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Abstract: We formulate a mathematical model to explore the transmission dynamics of human 

papillomavirus (HPV). In our model, infected individuals can recover with a limited immunity that 

results in a lower probability of being infected again. In practice, it is necessary to revaccinate 

individuals within a period after the first vaccination to ensure immunity to HPV infection. 

Accordingly, we include vaccination and revaccination in our model. The model exhibits backward 

bifurcation as a result of imperfect protection after recovery and because the basic reproduction 

number is less than one. We conduct sensitivity analysis to identify the factors that markedly affect 

HPV infection rates and propose an optimal control problem that minimizes vaccination and 

screening cost. The optimal controls are characterized according to Pontryagin’s maximum principle 

and numerically solved by the symplectic pseudospectral method. 
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1. Introduction 

Uterine cervical cancer is a worldwide health problem but it is especially concerning in 

developing countries. It is the first or second most common cancer in women [1]. It is estimated that 

the probability of a person being infected with human papillomavirus (HPV) in their lifetime 

reaches 70 to 80% [2], and the total infection rate in the global population is as high as 11.7% [3]. 

An estimated 233,000 deaths were attributed to HPV infection in the year 2000 [4]. There were 

approximately 500,000 cases and 275,000 deaths due to cervical cancer worldwide in 2002, 

equivalent to about a tenth of all deaths in women due to cancer [5]. The burden of cervical cancer is 

disproportionately high (> 80%) in the developing world [6]. 

HPV was discovered to be the causative agent of cervical cancer in the 1970s by the Zur Hausen 

group [7]. Usually, the infecting papillomavirus is eliminated from individuals; however, some 

individuals retain the virus. Persistent infection with oncogenic HPV is recognized as the major 

cause of uterine cervical cancer [8]. Cervical carcinogenesis is a complex stepwise process over a 

continuum of increasingly severe precancerous changes known collectively as cervical intraepithelial 

neoplasia (CIN) [9]. The spectrum of CIN is traditionally divided into three histopathological categories: 

CIN1, CIN2 and CIN3. In CIN1, cells with malignant changes are limited to the superficial layer of the 

cervical epithelium. Most CIN1 lesions are likely to disappear without treatment. However, a small 

percentage may progress to high-grade CINs (i.e., CIN2 and CIN3). The risk of progression to invasive 

cervical cancer increases significantly with worsening CIN grades [10–11]. 

Pap cytology screening for the early detection of cervical neoplasia has been successful in 

reducing cervical cancer incidence and mortality [12]. In unscreened populations, the risk of invasive 

cervical cancer occurs earlier than of most adult cancers, peaking or reaching a plateau between 

about 35 and 55 years of age [13]. This distribution is because cervical cancers originate mainly from 

HPV infections transmitted sexually in late adolescence and early adulthood [14]. HPV transmission 

can be reduced through the use of condoms [15]. Some studies have reported that smoking [16], 

multiparity [17], and long-term use of oral contraceptives [18] can double or triple the risk of 

precancer and cancer among women infected with carcinogenic types of HPV. There are two major 

kinds of anti-HPV vaccines approved for use to protect newly sexually active individuals against 

some of the most common HPV types and boost immunity, namely, therapeutic vaccines and 

prophylactic vaccines [7]. A few years after receiving a prophylactic vaccine, the individual must be 

revaccinated because the vaccine loses its preventive effect. Progress in the development of 

therapeutic vaccines for HPV has been slow [7]. In summary, there is currently no specific treatment 

for HPV infection [19]. There are three major treatments for cervical cancer: surgery (such as total 

hysterectomy and subtotal hysterectomy), radiotherapy, and chemotherapy. Among these, surgery 

and radiotherapy are the main treatment methods [19]. 

Mathematical modeling is a useful tool for assessing the potential impact of intervention 

strategies against HPV spread among humans [20−24]. A number of authors have reported the use of 

mathematical modeling to evaluate the impact of HPV vaccination. Al-arydah [20] developed a 

two-sex, age-structured model to describe a vaccination program for the administration of an HPV 

vaccine. Malik et al. [11] presented an age-structured mathematical model that incorporated sex 

structure and Pap screening cytology. Sharomi and Malik [21] developed a two-sex HPV vaccination 

model to study the effect of vaccine compliance on HPV infection and cervical cancer. Omame [22] 

developed a two-sex deterministic model for HPV that assessed the impact of treatment and 
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vaccination. Elbasha [23] presented a two-sex, deterministic model for assessing the potential impact 

of a prophylactic HPV vaccine with several properties. 

Based on the above research and understanding of HPV pathology, we develop an ordinary 

differential equation model with precautionary measures such as screening, which are rarely 

considered in previous studies, and analyze the potential effects of multiple factors on HPV 

transmission. The model is formulated in section 2. In section 3, the equilibria, basic reproduction 

number, and global stability are analyzed. We report the sensitivity analysis of the model through the 

partial rank correlation coefficient (PRCC) method and identify the key factors in the model in 

section 4. In section 5, we set the vaccination rate and screening rate as control variables and analyze 

an optimal control problem that minimizes vaccination and screening cost. Section 6 concludes the 

article. Through extensive numerical simulations with MATLAB, we obtained results to verify our 

conclusions. 

2. An HPV model with vaccination and screening 

The total individual population at time t is divided into 10 mutually exclusive subpopulations of 

susceptible individuals S(t), vaccinated individuals V(t), infectious individuals without disease 

symptoms E(t), infectious individuals with disease symptoms H(t), individuals with persistent HPV 

infection P(t), CIN1 symptomatic individuals I1(t), CIN2 symptomatic individuals I2(t), CIN3 

symptomatic individuals I3(t), cancer-infected individuals A(t) and recovered individuals R(t). As 

such, the total population is 

                     1 2 3N t V t S t E t H t P t I t I t I t A t R t          . 

Susceptible individuals acquire HPV infection, following effective contact with infected 

individuals (i.e., those in the E , H , P , 1I , 2I  and 3I  classes) at the rate 1  as follows 

 
  1 2 3 1 4 2 5 3

1

1n k c ac c c c E H P I I I
t

N

     


     
 .        (1) 

It follows that the model for the transmission of HPV is given by the following system of 

differential equations. 

 

Figure 1. Flow diagram of model (2). 
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(2a)        2 4 1

dV
S t S t d V t

dt
      , 

(2b)       1 2 4 1

dS
V t t d S t

dt
          , 

(2c)              1 3 1 2 2 1 1p q

dE
t S t t R t H t c c d E t

dt
            ,  

(2d)        2 3 2 2 2 3

dH
E t P t d H t

dt
           , 

(2e)        3 4 1 4 3 3 3

dP
H t I t d P t

dt
           ,          (2) 

(2f)        1

4 5 2 5 4 4 4 1

dI
P t I t d I t

dt
           , 

(2g)        2

5 1 6 3 5 5 5 6 2

dI
I t I t d I t

dt
           , 

(2h)      3

6 2 6 6 6 7 3

dI
I t d I t

dt
         , 

(2i)      7 3 7 1

dA
I t d d A t

dt
     , 

(2j) 
             

    

1 1 2 2 3 3 4 4 1 5 5 2 6 6 3 7

3 1        .

p q

dR
c c E t H t P t I t I t I t A t

dt

t d R t

            

 

      

 

 

Table 1. Description of variables in model (2). 

Variable Description 

 V t  Vaccinated individuals 

 S t  Susceptible individuals 

 E t  Infectious individuals with no symptoms 

 H t  Infectious individuals with symptoms 

 P t  Infectious individuals with persistent infection 

 1I t  Cervical intraepithelial neoplasia grade 1 (CIN1) 

 2I t  Cervical intraepithelial neoplasia grade 2 (CIN2) 

 3I t  Cervical intraepithelial neoplasia grade 3 (CIN3) 

 A t  Cancer-infected individuals 

 R t  Recovered individuals 

Tables 1 and 2 list the associated state variables and parameters of model (2). Figure 1 shows 

the flow diagram of the model. We emphasize that the vaccine mentioned in model (2) is a 

prophylactic vaccine. In the following section, model (2) is qualitatively analyzed to derive insights 

into its dynamical features. 
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Table 2. Description of the parameters in model (2). 

Parameter Description 

  Recruitment rate into the susceptible population (per year) 

d  Natural death rate (per year) 

1d  Disease-induced mortality for individuals (per year) 

1  Effective contact rate 

1  Vaccine failure rate (per year) 

2 , 4  Vaccination rate and revaccination rate (per year) 

3  
The modification parameter for the probability of R being infected 

relative to S  

pc  The effect of screening by HPV testing 

qc  Screening frequency (per year) 

nc  Rate at which females (males) acquire new sexual partners (per year) 

kc  
The probability of transmitting HPV from female (male) to male 

(female) 

cc  Condom efficacy 

ac  Condom compliance (per year) 

  The negative effects of contraceptive drugs 

  The negative effects of smoking 

2 , 3 , 4 , 5 , 6 , 7  
Progression rate of infectious individuals from E  to H , H  to P , 

P  to 1I , 1I  to 2I , 2I  to 3I , 3I  to A  (per year) 

1 , 2 , 3 , 4 , 5 , 6  
Recovery rates of infectious individuals from E  to R , H  to E , 

P  to H , 1I  to P , 2I  to 1I , 3I  to 2I  (per year) 

1 , 2 , 3 , 4 , 5 , 6 ,

7  
Effect of drugs on infectious individuals’ recovery 

1 , 2 , 3 , 4 , 5  

Modification parameter that accounts for the infectiousness of 

individuals in the H , P , 1I , 2I , 3I  classes relative to those in the 

E  class for females (males) 

3. Analysis of the model 

3.1. Basic properties 

3.1.1. Positivity and boundedness of solutions 

Model (2) is epidemiologically and mathematically well-posed in the epidemiologically valid 

domain 
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 



10

1 2 3

1 2 3

, , , , , , , , ,

                          0, 0, 0, 0, 0, 0, 0, 0, 0, 0 .

D V S E H P I I I A R R

V S E H P I I I A R

 

         
 

Theorem 3.1 Assuming that the initial condition lies in domain D , then the solutions 

 1 2 3, , , , , , , , ,V S E H P I I I A R  of model (2) remain in D for all time 0t  . Furthermore 

 limsup
t

N t
d


 , with 1 2 3N V S E H P I I I A R          . 

Proof. We note that along the edges of D, the time derivatives all lead the solution into the invariant 

domain [25] 

0 0V V     (2a), 

0 0S S     (2b), 

0 0E E    (2c), 

0 0H H     (2d), 

0 0P P    (2e), 

1 10 0I I     (2f), 

2 20 0I I     (2g), 

3 30 0I I     (2h), 

0 0A A    (2i), 

0 0R R    (2j). 

Furthermore, adding all the equations in the differential equation system of model (2) gives 

1 2 3 1

dN
dV dS dE dH dP dI dI dI dA dR d A

dt
             .   (3) 

It follows from Eq (3) that 

 1

dN
d d N dN

dt
       . 

Therefore 

   
1

liminf limsup
t t

N t N t
d d d 

 
  


, 

and 

 limsup
t

N t
d


 , 

as required. 

3.1.2. Invariant regions 

Model (2) is analyzed in a biologically-feasible region as follows [26]. We first show that model (2) 
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is dissipative (i.e., all feasible solutions are uniformly bounded in a proper subset 10R ). 

Consider the region 

  10

1 2 3

1 2 3

, , , , , , , , , :

                          .

V S E H P I I I A R R

V S E H P I I I A R
d

  


          



 

The following steps establish the positive invariance of   (i.e., solutions in   remain in   

0t  ). It follows from Eq (3) that 

dN
dN

dt
   . 

A standard comparison theorem can then be used to show that 

     0 1dt dtN t N e e
d

 
   . 

In particular 

 N t
d


  if  0N

d


 . 

Thus, the region   is positively invariant. Hence, it is sufficient to consider the dynamics of 

the flow generated by model (2) in  . In this region, the model can be considered as being 

epidemiologically and mathematically well-posed [27]. Thus, every solution of model (2) with initial 

conditions in   remains in   for all 0t  . Therefore, the  -limit sets of model (2) are 

contained in  . This result is summarized below. 

Lemma 3.1 The region   is positively invariant for model (2) with initial conditions in 10R . 

3.2. Local stability of the disease-free equilibrium (DFE) 

Model (2) has a DFE, which is obtained by setting the right-hand sides of the equations in the 

model to zero, given by 

 

 

   

0 0 0 0 0 0 0 0 0 0

0 1 2 3

2 4 1

1 2 1 2 4 1 2 1 2 4

, , , , , , , , ,

      , ,0,0,0,0,0,0,0,0

V S E H P I I I A R

a

a a a a



 

     



   
       

.         (4) 

Let  1 2 3, , , , , , , , ,
T

V S E H P I I I A R  . Using the notation from [28], the model consists of 

nonnegative initial conditions together with the following system of equations: 

   
dX

X X
dt

   , 

where 
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   

 
 

 

 

 

 

3 1 2 2 1 1

1

2 3 2 2 2 3

3 4 1 4 3 3 3

4 5 2 5 4 4 4 1

5 1 6 3 5 5 5 6 2

6 2 6 6 6 7 3

7 3 7

0

0

0

0
,  

0

0

0

0

0

p qR H c c d E
S

E P d H

H I d P

P I d I

I I d I

X X I d I

I

     


     

     

     

     

    

 

    
 

      
       
 

      
       
 

         
 

   
 
 
 
 
 
 

 

 

 

 

1

1 2 4 1

1 1 2 2 3 3 4 4 1 5 5 2 6 6 3 7

3 1

2 4 1

,

        

p q

d d A

V d S

c c E H P I I I A

d R

S S d V

   

            

 

  

 
 
 
 
 
 
 
 
 
 

 
      
 
       
 

  
     

 

and it follows that 

 
0

0 0

F
D X

 
   

 
,  

3 4

0V
D X

J J

 
   

 
. 

The matrices F  and V  for the new infection terms and the remaining transfer terms are 

respectively given by 

1 2 5 4 3

10

1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

F a

     
 
 
 

  
 
 
 
 

, 

3 2

2 4 3

3 5 4

8 6

6 7 5

4 5 6

0 0 0 0

0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0

a

a

a
V

a

a

a



 

 



 

 



 
 
 
 
  

  
 

  
 

   

, 

7

1 1 2 2 3 3 6 6 5 5 4 4

3

10 10 1 10 2 10 5 10 4 10 3

0 0 0 0 0

0 0 0 0 0 0

p qc c
J

a a a a a a



           

    

 
 
     
 
 
 
 

, 

9

7

4

2 1

2 4 1

0 0 0

0 0

0 0

0 0

a

d
J

a

a





 

 
 

 
 
 

  

, 

where 

1 1a d   , 2 2 4a d    , 3 2 1 1p qa c c d     , 

4 2 2 2 3a d       , 5 4 3 3 3a d       , 6 5 4 4 4a d       , 

7 5 5 5 6a d       , 8 6 6 6 7a d       , 9 7 1a d d   , 

1

10

1 2 3

Ma
a

a  


 
,  1n k c aM c c c c  . 

We obtain 

 
  

1 1 1

0

3 6 2 5 1 2 4

a MM
R FV

a D D a


  



 
  

,               (5) 

where 
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1 6 1 5 2 4 3 3 4 2 5M D D D D D         , 
7

1

9

D
a


 , 

8

2

6

a
D


 , 

7 2 6

3

5

0
a D

D





  , 

6 3 5 2

4

4

0
a D D

D





  , 

5 4 4 3

5

3

0
a D D

D





  , 

4 5 3 4

6

2

0
a D D

D





  . 

Consequently, it follows from Theorem 2 of [28]. 

Lemma 3.2 The DFE of model (2), given by (4), is locally asymptotically stable (LAS) when R0 < 1 

and unstable if R0 > 1. 

3.3. Backward bifurcation 

The epidemiological significance of forward bifurcation is that the disease will eventually 

disappear if the basic reproduction number is less than one. The public health significance of 

backward bifurcation is that the classical requirement of R0 < 1 although necessary is no longer 

sufficient for effective disease control. Therefore, the presence of backward bifurcation in HPV 

transmission dynamics makes its effective control more difficult. 

3.3.1. Existence of backward bifurcation 

First, the possible equilibrium solutions that model (2) can have are determined as follows. Let 

 1 * * * * * 1* 2* 3* * *, , , , , , , , ,V S E H P I I I A R  , 

be any arbitrary equilibrium of model (2). Further, let 

  * 1 * 2 * 3 1* 4 2* 5 3*

1*

*

1n k c ac c c c E H P I I I

N

     


     
 ,      (6) 

be the associated force of infection at a steady state. 

Setting the right-hand sides of model (2) to zero (steady state) gives 

* 1 3*A D I , 2* 2 3*I D I , 1* 3 3*I D I , * 4 3*P D I , * 5 3*H D I , * 6 3*E D I , 

7

* 3*

3 1*

D
R I

d  



, 3 6 3 7 2 5

* 3*

1* 3 1* 1*

a D D D
S I

d

 

   

 
   

 
,                              (7) 

3 6 3 7 2 52 4

* 3*

1 1* 3 1* 1*

a D D D
V I

a d

  

   

 
   

 
, 

where 

7 1 1 6 2 2 5 3 3 4 4 4 3 5 5 2 6 6 7 1p qD c c D D D D D D                   . 

Substituting (7) into the expressions for 1*  in (6) gives 
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 6 1 5 2 4 3 4 2 5 3*

1*

3 6 3 7 2 5 72 4

3* 8 3* 3*

1* 3 1* 1* 1 3 1

3

*

1

M D D D D D I

a D D D D
I D I I

d a d

   


   

 



   

   

  

      
  





,     (8) 

so 

2

1* 1* 0a b c    ,                             (9) 

where 

8 3 1a D a , 

     3 0 3 6 2 5 1 2 4 7 1 8 1 7 3 1 2 41b R a D D a D a D a d D a                , 

   0 3 6 2 5 1 2 41c d R a D D a       , 

and 

8 6 5 4 3 2 1+ 1D D D D D D D      . 

Quadratic Eq (9) can be analyzed for the possibility of multiple endemic equilibria. It is worth 

noting that the coefficient a  is always positive, and c  is positive (negative) if 0R  is less than 

(greater than) one. Hence, the following result is established. 

Theorem 3.2 Model (2) (details in Appendix A (Table A1)) has the following. 

i. A unique endemic equilibrium if 
00 1c R   ; 

ii. A unique endemic equilibrium if 0b  , and 0c   or 
2 4 0b ac  ; 

iii. Two endemic equilibria if 0c  , 0b   and 
2 4 0b ac  ; 

iv. No endemic equilibrium otherwise. 

Case (iii) of Theorem 3.2 indicates the possibility of backward bifurcation in model (2) when

0 1R  . To check for this, by setting 

  

2

1

3 6 2 5 1 2 4

1
b

R
d a D D a  

 
  

, 

it can be shown that backward bifurcation occurs for values of 1 0 1R R  . This phenomenon is 

illustrated by simulating model (2). The parameter values are presented in Table 3. Let 

 0.35,0.5M  . It should be mentioned that the aforementioned parameter values may not all be 

epidemiologically realistic. 

 

Figure 2. Backward bifurcation diagram of model (2). 
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Table 3. Parameter values used in Figure 2 ( A: Assumed). 

Parameter Value Source Parameter Value Source Parameter Value Source 

  288802  [22] 3  0.005  [11] 1  1.5  A 

d  0.0162  [22] 4  0.1  [11] 2  1.5  A 

1d  0.01  [11] 5  0.02  [11] 3  1.2  A 

1  0.1  [11] 6  0.04  [11] 4  1.1 A 

2  0.87  [22] 7  0.08  [11] 5  1.05  A 

3  0.3  [22] 1  0.99  [11] 6  1.03  A 

4  0.27  A 2  9 4e  [22] 7  1.01 A 

pc  0.9  A 3  0.5  [22] 4  0.6  A 

qc  0.4  A 4  1.9 7e  A 5  0.5  A 

5  1.9 7e  A 1  1 A 2  0.8  [22] 

2  0.5  [22] 6  1.9 7e  A 3  0.7  A 

The associated backward bifurcation diagram, depicted in Figure 2, shows that the model has a 

DFE (corresponding to Figure 3) and two endemic equilibria: One of the endemic equilibria is LAS 

(corresponding to Figure 4a); the other is unstable (a saddle); and the disease-free equilibrium is LAS. 

This clearly shows the coexistence of two stable equilibria when 0 1R  , confirming that the model 

exhibits backward bifurcation for 1 0 1R R  . This result is summarized below for model (2) (a 

more rigorous proof of the backward bifurcation phenomenon of the model, using the center 

manifold theory is given in Appendix B). 

 

Figure 3. Variation in population with 0 0.6659R   and 1 0.9976R  . 
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Figure 4. Variation in population with (a) 0 0.9988R  , 1 0.8144R  ; (b) 0 2.2196R  . 

Theorem 3.3 Model (2) exhibits backward bifurcation when Case (iii) of Theorem 3.2 holds and 

1 0 1R R  . 

3.3.2. Effect of perfect protection after recovery on backward bifurcation 

Consider model (2) with perfect protection after recovery (that is, 3 0  ). In such a case, the 

basic reproduction number is 
30 0 0R R  

  . It follows from Eq (9) that if 3 0  , the coefficients 

0a   and 0b  , so quadratic Eq (9) reduces to a linear equation in 1*  (with 1* /c b   ). In 

this case, model (2) has a unique endemic equilibrium if 0c   (i.e., 0 1R   ), ruling out backward 

bifurcation in the model for this case (the presence of two endemic equilibria when 0 1R    is 

necessary for the existence of backward bifurcation). Furthermore, it follows that 0c   when 

0 1R   . Thus, in such a case (with 0a c  ), quadratic Eq (9) has only the trivial solution 1* 0   

(which corresponds to the DFE 0 ). This result is summarized below. 

Lemma 3.3 Consider the case where the protection after recovery is perfect ( 3 0  ). Model (2) has 

a unique endemic equilibrium whenever 0 1R    and no endemic equilibrium otherwise. 

3.4. Global stability of the DFE 

Theorem 3.4 In the first quadrant, there is no limit cycle in model (2). 

Proof We consider the Dulac function as  
1

,B S E
SE

 . Let 

1 2 3 1 4 2 5 3Q E H P I I I          . 

Hence Q E  and N R . Therefore, 

2
0

MQ MQR

N N
  , 

2 2
0

EM MQ

E N E N
  . 

Then, 
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                   1 2 3

1 2 3

31 1 2

2 2 2 2 2 2 2 2 2

5 5 6 7 8 9 34

   

 

BV BS BE BH BP BI BI BI BA BR

V S E H P I I I A R

Ra V HMQ EM MQ MQ EM MQ MQ

SE S E EN E N EN E N S E N EN E N SE

a a a a a aa d MQ M

SE SE SE SE SE SE SE SE SE N

 



         
          

         

     
             

   

         
2

0.

QR

N

 
 
 

  
Therefore, by the Dulac−Bendixson theorem [29], there is no periodic orbit for model (2). Moreover, 

0  is the unique positive equilibrium point in 10R
 if 3 0  , and it is also locally asymptotically 

stable for 0 1R  . Hence, every positive solution actually approaches 0 . Thus, 0  is globally 

asymptotically stable if 3 0   and 0 1R  . 

4. Efficacy of interventions and sensitivity analysis 

In this section, we performed a numerical simulation to enhance the understanding of model (2). 

4.1. Efficacy of interventions 

To examine the possible impact of interventions on disease infections we plot the number of 

infected individuals ( E ) with various vaccination rates and revaccination rates. 

 

Figure 5. Variation in population E  with different parameters (a) 2 ; (b) 2 4  . 

This analysis shows that an increasing vaccination rate persistently decreases the peak value, 

as shown in Figure 5. Increasing the vaccination rate 
2  by 1.75 times (increase from 0.4 to 0.7) 

or 1.43 times (increased from 0.7 to 1) will lead to a reduction in the peak value in the number of 

E  by 20.21% or by 15.67%, respectively. In addition, the peak value of the number of people 

infected with 
2 1   decreased by 43.82% compared with the number of people infected with 

2 0  . 

On the premise that the vaccine’s protective effect will end after a few years, we consider the 

situation of vaccination and revaccination. Figure 5b indicates that increasing 2  and 4  from 0 to 0.4 

will lead to a reduction in the peak value in the number of E  by 34.16%. In addition, the peak 

value of the number of people infected with 2 4 0.7    decreased by 100% compared with the 
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number of people infected with 2 4 0   . 

4.2. Sensitivity analysis of 0R  to parameters 

To identify the factors associated with a certain intervention that markedly affect the rate of new 

infections, we performed sensitivity analysis of the basic reproduction number. 

LHS belongs to the MC class of sampling methods; it was introduced by Mckay et al. [30]. LHS 

allows an unbiased estimate of the average model output and has the advantage that it requires fewer 

samples than simple random sampling to achieve the same accuracy. For nonlinear but monotonic 

relationships between outputs and inputs, measures that work well are based on rank transforms such 

as the partial rank correlation coefficient, and standardized rank regression coefficient. 

Model (2) has 39 parameters. To identify the key factors, following [30], we performed a Latin 

hypercube sampling on the parameters that appear in 0R  and calculated the PRCC. The parameters 

of the model were set as input variables, and 0R  was the output variable. Generally, in PRCC 

analysis, the parameters with large PRCC values and corresponding small p  values are deemed to 

be the most influential parameters in the model. 

 

Figure 6. Significance test of model parameters and PRCC results for 0R . 

Detailed inspection of Table C1 (Appendix C) and Figure 6 indicates that in terms of reducing 

the value of 0R , except 3  (control the disease and reduce the number of persistent infections) and 

d , the vaccination rate 2  is the most sensitive parameter with a leading PRCC value, followed by 

2 , 3 , 2 , 4 . This implies that enhancing the vaccination rate is the most effective intervention 

for lowering HPV new infections. Moreover, in the treatment of patients in stages H , P , 1I , 2I  

and 3I , the effect of treatments 2 , 3 , 4 , 5  and 6  on 0R  decreases successively. That is, 

the same treatment intervention is more effective in the earlier stages. This means that more attention 

should be paid to patients in the early stages of infection. As asymptomatic patients are unable to 

diagnose themselves, regular screening for HPV should be strengthened. Smoking, overuse of 

contraceptive drugs, and unsafe sexual life will increase the value of 
0R , thus promoting the spread 

of HPV. 
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5. Optimal control in an extended model 

In this section, an optimal control model for the transmission dynamics of HPV is formulated by 

extending model (2) to include control functions. Our goal here is to study the optimal control 

strategies to curtail the epidemic and minimize cost. 

5.1. An extended HPV model 

The optimal vaccination and screening strategy can be formulated as the following optimal 

control problem (P) with inequality constraints and free terminal states defined over the prescribed 

interval 0, ft    [31]: 

 2 2 2 2 2 2 2 2

1 2 3 4 1 5 2 6 3 1 1 2 2
0

min
ft

J C E C H C P C I C I C I B u B u dt        , 

. .s t  

   1 4 1V u t S S d V      , 

  1 1 4 1S V u t d S          , 

  1 3 1 2 2 2 1 1pE S R H c u t d E             , 

 2 3 2 2 2 3H E P d H            , 

 3 4 1 4 3 3 3P H I d P            , 

 1 4 5 2 5 4 4 4 1I P I d I            ,                                            (10) 

 2 5 1 6 3 5 5 5 6 2I I I d I            , 

 3 6 2 6 6 6 7 3I I d I          , 

 7 3 7 1A I d d A      , 

   2 1 1 2 2 3 3 4 4 1 5 5 2 6 6 3 7 3 1pR c u t E H P I I I A d R                        , 

 0 sV V ,  0 sS S ,  0 sE E ,  0 sH H ,  0 sP P ,  1 10 sI I ,  2 20 sI I ,  3 30 sI I , 

 0 sA A ,  0 sR R , 

 1 1max0 u t u  ,  2 2 max0 u t u  , 

where ft R  is the fixed terminal time, the coefficients 
1C , 

2C , 
3C , 

4C , 
5C , 

6C , 
1B  and 

2B  represent the corresponding weight constants, and these weights are balancing cost factors 

related to the size and importance of the parts of the objective function. The control function  1u t  

is the fraction of the population of susceptible individuals who enters the vaccination compartment. 

The control function  2u t  is the fraction of the population of infectious individuals with no 

symptoms who undergo HPV screening, and they are Lebesgue integrable. 

5.2. Characterization of optimal control 

The inequality constraints in problem (P) can be transformed into equality ones with the help of 
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some non-negative parametric parameters, that is,  1,2,3,4i i  , as 

1 1

1 1max 2

2 3

2 2 max 4

0,

0,

0,

0.

u

u u

u

u u









  


  

  
   

                             (11) 

Hence, the Hamiltonian function for problem (P) is obtained as follows: 

   

   

 
1 2

2 2 2 2 2 2 2 2

1 2 3 4 1 5 2 6 3 1 1 2 2

1 4 1 1 1 4 1

1 3 1 2 2 2 1 1 2 3 2 2 2 3

4 5 2 5 4 4 4 1 5 1 6 3

V S

E p H

I I

H C E C H C P C I C I C I B u B u

u S S d V V u d S

S R H c u d E E P d H

P I d I I I

      

              

          

        

                

               

            

   

 

       

3

5 5 5 6 2

6 2 6 6 6 7 3 7 3 7 1

2 1 1 2 2 3 3 4 4 1 5 5 2 6 6 3 7 3 1

1 1 1 2 1 1max 2 3 2 3 4 2 2 max 4 ,

I A

R p

d I

I d I I d d A

c u E H P I I I A d R

u u u u u u

  

        

               

       

    

              

          

           

     (12) 

where 
1 2 3

, , , , , , , , ,
T

V S E H P I I I A R               are adjoint variables, and  1 2 3 4, , ,
T

      

are non-negative penalty multipliers [32]. 

Theorem 5.1 There exists an optimal control     * *

1 2,u t u t  and corresponding solution V , S , 

E , H , P , 1I , 2I , 3I , A , and R  that minimize     1 2,J u t u t  over  . Furthermore, 

there exist adjoint functions V , S , E , H , P , 
1I

 , 
2I , 

3I , A  and R , such that 

1 1 3 1 31

1 1V S E V R

S R RS
a

N N N

    
     

 
       

 
, 

 1 1 3 1 31

1 4 1 1 1 4S S E R V

S R RS
d u u

N N N

    
        

  
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,                                   (13) 

with transversality conditions 

        0V f S f A f R ft t t t       L .                (14) 

The following characterization holds 

 
 

 
 

*

1 1max

1

1 1*

2 2 max

2

max 0,min , ,
2

max 0,min , .
2

S V

p E R

S
u t u

B

Ec
u t u

B

 

   

    
   

    


     
   

    

               (15) 

Proof. The existence of an optimal control can be obtained owing to the convexity of the integrand 

of     1 2,J u t u t  with respect to     1 2,u t u t  [33], a priori boundedness of the state solutions, 

and the Lipschitz property of the state system with respect to the state variables. 

By Pontryagin’s maximum principle [34], the optimal conditions with respect to the state, 

costate, and parametric variables result in a two-point boundary value problem coupled with a 

nonlinear complementarity problem as follows: 

V

H

V
 
  


, 

S

H

S
 
  


, L , 

A

H

A
 
  


, 

R

H

R
 
  


,     (16) 

and 

        0V f S f A f R ft t t t       L , 

evaluated at the optimal control and corresponding states results in the stated adjoint system (13) 

with transversality (14). 

The optimality conditions with respect to the control variables are 
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1

0
H

u





, 

2

0
H

u





.                         (17) 

By solving Eq (17), the optimal control can be expressed as 

 
  1 2*

1

12

S VS
u t

B

     
 . 

To determine an explicit expression of the optimal control without 1 , we consider the 

following three cases: 

i. On the set  *

1 1max0t u u  , we have 1 2 0   . Hence,  
 *

1

12

S VS
u t

B

 
 . 

ii. On the set  *

1 1maxt u u , we have 2 0  . Hence,  
  1*
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iii. On the set  *

1 0t u  , we have 1 0  . Hence,  
  2*

1

1

0
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  . As 2 0  , it is 

determined that 
 

1

0
2

S VS

B

 
 . 

Combining the above three cases, the optimal control 
*

1u  is characterized as 

 
 *

1 1max

1

max 0,min ,
2

S VS
u t u

B

    
   

   
.              (18) 

Using similar arguments, we can characterize the optimal control 
*

2u  as 

 
 1 1*

2 2 max

2

max 0,min ,
2

p E REc
u t u

B

       
   

    

.           (19) 

5.3. Numerical simulations 

An analytical expression of the optimal vaccination rate and screening rate was derived in Eq (15). 

However, an effective algorithm is still required to solve the nonlinear constrained optimal control 

problem numerically. Based on the generating function method, Peng et al. developed a series of 

symplectic methods for nonlinear optimal control problems [35−38]. Such symplectic methods have 

good precision and efficiency because of the structure-preserved property. Recently, Wang et al. 

improved the symplectic methods by incorporating the local pseudospectral discretization 

scheme [39−42]. Such symplectic pseudospectral methods (SPMs) have been successfully applied to 

solve optimal control problems in various mechanical systems [43−44]. In this paper, the SPM 

developed in [45] was adopted. 

In the following simulation, the weights in the objective function (meaning the minimization of 
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the number of patients at each stage has different importance) are 1 4.5 2C e  , 2 1 7C e  , 

3 1 4C e  , 4 1 5C e  , 5 2 4C e  , and 6 1 4C e  . Let 1M  . The initial values for the states 

and other parameters are listed in Table 4. Unless otherwise stated, the parameters used in each case 

were as listed in Table 3. 

Table 4. Parameter values used in Figure 7. 

Parameter Value Parameter Value 

sV  3.2607 6e  2sI  4.15 4e  

sS  3.2212 5e  3sI  1.68 4e  

sE  4.2204 4e  sA  1.29 3e  

sH  1.1162 7e  sR  6.3 3e  

sP  4 4e  ft  50  

1sI  1.15 5e  1maxu  1 

2 maxu  2    

 

 

 

 

Figure 7. Simulations of model (2). Dashed lines: Populations with optimal control. Solid 

lines: Populations without control. Parameter values are 1 8.3 8B e  and 2 4 8B e . 
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The controlled solutions together with the solutions for the uncontrolled case are presented in 

Figure 7. It can be seen that the control strategy is effective. Vaccinated individuals increase steadily 

and reach almost 400% at the terminal end. Susceptible individuals keep increasing and then stabilize 

during the whole period. The number of infected individuals decreases significantly when optimal 

control strategies are used compared to the number in the absence of control strategies. 

 

Figure 8. The different strategies of  1u t  and  2u t  are plotted for 
1 4 9B e  and 

2 3 9B e . Other parameter values are the same as those in Figure 7. 

We considered another set of weights, the simulation results are shown in Figure 8. A higher 

focus on the control strategies leads to a drop in the importance of the vaccination and screening 

strategies. As the number of asymptomatic individuals depends on the immunity of the susceptible 

individuals and the protection of the susceptible population, we should consider strengthening their 

immunity or implement regular cost-effective screening to control HPV transmission. 

6. Conclusions 

The human papillomavirus is among the most common sexually transmitted infections. 

Following infection, cervical carcinogenesis is a complex stepwise process characterized by slow 

progression. According to the known pathology, we represented the CIN stages with three 

corresponding components in the model. Our model accounted for the fact that preventive vaccines 

become ineffective over time. We derived three types of equilibria and their conditions of existence, 

analyzed the stability of the equilibria, and characterized the threshold condition as backward 

bifurcation for the stable fixed points. We also obtained the conditions for the elimination of the 

disease. We found that the possibility of HPV transmission to lead to endemic disease can be reduced 

by strengthening the protection after cure. We then simulated and compared practical mitigation 

strategies and performed sensitivity analysis to illustrate the key factors for the threshold condition. 

The results show that increasing the vaccination rate is the most effective way to reduce the basic 

reproduction number. The effect of optimal control was illustrated numerically, and a comparison of 

HPV infection was presented under different control strategies. 
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Appendix A 

Table A1. A detailed explanation of Theorem 3.2. 

a  c  b  Results 

0a   

0c   

0b   Two negative points 

0b   No equilibrium points 

0b   Two endemic equilibria if 
2 4 0b ac   

0c   

0b   A negative point and a DFE 

0b   Two DFE 

0b   A DFE and an EEP (or 
2 4 0b ac  ) 

0c   

0b   A negative point and an EEP 

0b   A negative point and an EEP 

0b   A negative point and an EEP 
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Appendix B 

Here, we explore the existence of backward bifurcation using the center manifold theory [46−47]. 

To apply this theory, it is necessary to carry out the following change of variables. 

Let 1E x , 2H x , 3P x , 3 4I x , 2 5I x , 1 6I x , 7A x , 8R x , 9S x , 

10V x , so that 

10

1

i

i

N x


 . 

Further, using the vector notation 

 1 1 2 3 4 5 6 7 8 9 10, , , , , , , , ,
T

X x x x x x x x x x x . 

Model (2) can be rewritten in the form 

 1

1 2 3 4 5 6 7 8 9 10, , , ,
TdX

F f f f f f f f f f f
dt

  ， ， ， ， ， , 

as follows: 

             

       

       

     

     

   

1

1 9 3 1 7 2 3 2 1 1 1

2

2 1 3 3 2 2 2 3 2

3

3 2 4 6 4 3 3 3 3

4

6 5 6 6 6 7 4

5

5 6 6 4 5 5 5 6 5

6

4 3 5 5 5 4 4

,

,

,

,

,

p q

dx
t x t t x t x t c c d x t

dt

dx
x t x t d x t

dt

dx
x t x t d x t

dt

dx
x t d x t

dt

dx
x x t d x t

dt

dx
x t x t

dt

      

     

     

    

     

    

     

     

     

    

     

       

     

             

    

      

       

4 6

7

7 4 7 1 7

8

1 1 1 2 2 2 3 3 3 4 4 5 5 5 5 6 6 4 7 7

3 1 8

9

1 10 2 4 1 9

10

2 9 4 9 1 10

,

,

        ,

,

,

p q

d x t

dx
x t d d x t

dt

dx
c c x t x t x t x t x t x t x t

dt

t d x t

dx
x t t d x t

dt

dx
x t x t d x t

dt



 

            

 

   

  
















 


    


       

  



      

   






   (B.1) 

with 

 
  1 1 2 2 3 3 6 4 5 5 4

1

1
n k c a

c c c c x x x x x x
t

N

     


     
 . 

Consider the case when 
0
=1R . Suppose, further, that 

2
  is chosen as a bifurcation parameter. 
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Solving for 
2 2

 
*
 from 

0
R  gives 

 
1 1

2 1 4

3 6 2 5

a MM
a

a D D
 


  


*

. 

The Jacobian of model (B.1) evaluated at the DFE is given as 

  11 12

0

21 22

J J
J

J J


 
  
 

, 

where 

10 3 10 1 2 10 2 10 5 10 4 10 3

2 4 3

3 5 4

11

8 6

6 7 5

4 5 6

0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0

a a a a a a a

a

a
J

a

a

a

     

 

 



 

 

  
 


 
 

  
 

 
 

  

,  12 6 4
0J


 , 

7

1 1 2 2 3 3 6 6 5 5 4 4

21

10 10 1 10 4 10 3 10 2

0 0 0 0 0

0

0 0 0 0 0 0

p qc c
J

a a a a a



           

   

 
 
 
     
 
 

, 

9

7

22

2 1

2 4 1

0 0 0

0 0

0 0

0 0

a

d
J

a

a





 

 
 


 
 
 

  

. 

It is easy to verify that the transformed model (B.1), with 
2 2

 
*

, has a hyperbolic 

equilibrium point (i.e., the linearized system has a simple eigenvalue with zero real part, and all other 

eigenvalues have negative real parts). Hence, the center manifold theory can be used to analyse the 

dynamics of model (B.1) near 
2 2

 
*
. 

It can be shown that the Jacobian of model (B.1) at 
2 2

 
*

 has a right eigenvector 

(associated with the zero eigenvalue) given by  1 2 3 4 5 6 7 8 9 10, , , , , , , , ,
T

w w w w w w w w w w w , where 

4 5 3 4
1 4 6 4

2

0
a D D

w w D w





   , 

5 4 4 3
2 4 5 4

3

0
a D D

w w D w





   , 

6 3 5 2
3 4 4 4

4

0
a D D

w w D w





   , 4 4 0w w  , 

8
5 4 2 4

6

0
a

w w D w


   , 
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7 2 6
6 4 3 4

5

0
a D

w w D w





   , 

7
7 4 1 4

9

0w w D w
a


   , 

1 1 6 2 2 5 3 3 4 6 6 5 5 2 4 4 3 7 1

8 4 0
p qc c D D D D D D

w w
d

                 
  , 

1

9 10 1 2 4 3 4

2 4

a
w w G G w G w

 
  


, 

2 5 3 6

10 4 2 4

2 1 1

D a D
w w G w

a G






 


. 

The components of the left eigenvector of 
0

2 2

J


  *

,  1 2 3 4 5 6 7 8 9 10, , , , , , , , ,v v v v v v v v v v v , satisfying 

1v w   are 

1 0v  , 
3

2 1

2

a
v v


 , 

3 4 2 2

3 1

2 3

0
a a

v v
 

 


  , 

6

4 5

8

v v
a


 , 

3 4 5 6 5 6 2 2 3 6 3 3 3 4 4 4 4 4 2 2

5

2 3 4 5

0
a a a a a a a a a a

v
         

   

   
  , 

3 4 5 5 2 2 3 3 3

6

2 3 4

0
a a a a a

v
   

  

 
  , 7 8 0v v  , 9 1v v , 

1

10 1

1

v v
a


 . 

It follows from [26]: 

 
210

, , 1

0,0k

k i j

k i j i j

f
a v

x x







 
 ,  

210

, 1 2*

0,0k

k i

k i i

f
b v

x







 
 , 

are computed to be 

 

 

210

, , 1

1 8 3
1 1 2 2 3 5 4 3 60 0

0,0

2

0,

k
k i j

k i j i j

f
a v w w

x x

v w M
w w w w w

S V


   






 

    






           (B.2) 

 

   

210

, 1 2*

2 2

9 10
9 9 10 9

9 2* 9 2*

2 5 3 6 2 5 3 61 1 1
1 4 1 4

2 1 1 2 4 1 2 1 1 2 4

2 5 3 61 1
1 4

1 2 41
2 1

2 4

0,0

0,0 0,0

1

0.

k
k i

k i i

f
b v w

x

f f
v w v w

x x

D a D D a Da a
v w v w

a G a a G

D a D a
v w

a a
a



 

 

     



 


 






 

 
 

   

 
    

   

  
   

    
 





 (B.3) 
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Thus, we have made the following conclusions 

Theorem A.1 Model (B.1) (or, equivalently, model (2)) undergoes a backward bifurcation at 
0

1R   

if all parameters are positive. 

Appendix C 

Table C1. PRCC values of 0R  with corresponding values of p  (significant for p ≤ 0.01). 

Parameter PRCC values 

1  0.1079 1.3332e-06 

2  0.0619 0.0056 

3  0.0375 0.0939 

4  0.0363 0.1050 

5  0.0130 0.5625 

1  0.2219 1.0079e-23 

2  −0.0972 1.3420e-05 

3  0.0139 0.5334 

4  −0.0503 0.0246 

1  −0.0474 0.0342 

2  −0.0907 4.8958e-05 

3  −0.1749 3.3636e-15 

4  −0.0631 0.0047 

5  −0.0038 0.8662 

6  0.0162 0.4703 

1  −0.0491 0.0280 

2  −0.1101 7.9369e-07 

3  −0.1100 8.1799e-07 

4  −0.0857 0.0001 

5  −0.0117 0.6015 

6  −0.0179 0.4227 

7  −0.0254 0.2562 

2  0.1070 1.6317e-06 

3  0.0391 0.0806 

4  0.0389 0.0823 

5  0.0347 0.1209 

6  −0.0100 0.6578 

Continued on next page 

p
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Parameter PRCC values 

7  −0.0331 0.1389 

  0.0106 0.6363 

1d  0.0018 0.9352 

d  −0.2728 1.7789e-35 

pc  −0.1683 3.5473e-14 

qc  −0.1044 2.9039e-06 

cc  −0.0685 0.0022 

ac  −0.0648 0.0037 

nc  0.3778 7.0664e-69 

kc  0.2383 3.1497e-27 

  0.2481 1.9591e-29 

  0.6344 1.0688e-225 
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