend on the relative positions of the value of S 1in and the values of
λH, λG and λ1 (see Figure 2). We have four cases:

• S 1in < λH < λG < λ1

• λH < S 1in < λG < λ1
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• λH < λG < S 1in < λ1

• λH < λG < λ1 < S 1in

Recall that an equilibrium exists if and only if the conditions (3.18) are satisfied. We list in the Table 1
the possible existence of equilibria in the four above cases. In all the following figures, the doted
vertical line represents λ1 = F(0), the blue graph represents G(S 1), the green one represents H(S 1) and
those in red represent H1(S 1) (top red graph) and H2(S 1) (bottom red graph).

Remark 3. The function F(S ) depends on µ(S ), but functions G(S 1) and Hi(S 1), i = 1, 2 do not depend
on it. For µ(0) = 0, intersections of F(0) = λ1 with G(S ) and Hi(S ) correspond to cases of [16] and [25]
as mentioned in the last column of Table 1 and seen on Figure 8.

Table 1. Existence of equilibria in the four cases. The symbol ’X’ indicates that the
equilibrium can exist. If there is no symbol, that indicates that equilibrium does not exist.

Case Figure F ∩G F ∩ H1 F ∩ H2 Corresponding cases in [16] and/or in [25]

S 1in < λH < λG < λ1

Figure 5, left 1.1 of [16]
Figure 5, center X 1.2 of [16]
Figure 5, right X X 1.3 of [16]

λH < S 1in < λG < λ1

Figure 6, left X X 1.1 of [16]
Figure 6, center X X 2.1 of [16]
Figure 6, right X X 1.3 of [16]

λH < λG < S 1in < λ1

Figure 7, left X X X 1.1 of [16]
Figure 7, center X X X 1.2 of [16]

C of [25]
Figure 7, right X X X 1.3 of [16]

B of [25]

λH < λG < λ1 < S 1in

Figure 8, top left X X X 2.1 of [16]
Figure 8, top center X X X 2.2 of [16]
Figure 8, top right X X X 2.3 of [16]
Figure 8, bottom left X X X 2.4 of [16]
Figure 8, bottom center X X X 2.5 of [16]
Figure 8, bottom right X X X 2.6 of [16]

A of [25]

Case: S 1in < λH < λG < λ1

In the case 1, illustrated by Figure 5 on the left, we have H > H1 > H2 and, intersections F ∩ Hi

and F ∩ G do not give any positive equilibria, because it does not satisfy the condition (3.13). In the
case 2, illustrated by Figure 5 on the center, we have H1 > H > H2. The equilibrium of F ∩ H1 can
exist, but there are no equilibria of F ∩ H2 and F ∩G. The last case 3, represented by Figure 5 on the
right, we have H1 > H2 > H. There is a possibility of existence of equilibria F ∩ H1 and F ∩ H2 for
values of m enough high, but equilibria of F ∩G do not exist.
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S 1in λH λG λ1 S 1in λH λG λ1 S 1in λH λG λ1
S 1

S

α2

α1

S 1

S

α1

S 1

S

Figure 5. Different graphical representations corresponding to the case S 1in < λH, blue: G,
top red: H1, bottom red: H2, green: H.

Remark 4. When we have intersection of the function F(S ) with functions H1(S 1) and H2(S 1) at S 1 =

S 1in, then we obtain equilibria Ei
1 = (S 1in, 0, S i∗

2 , X
i∗
2 , S

i∗) where S i∗ = αi = Hi(S 1in), i = 1, 2 as it can
be seen on Figure 5, center, for E1

1 and on Figure 5, right, for Ei
1, i = 1, 2.

Case : λH < S 1in < λG < λ1

This case is illustrated by Figure 6, left, center and right for H > H1 > H2, H1 > H > H2 and
H1 > H2 > H respectively. Equilibria of F ∩ Hi, i = 1, 2 can exist for higher values of m, but not those
of F ∩G for all values of m.

S 1inλH λG λ1 S 1inλH λG λ1 S 1inλH λG λ1
S 1

S

α1

α2

S 1

S

α1

S 1

S

Figure 6. Different graphical representations corresponding to the case λH < S 1in < λG,
blue: G, top red: H1, bottom red: H2, green: H.

Case: λH < λG < S 1in < λ1

We represents this case by Figure 7, where all equilibria of F ∩ Hi, i = 1, 2 and F ∩ G can exist
since condition (3.13) is satisfied. Also, some equilibria bifurcations can occur for higher values of m.

Case: λH < λG < λ1 < S 1in

Here we have rich situations, equilibria for F ∩G exist always, while F ∩ H1 and F ∩ H2 may give
both equilibria for all m (see Figure 8, top-right, bottom-center and bottom-right), only F ∩ H1 gives
always equilibria (see Figure 8, top-center and bottom-left) or there is equilibria bifurcations for large
values of m for F ∩ H1 and/or F ∩ H2 (see Figure 8, top-left for F ∩ H1, top-center and bottom-left for
F ∩ H2).
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Figure 7. Different graphical representations corresponding to the case λG < S 1in < λ1, blue:
G, top red: H1, bottom red: H2, green: H.

S 1inλH λG λ1 S 1inλH λG λ1 S 1inλH λG λ1

S 1inλH λG λ1 S 1inλH λG λ1 S 1inλH λG λ1

S 1

S 1

S

S

α1

α2

S 1

S 1

S

S

α1

S 1

S 1

S

S

α1

Figure 8. Different graphical representation corresponding to the case λ1 < S 1in, blue: G,
top red: H1, bottom red: H2, green: H.

6. Existence and stability of equilibria

6.1. Stability of equilibria with washout of X1

For trivial equilibria given by lemma 3.1, the results on their stability are summarized in
Theorem 6.1.

Theorem 6.1. Existence and stability of washout equilibria of X1 are as follows:

1. The equilirium E0
0 exists always and it is stable if and only if:

µ1(S 1in) < D0 + D1 and, µ2(S 2in) < D0 + D1 (6.1)

2. The equilibrium E2
1 exist if and only if S 2in > S 2∗

2 and it is always unstable.
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3. The equilibrium E1
1 exist if and only if S 2in > S 1∗

2 and it is stable if and only if:

µ1 (S 1in) + µ
(
S 1∗

)
< D0 + D1 (6.2)

Proof. The proof is given in Appendix A.6. �

The condition (6.2) my be graphically explained on the Figure 9. The graph f (S 1, S ) = µ1 (S 1) +

µ (S ) − D0 − D1 = 0 separates the plane (S 1, S ) into two zones:

• Zone Z0: where f (S 1, S ) > 0,
• Zone Z1: where f (S 1, S ) < 0.

According to the condition (6.2), the equilibrium E1
1 is stable if and only if: E1

1 ∈ Z1 (the case
represented on left in Figure 9).

S 1S 1

S S

H1H1

f (S
1 , S )

=
0

f (S
1 , S )

=
0

S 1inS 1in

S 1∗ S 1∗

E1
1

E1
1

Z0
f (S 1 , S ) > 0

Z1
f (S 1 , S ) < 0

Z0
f (S 1 , S ) > 0

Z1
f (S 1 , S ) < 0

Figure 9. Condition of stability of the equilibrium E1 (Left: E1
1 ∈ Z1, stable. Right: E1

1 ∈ Z0,
unstable).

6.2. Stability of equilibria with washout of X2 and stability of equilibria with X1 > 0 and X2 > 0

Here, we improve numerical simulations to check the system stability. Values of model parameters
are chosen as in Tables 3 and 4 except the parameter m. According to the considered generic case 1,
2 or 3 represented by Figure 10, 11 and 12 respectively, the value of the parameter m is varying in
specific intervals for which we could have all possible equilibria bifurcations. Stability nature does not
depend on values of m in those intervals (see the column Condition in Table 5 for values of m). Then,
we proceed as follows:

• Develop the Jacobian matrix J of system (2.5–2.9) as given by (6.3),
• Evaluate this matrix for each equilibrium characterized by lemma 3.2 or 3.3,
• Develop the characteristic equation of the evaluated matrix,
• Use Routh-Herwitz criterion to analyze the system stability by numerical simulations (plot the

coefficients of the first column of the Routh Table 2 according to m).
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The jacobian matrix of system (2.5–2.9) evaluated at equilibria is given by (6.3).

J=



−D − k1µ
′
1(S ∗1)X∗1 −k1µ1(S ∗1) 0 0 0

µ′1(S ∗1)X∗1 µ1(S ∗1) + µ(S ∗) − D0 − D1 0 0 µ′(S ∗)X∗1
k2µ

′
1(S ∗1)X∗1 k2µ1(S ∗1) + b2µ(S ∗) −D − k3µ

′
2(S ∗2)X∗2 −k3µ2(S ∗2) b2µ

′(S ∗)X∗1
0 0 µ′2(S ∗2)X∗2 µ2(S ∗2) − D0 − D1 0
b3µ

′
1(S ∗1)X∗1 b3µ1(S ∗1) + D0 − b1µ(S ∗) b4µ

′
2(S ∗2)X∗2 b4µ2(S ∗2) + D0 −M − b1µ

′(S ∗)X∗1


(6.3)

Which can be symbolized as follows:

J=


j11 j12 0 0 0
j21 j22 0 0 j25

j31 j32 j33 j34 j35

0 0 j43 j44 0
j51 j52 j53 j54 j55


(6.4)

We can distinguish two cases according to lemma 3.2 where X1 > 0 and X2 = 0 or, lemma 3.3 where
X1 > 0 and X2 > 0.

• In the case X2 = 0, one has: j33 = −D and j43 = j53 = 0.
• In the case X1 > 0 and X2 > 0, one has: j22 = j44 = 0 (from (3.2) and (3.4)).

The characteristic equation of the linearized system of (2.5–2.9) is:

|λ.I − J| = 0⇔ λ5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ + a5 = 0. (6.5)

where ai are coefficients depending on jik, (i, k = 1..5) given by (6.4). Now, one establishes the
following Routh table:

Table 2. Table of Routh for the linearized system of (2.5–2.9).

λ5 1 a2 a4 0
λ4 a1 a3 a5 0
λ3 n1 n2 0 0
λ2 l1 a5 0 0
λ1 r1 0 0 0
λ0 a5 0 0 0

0 0 0 0

with:

n1 =
a1a2 − a3

a1
, n2 =

a1a4 − a5

a1
, l1 =

n1a3 − n2a1

n1
, r1 =

l1n2 − a5n1

l1

The Routh-Herwitz criterion imposes that all coefficients of the first column of the Table 2 must
have the same sign, i.e., they must be positive (because the first element of the column is positive).

a1 > 0, n1 > 0, l1 > 0, r1 > 0, a5 > 0 (6.6)
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6.3. Numerical simulations

To illustrate our approach, we improve numerical simulations. We present three generic cases
illustrated by Figures 10, 11 and 12, which are obtained for the biological parameters values given in
Tables 3 and 4 and, kinetics functions (6.7), satisfying hypotheses 2.1 and 2.2.

µ1(S 1) = m1
S 1

S 1 + K1
, µ(S ) = m

S
S + K

, µ2(S 2) = m2
S 2

S 2
2

Ki
+ S 2 + K2

. (6.7)

If they exist, equilibria are noted on figures by:

• E1
2 j: equilibria given by the intersection of F(S ) with H1(S 1), j = 1, 2,

• E2
2 j: equilibria given by the intersection of F(S ) with H2(S 1), j = 1, 2,

• E0
2 j: equilibria given by the intersection of F(S ) with G(S 1), j = 1, 2.

Table 3. Nominal values for the parameters of the AM2b model [25].

Parameter Value Parameter Value Parameter Value Parameter Value
m1 1.2 β 0.6 b1 5 m varying
m2 1.5 k1 25 b2 0.6 K 3
K2 0.3 k2 15 b3 7 D 1
Ki 0.9 k3 16.08 b4 5 D0 0.25

Table 4. Values for adjustable parameters K1, S 1in, S 2in and D1 for each figure.

Parameter Generic case 1 (Figure 10) Generic case 2 (Figure 11) Generic case 3 (Figure 12)
K1 10 16 18

S 1in 15 15 10
S 2in 1 1 0.6
D1 0.4 0.4 0.25

The form of F(S ) changes according to the value of the parameter m, the maximum growth rate
of µ(S ) (see (3.9)). Consequently, F(S ) can have one or two intersections with each one of functions
H1(S 1), H2(S 1) or G(S 1) as illustrated in Figures 10, 11 and 12.

In Figure 10 corresponding to the generic case 1, we have only one equilibrium noted E1
1, E2

1 and
E0

1 for each intersection of F with H1, H2 and G respectively.
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Figure 10. Intersection of the graph of F(S ) with the graphs G(S 1) and Hi(S 1) in the Case 1.
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Figure 11. Intersection of the graph of F(S ) with the graphs G(S 1) and Hi(S 1) in the Case 2.
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Figure 12. Intersection of the graph of F(S ) with the graphs G(S 1) and Hi(S 1) in the Case 3.

In generic cases 2 and 3, we have equilibria bifurcation when m varies. For some values ci, i = 1, .., 5
of m, (of course, they are different between cases 2 and 3), the graph of F(S ) intersects graphs of Hi(S 1)
and G(S 1) (see Figures 13 and 14), leading to the apparition of new equilibria. The reader can refer
to [25, 33] for more details.

S 1
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F
fo

rm
=

0

E1
22=E1

21
(m=c1)

E2
22=E2

21
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E0
22=E0
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1
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E2
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1
(m=c5)

S
1in

TS

H2
H1

G

F when m increases ���������	

Figure 13. Values ci, i = 1..5 of m giving equilibria bifurcation in the generic case 2.
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Figure 14. Values ci, i = 1..5 of m giving equilibria bifurcation in the generic case 3.

Table 5. Equilibria and their nature in generic cases represented in Figures 10, 11 and 12.
Values of ci, i = 1..5 of the case 2 are different from those of the case 3.

Cases Condition
Equilibria and nature

F ∩ T F ∩G F ∩ H1 F ∩ H2

E0
0 E1

1 E2
1 E0

21 E0
22 E1

21 E1
22 E2

21 E2
22

Case 1 (Figure 10) m ≥ 0 U U U S U S

Case 2 (Figure 11)
2.1 0 ≤ m < c1 S S U
2.2 c1 < m < c2 S S U S U
2.3 c2 < m < c3 S S U S U U U
2.4 c3 < m < c4 S S U S U S U U U
2.5 c4 < m < c5 S U U S U S U U
2.6 c5 < m S U U S U S U

Case 3 (Figure 12)
3.1 0 ≤ m < c1 U S
3.2 c1 < m < c2 U S S U
3.3 c2 < m < c3 U S S U U U
3.4 c3 < m < c4 U S S U S U U U
3.5 c4 < m < c5 U S S U S U U
3.6 c5 < m U U S U S U

Equilibria of system and their nature according to m in the three generic cases are summarized in
Table 5, where T stands for Trivial Equilibria E0

0, E1
1 and E2

1, F ∩ H1, F ∩ H2 and F ∩ G stand for
Equilibria obtained by the intersections of the graph F with graphs H1, H2 and G, respectively, S and
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U stand for Stable and Unstable Equilibrium, respectively. If there is no symbol, then it means that the
equilibrium does not exist.

Stability nature of equilibria corresponding to the washout of X2 (F ∩G) and the existence of both
X1 and X2 (F ∩ H1 and F ∩ H2) is checked by using the Routh-Herwitz criterion as detailed in the
section 6.2.

On Figures 15, 16, and 17, we represent the coefficients of the first column of Table 2 with different
colors: a1 in black, n1 in blue, l1 in red, r1 in magenta and a5 in green. On Figures 16, and 17, vertical
lines represent bifurcation values ci, i = 1..5 of the parameter m (they are different between the two
figures). According to the considered case, coefficients are represented only for values of m, for which
equilibria may exist. For instance, Routh coefficients for the equilibrium E1

22 are represented on Figure
16, bottom-left, only for c1 ≤ m ≤ c4. If equilibrium is stable, then all coefficients must be positive in
the corresponding interval of m.

Remark 5. Stability nature of equilibria E0
0, E

1
1 and E2

1 of the case 1 in Table 5, can be seen on Figure
10 as follows:

• λ1 < S 1in ⇒ µ1(λ1) < µ1(S 1in), that is to say D0 + D1 < µ1(S 1in) ⇒ E0
0 is unstable according to

theorem 6.1.1
• (S 1in, S 1∗) ∈ Z0 ⇒ E1

1 is unstable according to condition (6.2) of theorem 6.1.3 and, Figure 9.
• E2

1 does exist according to proposition 4.3 and, is unstable thanks to theorem 6.1.2.

Remark 6. Stability nature of the equilibrium E0
0 of the cases 2 and 3 in Table 5, can be analyzed as

follows:

• µ1(S 1in) < D0 + D1 as it is seen on Figure 11 and 12 for both cases.
• From parameters values in Tables 3 and 4 and, according to condition (6.1) of theorem 6.1 we

have:
µ2(S 2in) < D0 + D1 for the case 2, thus the equilibrium E0

0 is Stable.
µ2(S 2in) > D0 + D1 for the case 3, thus the equilibrium E0

0 is Unstable.

As can be seen on figures, if they exist:

• The first equilibrium E1
21 of F ∩ H1 and the first equilibrium E0

21 of F ∩ G are always stable.
Coefficients given by (6.6) of the first column of Routh table are always positive.
• The second equilibrium E1

22 of F ∩ H1 and the second equilibrium E0
22 of F ∩ G are always

unstable. Some coefficients given by (6.6) are (or become) negative (for instance a5 on Figure 16,
second sub-Fig from top, is always negative, or r1 in magenta on Figure 17, last sub-Fig, becomes
negative).
• both equilibria E2

21 and E2
22 of F ∩H2 are unstable. Some coefficients of (6.6) are always negative

(for instance r1 in magenta and a5 in green on Figure 15).

At this stage of discussion about stability nature of possible equilibria, we give a conjecture on
positive ones which are obtained for F ∩ Hi, i = 1, 2.

Conjecture 6.2. .

• Equilibria E2
2 j, j = 1, 2, resulting resulting from F ∩ H2 are unstable if they exist.

• The only stable equilibrium E1
21 resulting from F∩H1, is the one which corresponds to the smallest

value of S ∗1.
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Figure 15. The coefficients of the first column of the Routh Table 2 in the generic case 1: a1

( ), n1 ( ), l1 ( ), r1 ( ) and a5 ( ).
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Figure 16. The coefficients of the first column of the Routh Table 2 in the generic case 2,
(coordinates mci, i = 1..5 on the X-axis are the same for all the sub-figures): a1 ( ), n1 ( ),
l1 ( ), r1 ( ) and a5 ( )

Mathematical Biosciences and Engineering Volume 17, Issue 5, 5504–5533.



5525

First equilibrium E1
21 of F ∩ H1

Second equilibrium E1
22 of F ∩ H1

First equilibrium E2
21 of F ∩ H2

Second equilibrium E2
22 of F ∩ H2

First equilibrium E0
21 of F ∩G

Second equilibrium E0
22 of F ∩G

c1 c2 c3 c4 c50

0

0

0

0

m

m

m

m

m

0

0

0

0

0

m

m

m

m

m

0

0
0

0

0

m

m
m

m

m

0

0

0

0

0

m

m

m

m

m

0

0

0

0

0

m

m

m

m

m

0

0

0

0

0

m

m

m

m

m

Figure 17. The coefficients of the first column of the Routh Table 2 in the generic case 3,
(coordinates mci, i = 1..5 on the X-axis are the same for all the sub-figures): a1 ( ), n1 ( ),
l1 ( ), r1 ( ) and a5 ( ).
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7. Conclusion

The simple model AM2 is widely used in the literature to describe anaerobic digestion in two-step of
biological reactions. This model proved its ability to adequately predict dynamics of the main variables
of the anaerobic digestion and, it was used with efficiency for control and supervision purposes. It has
been shown in [16] that the AM2 model can have at most six steady states depending on its operating
parameters. Nevertheless, the AM2 model was not able to simulate some phenomena in many practical
biological experiments. There is why extended versions of the AM2 model were proposed in the
literature, by integrating some few new variables.

In this paper we investigated the effect of a new variable S (SMP: Soluble Microbial Product)
integration on steady states of a two-step anaerobic digestion model. Indeed, this model initially
proposed in [25] for control purposes, is an extension of the AM2 model for anaerobic membrane
bioreactors. We consider the dynamics of five variables: two bacteria populations (X1, X2) and three
substrates including the new variable (S 1, S 2, S ), where one microorganism X1 can growth on one
substrate S 1 to produce both the second and the third substrates S 2 and S and also on S to produce S 2,
while the second microorganism X2 can only growth on S 2 and, could be inhibited by an excess
quantity of this substrate. S is produced from degradation of S 1 and S 2 and, death of bacteria X1 and
X2. One important parameter which could considerably alter the system behavior is the maximum
growth rate m of the first bacteria population X1 on the new substrate S . Indeed, this biological
parameter is considered as a bifurcation parameter in addition to the conventional operating
parameters which are the dilution rate D and the inlet substrate concentrations S 1in and S 2in.

In this paper, the model equilibria and their stability were analyzed analytically and using
numerical simulations according to this bifurcation parameter m. We distinguished three generic cases
accordingly to the system parameters values (Tables 3 and 4), where the system can exhibit rich
qualitative behavior in terms of equilibria bifurcation and multistability. We have highlighted that in
the first generic case (Figure 10), the behavior of the extended model is exactly similar to the AM2
one (i.e., six equilibria with bistability). While in the second generic case (Figure 11), for a set of
parameters values, especially the maximum growth rate m of X1 on S (the new variable), the system
can have until nine equilibria where four of them are stable (multistability). In the third generic case
(Figure 12), we can have eight equilibria with trystability.

Our study shows how the behavior of a two-step model of anaerobic digestion can be altered by
the integration of the new variable in some generic cases and, how the model equilibria and their
stability would be sensible to the bifurcation parameter m. Our results would be useful for both
mathematicians and biologists communities and, could build the roots for dialogue between them as
noted in the introduction. If a mathematical model as the one used in this paper is fitted accurately
with experimental data of microorganisms and substrates, then biologists can use trustfully this model
to predict future main behaviors of their anaerobic digesters. Also, they can explain and understand
some observed phenomena using results of our analysis. For instance, depending on the value of the
parameter m of the growth kinetics of X1 on S , biologists can interpret why they find different
concentrations for bacteria and substrates at steady state, when doing the experiment starting from
different initial concentrations. This is exactly the multistability which is predicted by the model
when the value of the bifurcation parameter m varies. On the other hand, experimenters can act on the
operating parameters S 1in and S 2in and the bifurcation parameter m in order to force the behavior of
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the biological process towards a desired steady state.
In light of these results, our main perspective consists of establishing of a complete operating

diagram of the considered model with respect of operating parameters which are D, S 1in, S 2in and,
especially the maximum growth rate m of the first bacteria X1 on the new variable S . In other terms,
we wish to explore the different asymptotic behaviors of the system in 2 dimensional planes where
one of the plane coordinates is the maximum growth rate m. Such operating diagrams if well
established and discussed, can be really useful to interpret experimental results and, to help biologists
to best choose values of operating parameters for controlling their experiments.
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15. V. Alcaraz-González, J. P. Steyer, J. Harmand, A. Rapaport, V. González-Alvarez, C. Pelayo-Ortiz,
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A. Proofs

A.1. Proof of propositions 2.3

A.1.1. Positivity

We have the following solutions for equations (2.6) and (2.8):

X1(t) = X1(0)e
∫ t

0 [µ1(S 1(τ))+µ(S (τ))−D0−D1]dτ,

X2(t) = X2(0)e
∫ t

0 [µ2(S 2(τ))−D0−D1]dτ.

Thus, we have:

• X1(0) = 0⇒ X1(t) = 0 and X2(0) = 0⇒ X2(t) = 0,
• X1(0) > 0⇒ X1(t) > 0 and X2(0) > 0⇒ X2(t) > 0.

To prove the positivity of S 1, S 2 and S , we set these variables equal to zero in (2.5), (2.7) and (2.9)
respectively and, we verify if their derivatives are positives:

• Ṡ 1 = DS 1in > 0,
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• Ṡ 2 = DS 2in > 0,
• Ṡ = D0X1 + D0X2 > 0, if X1 > 0 and X2 > 0.

Notice that Ṡ 1, Ṡ 2 and Ṡ are positives. All vector fields at bounds are inside directed. Consequently,
the variables S 1, S 2 and S remain positives for positive initial conditions.

A.1.2. Boundedness

Let us define the quantity:
Σ = S 1 + S 2 + X1 + X2 + S .

The dynamic of Σ is written as follows:

Σ̇ = D(S 1in + S 2in) − D(S 1 + S 2) − D1(X1 + X2) − MS

−(k1 − 1 − b3 − k2)µ1(S 1)X1 − (k3 − 1 − b4)µ2(S 2)X2 − (b1 − 1 − b2)µ(S )X1.

We have three dilution rates: D,D1 and M which is a combination of D and D1. Let us set Dmin =

min(D,D1), which allows to write:

Σ̇ ≤ D(S 1in + S 2in) − DminΣ − (k1 − 1 − b3 − k2)µ1X1 − (k3 − 1 − b4)µ2X2 − (b1 − 1 − b2)µX1. (A.1)

By using inequalities (2.10), (2.11) and (2.12), we can write:

Σ̇ ≤ D(S 1in + S 2in) − DminΣ.

Since the solution of the equation Σ̇0 = D(S 1in + S 2in) − DminΣ0 is:

Σ0(t) =
D(S 1in + S 2in)

Dmin
+ Ce−Dmint, with C is constant,

then, we have Σ(t) ≤ Σ0(t), i.e.:

Σ(t) ≤
D(S 1in + S 2in)

Dmin
+ Ce−Dmint =⇒ lim

t→+∞
Σ(t) ≤

D(S 1in + S 2in)
Dmin

.

Consequently, the variables of system (2.5–2.9) remain bounded.

A.2. Proof of Lemma 3.1, 3.2 and 3.3

The equilibrium points are solutions of the nonlinear algebraic system obtained from (2.5–2.9) by
setting the right-hand sides equal to zero.

A.2.1. Proof of Lemma 3.1 (X∗1 = 0)

From (3.2), we can have a trivial solution X∗1 = 0, which if replaced in (3.1), then we obtain
S ∗1 = S 1in. From Eq (3.4), we can have two cases:

• A trivial solution X∗2 = 0: which if replaced in (3.3) and (3.5), then we have S ∗2 = S 2in and S ∗ = 0
respectively. This is the equilibrium E0

0.
• A nontrivial solution S ∗2 = µ−1

2 (D0 + D1) = S i∗
2 , i = 1, 2: which if replaced in (3.3) and (3.5), then

we deduce corresponding values of Xi∗
2 and S i∗ respectively. These are equilibria Ei

1, i = 1, 2.
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A.2.2. Proof of Lemma 3.2 (X∗1 > 0 and X∗2 = 0)

Let (S ∗1, X
∗
1, S

∗
2, X

∗
2, S

∗) a solution of system (3.1)–(3.5).
Since X∗1 > 0, from (3.2) we have µ1(S ∗1) + µ(S ∗) = D0 + D1, i.e.:

S ∗1 = µ−1
1 (D0 + D1 − µ(S ∗)) = F(S ∗).

From (3.1), we deduce:

X∗1 = D
S 1in − S ∗1
k1µ1(S ∗1)

,

which is positive and bounded if S ∗1 < S 1in. By replacing X∗2 = 0 and X∗1 in (3.3) we obtain:

S ∗2 = S 2in + [k2µ1(S ∗1) + b2µ(S ∗)]
S 1in − S ∗1
k1µ1(S ∗1)

.

Finally, if we replace X∗2, X∗1 and µ(S ∗) = D0 + D1 − µ1(S ∗1) in (3.5), then we have after simplification:

S ∗ = (S 1in − S ∗1)
(
B1 +

B2

µ1(S ∗1)

)
= G(S ∗1),

with:
B1 =

b3 + b1

k1B
, B2 =

D0 − b1(D0 + D1)
k1B

, B = β + (1 − β)
D1

D
.

Then S ∗1 and S ∗ are solutions of the system of Eqs (3.12).

A.2.3. Proof of Lemma 3.3 (X∗1 > 0 and X∗2 > 0)

Let (S ∗1, X
∗
1, S

∗
2, X

∗
2, S

∗) a solution of system (3.1)–(3.5).
Since X∗2 > 0, from (3.4) we have the nontrivial solution:

S ∗2 = µ−1
2 (D0 + D1) = S i∗

2 , i = 1, 2.

Since X∗1 > 0, from (3.2) we have:

S ∗1 = µ−1
1 (D0 + D1 − µ(S ∗)) = F(S ∗),

and thus, if 0 < S ∗1 < S 1in then, we deduce from (3.1):

X∗1 =
D[S 1in − S ∗1]

k1µ1(S ∗1)
.

By replacing X∗1 in (3.3), we obtain:

Xi∗
2 = βi +

D
k3(D0 + D1)

k2µ1(S ∗1) + b2µ(S ∗)
k1µ1(S ∗1)

(
S 1in − S ∗1

)
,

with : βi = D
k3(D0+D1)

(
S 2in − S i∗

2

)
, i = 1, 2

Finally, from (3.5) we have after simplification:

S ∗ = αi + (S 1in − S ∗1)
(
C1 −

C2

µ1(S ∗1)

)
= Hi(S ∗1), i = 1, 2,
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with:
αi =

A
B

(S 2in − S i∗
2 ), C1 = B1 +

A(k2 − b2)
k1β

, C2 = B2 −
Ab2

k1β
.

A =
b4(D0 + D1) + D0

k3(D0 + D1)
, B = β + (1 − β)

D1

D
.

Then S ∗1 and S ∗ are solutions of the system of Eqs (3.17).
The function Hi(S ∗1) can be written as:

Hi(S 1) = G(S 1) +
A
B

[
S 2in − S i∗

2 + (k2µ1(S 1) + b2µ(S ))
S 1in − S 1

k1µ1(S 1)

]
.

The condition for which Xi∗
2 > 0 is:

S 2in − S i∗
2 + (k2µ1(S ∗1) + b2µ(S ∗))

S 1in − S ∗1
k1µ1(S ∗1)

> 0,

which is equivalent to: Hi(S ∗1) > G(S ∗1), i = 1, 2. (condition of lemma 3.3).

A.3. Proof of Lemma 4.1

Using (2.13), we have C1 > B1 and C2 > B2 > 0, consequently: DH < DG < D0 + D1.
Using the fact that mu1 is increasing, we deduce that:

λH < λG < λ1 (A.2)

with: λ1 = µ−1
1 (D0 + D1), λG = µ−1

1 (DG) and λH = µ−1
1 (DH), where DG = B2/B1 and DH = C2/C1.

A.4. Proof of the proposition 4.2

The function G(S 1) given by (3.10) is positive between S 1in > S 1 > λG and, solutions of the system
(3.12) must satisfy S 1in > S ∗1, then S 1in > λG that is to say µ1(S 1in) > DG.

A.5. Proof of the proposition 4.3

Functions Hi(S 1), i = 1, 2 given by (3.15) are translations of the function H(S 1) with quantities αi

given by (3.7). The sign of this later indicates if the equilibrium Ei
2, i = 1, 2 does exist or not (see

Figure 4).

A.6. Proof of Theorem 6.1

The study of the local stability of trivial equilibria follows easily from the study of the Jacobian
matrix of system (2.5–2.9), which has a block-diagonal structure:

J =


A 0 0
C B 0
M1 M2 −M

 ,
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Hence, the eigenvalues of J are the eigenvalues of A, the eigenvalues of B and −M (which is always
negative).

For the X1 and X2 washout equilibrium E0
0 = [S 1in, 0, S 2in, 0, 0]:

one has:

A =

[
−D −k1µ1 (S 1in)
0 µ1 (S 1in) − D0 − D1

]
,

B =

[
−D −k3µ2 (S 2in)
0 µ2 (S 2in) − D0 − D1

]
.

Conditions of stability are: tr(A) < 0, tr(B) < 0, det(A) > 0 and det(B) > 0. Thus, E0
0 is stable if and

only if:
µ1(S 1in) < D0 + D1 and, µ2(S 2in) < D0 + D1

For the X1 washout equilibria Ei
1 = [S 1in, 0, S i∗

2 , X
i∗
2 , S

i∗], i = 1, 2:
one has:

A =

 −D −k1µ1 (S 1in)
0 µ1 (S 1in) + µ

(
S i∗

)
− D0 − D1

 ,
B =

 −D − k3µ
′
2

(
S i∗

2

)
Xi∗

2 −k3µ2

(
S i∗

2

)
µ′2

(
S i∗

2

)
Xi∗

2 0

 .
One can easily deduce that if E2

1 exists, then it is unstable because det(B) < 0, since µ′2
(
S 2∗

2

)
< 0.

On the other hand, stability of E1
1 depends on µ(S 1∗). Indeed, E1

1 is stable if and only if:

µ1 (S 1in) + µ
(
S 1∗

)
< D0 + D1.
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