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Abstract: Instantaneous frequency can well track and reflect the transient information of signal, so it 

plays an important role in the analysis and processing of the non-stationary signal. In this paper, the 

single component signal is compared with the Second Order Differential Equation in polar coordinates. 

Based on this, a threshold segmentation instantaneous frequency calculation method is proposed. This 

method is mainly for characteristics of the non-stationary signal, use the change of the area around the 

signal and the x  axis to determine the amplitude mutation point of each single component signal, 

and perform segmentation. Simulations, mathematical derivations and experimental tests are used to 

highlight the performance of the proposed method. It is not only simple in calculation, but also can 

reduce the unnecessary influence of non-stationary signal amplitude mutation on instantaneous 

frequency, and can effectively judge the fault of rolling bearing in fault diagnosis. 
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1. Introduction  

Rolling bearings play a crucial role in the functioning of rotating machinery [1,2]. The maneuver 

of rotating machinery is entirely dependent upon the health state of the rolling bearings, which accounts 

for almost 45–55% of these equipment failures [3,4]. Therefore, fault monitoring of rolling bearings 
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can increase the reliability of rotating machinery to a certain extent. Fault feature information 

extraction is one of the most important problems in fault monitoring of rolling bearing [5–7]. The 

traditional diagnosis technique is to extract the feature vector for fault recognition according to the 

time domain or frequency domain feature of vibration signal [8–10]. In fact, when the rolling bearing 

failure, the vibration signal of rolling bearings often shows non-stationary characteristics due to the 

nonlinear stiffness, friction, clearance, and external load [11–13]. Therefore, how to go from extract 

fault feature information of non-stationary signals in the fault diagnosis of rolling bearing is 

particularly important [14,15]. 

One of the common characteristics of the non-stationary signal is the varying frequency [16]. In 

general, frequency refers to the overall characteristics of the periodic signal in a certain period of time, 

which cannot describe the local characteristics of the signal [17,18]. Therefore, the concept of 

instantaneous frequency (IF) is introduced [19–21]. IF can well reflect the characteristics of the signal 

transient component, whereas the transient component is an important manifestation of the non-stationary 

signal local characteristics, which contains a large amount of effective information [22–24]. So IF can 

be used to judge the timing and type of mechanical equipment failure [25,26]. 

There are a vast number of commonly used IF calculation methods, among which the Hilbert-

Huang transformation (HHT) is the most widely used adaptive time-frequency analysis in recent 

years [27–29]. This method was proposed by Norden E. Huang of NASA. It is a general method to 

solve the IF of the single component real signal [30]. The analytical signal is obtained by the Hilbert 

transform, and the IF is obtained by differentiating the phase of the analytical signal [31,32]. This is a 

widely accepted and used definition of IF in academic circles, but it is also controversial. First, the IF 

may not be one of the frequencies in the spectrum [33]. Second, if only a few distinct frequencies 

constitute a linear spectrum, then the IF can be continuous and can vary over an infinite range of values 

[34,35]. Third, although the spectrum of the analytic signal is zero for negative frequencies, the IF can 

be negative. However, this is meaningless in practice [36]. Fourth, for a band limited signal, its IF can 

be outside the band. Fifth, the Hilbert transform is a global operation, not an idea of local time-

frequency analysis. In order to calculate the analytical signal at a certain moment, it is necessary to 

know the signal of all time [37]. Sixth, according to the physical nature of the signal, the signal can be 

divided into single component signals and multicomponent signals. The single component signal has 

only one frequency at any time, while the multicomponent signal can have multiple frequencies. The 

Hilbert transform only obtains one frequency value for any signal, so this definition only applies to 

single component signals, whereas multicomponent signals have no physical meaning for discussing 

a single frequency. In fact, not all single component signals can be the Hilbert transform, and the 

Bedrosian theorem and the Nuttal's theorem must be satisfied [38,39]. 

According to the problem of negative frequency, Norden E. Huang et al. proposed a method of 

estimating IF based on empirical automated mapping and facilities management (AMFM) 

decomposition, namely Normalized Hilbert transform [40]. The intrinsic mode function (IMF) is 

decomposed by empirical AMFM to obtain a pure FM signal ( ) ( )cosF t t=  . At this time the 

instantaneous amplitude of ( )F t  is 1, which is no longer restricted by the Bodrosian theorem. So 

Hilbert transform can be used to obtain the IF, which overcomes the defect that the Hilbert transform 

will appear negative frequency. There is a great improvement over direct the Hilbert transform. 

However, since the Hilbert transform is still adopted, energy leakage will be generated at the endpoint, 

and the endpoint effect is still inevitable. 
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Zheng et al. [41] proposed an empirical envelope method to obtain IF, for unexplained negative 

frequency and obvious the endpoint effects of the Hilbert transform. Firstly, the pure FM signal is 

obtained by empirical amplitude modulation and frequency decomposition, and then it is derivation. 

After that the empirically amplitude-modulated frequency decomposition is performed on the 

derivative result, and the envelope signal is extracted to obtain the IF of the original signal. The 

calculation is simple and convenient, only requires two empirical AMFM decompositions and one 

derivative. However, the use of cubic spline to fit the envelope in the calculation process and a certain 

number of iterations will also produce the endpoint effect. 

Cicone A et al. compared the single component signal with the Second Ordinary Differential 

Equations (ODEs) in polar coordinates, and proposed a local definition of instantaneous phase and 

IF [42,43]. The x  of the single component function ( )f x  is regarded as the x  coordinate in the 

second order differential equation, the coordinate ( ),x y   is mapped to ( ),r    by 

cos , sinx r y r = = − , and the IF is the derivative of the phase angle    in the polar coordinate[44-

46]. The method is simple in calculation, strengthens the ability to quickly track the instantaneous 

frequency, eliminates the negative frequency, and makes the instantaneous frequency more 

physical. Moreover, it has no extreme value operation, and avoids the error caused by the endpoint 

effect [47–49]. But when the amplitude of the signal changes suddenly, the error of the calculated 

results of signal IF increases. 

In summary, this paper proposes a method to deal with the IF of the non-stationary signal with 

amplitude abrupt change characteristics. This method not only has simple calculation principle, but 

also can reduce the unnecessary influence on the calculation of IF caused by the sudden change of 

amplitude in the non-stationary signal, and can effectively judge the fault of rolling bearing. 

2. Threshold segmentation method for instantaneous frequency 

The signal whose statistical characteristics change with time is the non-stationary signal [50, 51], 

and the amplitude mutation is also one of the manifestations of the non-stationary signal. When the 

amplitude of the signal changes greatly, the measured IF will generate some unnecessary fluctuations 

in the place where the amplitude changes greatly, and the IF of the original signal cannot be well 

reflected [52–54]. Based on the ordinary differential equation (ODE) method proposed by Cicone, this 

paper proposes a method of threshold segmentation which can deal with the IF of non-stationary 

signals with amplitude mutation characteristics [55,56]. When the original signal amplitude is abrupt, 

it needs to be decomposed into IMFs by empirical mode. The IMFs is the segmented and then the IF 

of each segment is calculated. The specific steps are as follows [57–60]: 

(1) Let ( )f x  is an IMF signal. Firstly, determine whether there is a sudden amplitude change of 

( )f x . Let a certain point ix  have a corresponding amplitude value ia , then the amplitude value at 

point 1ix −  is -1ia , and the amplitude value at point 1ix +  is i+1a . Calculate the integral of the signal 

( )f x   in the interval  1,i ix x−   by using (1), that is, the area jS   of the signal ( )f x   in the 

corresponding interval with the x  axis, where 1j i= − : 

 ( )
1

i

i

x

j
x

S f x dx
−

=   (1) 

The principle of integral formula used in this paper is the combined trapezoidal formula in 
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numerical integration. The specific principle is as follows. Suppose that interval  ,a b  is divided into 

equidistant nodes kx a kh= +  , 0,1, ,k M=   and divided into M   subintervals  1,k kx x +   with 

width ( ) /h b a M= − . The combined trapezoidal formula of M  subintervals can be expressed as any 

one of three equivalent ways: 

 ( ) ( ) ( )( )1

1

,
2

M

k k

k

h
T f h f x f x−

=

= +  (2) 

Or: 

 ( ) ( )0 1 2 3 2 1, 2 2 2 2 2
2

M M M

h
T f h f f f f f f f− −= + + + + + + +  (3) 

Or: 

 ( ) ( ) ( )( ) ( )
1

1

,
2

M

k

k

h
T f h f a f b h f x

−

=

= + +   (4) 

This is an approximation of the integral of ( )f x  in the interval  ,a b , written as: 

 ( ) ( ),
b

a
f x dx T f h  (5) 

(2) Differentiate jS  in the interval  1,i ix x− , which is the change of area jP . Moreover, the 

method of integration and differentiation is also equivalent to magnifying the change of signal, which 

is easy to observe. As shown in Figure 1, since the signal sampling interval is the same, the time 

interval of each group interval is the same as t , so the larger the area change in time t , the larger 

the amplitude change of signal ( )f x   in this interval. Therefore, the change trend of the signal 

amplitude can be judged by the change of area, that is, the ratio   of jP  in two adjacent t  times 

can be determined. Moreover, the ratio is within the range of  0,1 . As the value of   approaches 1, 

the amplitude changes more gently, and the value of   approaches 0, and the amplitude changes 

more rapidly. 

 

Figure 1. Schematic diagram of threshold segmentation method. 
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The original signal is segmented on the basis of  . The smaller the value of   is, the more 

segments the signal is segmented, and the better the instantaneous frequency calculation result will be, 

but the calculation amount will also increase accordingly. Therefore, this paper tested the relationship 

between the value of   and the correlation coefficient of instantaneous frequency calculation results, 

as shown in Figure 2. Considering the real-time performance and accuracy of the calculation,   in 

this paper is 0.3. 

 

Figure 2. The choice of  . 

(3) Find all amplitude abrupt points. Assuming there are n  amplitude abrupt points, the original 

signal is divided into 1n+  segments based on these n  points, which are ( ) ( ) ( )1 2 1, , , nf x f x f x+  

respectively. 

(4) Find envelope ( ) ( ) ( )1 2 1, , nq x q x q x+  corresponding to ( ) ( ) ( )1 2 1, , , nf x f x f x+ , then: 

 ( ) ( ) ( )  1 / 1,1i i iF x f x q x=  −  (6) 

Where 1i n= + . 

(5) Calculate the derivative ( ) ( )1 2, ,f x f x  ( )1, nf x+
  of ( ) ( ) ( )1 2 1, , , nf x f x f x+  , and get the 

envelope signal ( ) ( ) ( )1 2 1, , , nr x r x r x+  of ( ) ( ) ( )1 2 1, , , nf x f x f x+
   , then: 

 ( ) ( ) ( )  2 / 1,1i i iF x f x r x=  −  (7) 

The envelope functions ( )iq x  and ( )ir x  are not unique. For example, the extreme values of 

( )if x  and ( )if x  can be obtained by cubic spline interpolation. 

(6) Define: 

 ( ) ( ) ( )1 2i i iF x F x iF x= +  (8) 

Then ( )iF x  in the complex plane is a curve in    1,1 1,1−  − . 

(7) ( )iF x  is an orbiting unit circle, and its rotation angle is: 
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 ( )
( )

( )
2

1

arctan
i

i

i

F x
x

F x
 = −  (9) 

And ( ) ( ) ( )1 2 1, , , nx x x   +  is the instantaneous phase of ( ) ( ) ( )1 2 1, , , nf x f x f x+ . 

(8) Use equation (10) to find the IF ( ) ( ) ( )1 2 1, , , nx x x   +   of each segment of signal 

( ) ( ) ( )1 2 1, , , nf x f x f x+ : 

 ( )
( )1

2

i

i

d x
x

dx





=  (10) 

Even though the envelope functions ( )q x  and ( )r x  are not unique, the instantaneous phase 

and instantaneous frequency obtained by the above definitions hardly depend on the method of solving 

the envelope functions ( )q x  and ( )r x . 

(9) Connect the obtained IF ( ) ( ) ( )1 2 1, , , nx x x   +  of each segment in time sequence, and the 

complete IF ( )i x  of the original signal ( )f x  can be obtained. 

3. Simulation calculation 

In this chapter, three simulation signals are tested. The HHT method and the threshold 

segmentation method are respectively used to solve the IF. 

Example 1. The test signal is given by (11) as a typical linear frequency modulation (LFM) signal 

and shown in figure 3. Figure 4 shows the IF obtained by the HHT method, and figure 5 shows the IF 

obtained by the threshold segmentation method. 

 ( ) ( ) cos 2 5 0,5f x x x = +      (11) 

 

Figure 3. Simulation signal. 
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Figure 4. IF obtained by the HHT method. 

 

Figure 5. IF obtained by the threshold segmentation method. 

From the mathematical derivation, the IF of (11) can be obtained by using the HHT and the 

threshold segmentation method as ( ) 2 5 / 2x x = + . Thus, the obtained IF should be a straight line 

in the time-frequency domain. It can be seen from figure 4 and figure 5 that the IF obtained by the 

threshold segmentation method is closer to the theoretical value than that obtained by the HHT method. 

Example 2. A simulation signal with a low frequency and a low sampling frequency is given by 

(12), and the sampling frequency is 100 Hz. At the same time, add a Gaussian white noise to the 

simulation signal, as shown in figure 6. 

 ( ) ( )   ( )sin 2 0,10 3.5,7 , 2; 0.5f x a x when x a otherwise a=   = =，  (12) 
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Figure 6. Simulation signal. 

The simulation signal given by (12) is a signal with relatively large amplitude change, and its 

ideal IF should be a straight line. Figure 7 shows the IF obtained by the HHT method. Although the 

overall trend is approximately a straight line, there are certain unnecessary fluctuations, especially in 

the two periods of 2s–4s and 6s–8s where the amplitude changes greatly. Figure 8 shows the process 

of calculating the IF of a signal using the threshold segmentation method. First, the signal is judged 

and divided into three sections according to calculation, as shown in figure 8(a), figure 8(c), and figure 

8(e). According to the segmented signal, the IF of each segment is calculated separately, and is shown 

in figure 8(b), figure 8(d), and figure 8(f). The three IFs are connected in chronological order to obtain 

the complete IF of the original signal over the entire time period, as shown in figure 9. It can be seen 

that the obtained IF is relatively close to the ideal IF curve. By comparing these figures, it can be seen 

that the IF obtained by the threshold segmentation method is much smoother, which can reduce the 

influence of sudden amplitude change on IF calculation, and is closer to the ideal IF. 

 

Figure 7. IF obtained by the HHT method. 
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(a) The first segment of the simulation signal         (b) IF of the first segment 

    

(c) The second segment of the simulation signal        (d) IF of the second segment 

    

(e) The third segment of the simulation signal          (f) IF of the third segment 

Figure 8. The simulation signal divided into three segments and their IF. 

Example 3, a LFM simulation signal with a high sampling frequency is selected and given by (13) 

with a sampling frequency of 10kHz, as shown in figure 10. 

 ( ) ( )( )  2exp 2 0.625 15.25 , 2.8,5.8 , 2.5; 1f x A j x x when x A otherwise A= − +  = =  (13) 

Figure 10 shows a linear LFM signal. Similarly, two methods are used to obtain its IF, as shown 

in figure 11 and figure 13. Figure 12 shows the process of calculating the IF of a signal using the 

threshold segmentation method. First, the signal is judged and divided into three sections according to 

calculation, as shown in figure 12(a), figure 12(c), and figure 12(e). According to the segmented signal, 



5404 

Mathematical Biosciences and Engineering  Volume 17, Issue 5, 5395–5413. 

the IF of each segment is calculated separately, and is shown in figure 12(b), figure 12(d), and figure 

12(f). The three IFs are connected in chronological order to obtain the complete IF of the original 

signal over the entire time period, as shown in figure 13. It can be seen that the IF obtained by the 

segmentation method is relatively smooth, which can reduce the impact of the sudden change in 

amplitude on the IF calculation, remove unnecessary fluctuations, and get closer to the ideal IF value. 

 

Figure 9. IF obtained by the threshold segmentation method. 

 

Figure 10. Simulation signal. 

 

Figure 11. IF obtained by the HHT method. 
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(a) The first segment of the simulation signal          (b) IF of the first segment 

      

(c) The second segment of the simulation signal       (d) IF of the second segment 

      

(e) The third segment of the simulation signal          (f) IF of the third segment 

Figure 12. The simulation signal divided into three segments and their IF. 

 

Figure 13. IF obtained by the threshold segmentation method. 
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4. Application in fault diagnosis of rolling bearings 

In this experiment, the QPZZ-Ⅱ system experimental bench was used to measure the vibration 

signals of rolling bearings, as shown in figure 14. The QPZZ-Ⅱ series of rotating machinery vibration 

monitoring and fault diagnosis experiment platform is a widely used in bearing fault and gear box 

testing experiment platform. The platform is composed of variable speed drive motor, bearing, gear 

box, shaft and special rotating disk, etc. In recent years, it has been favored by the related mechanical 

vibration and signal analysis university laboratory, especially the related vibration research company 

in Japan also USES this platform as the new employee training platform. This system can quickly 

simulate multiple states and vibrations of rotating machinery, and can perform comparative analysis 

and diagnosis of various states. 

              

Figure 14. Test bench of QPZZ-Ⅱ system. 

The NI-USB6210 data acquisition card vibration model is used in the experiment, and the bearing 

model is N205. Bearing related parameters are shown in Table 1. 

Table 1. Parameters of rolling bearings. 

Inner 

diameter 

Outer 

diameter 

Roller 

diameter 

Pitch 

diameter 

Roller 

number 

Contact 

Angle 

25mm 52mm 7.5mm 39mm 13 0 

 1 cos
2

rnf d
BPFO

D


 
= − 

 
 (14) 

 1 cos
2

rnf d
BPFI

D


 
= + 

 
 (15) 

Equations (14) is the ball pass frequency outer race (BPFO) and equations (15) is the ball pass 

frequency inner race (BPFI), where rf  represents the shaft rotation frequency, n  is the number of 

rolling elements,   is the contact angle, and d  is the diameter of the rolling element. D  is the 

diameter of the roller distribution circle. The above formula describes that the characteristic frequency 

of rolling bearings under different fault conditions varies with the speed. 



5407 

Mathematical Biosciences and Engineering  Volume 17, Issue 5, 5395–5413. 

Figure 15 is a schematic diagram of the rolling bearing fault diagnosis process, which is divided 

into two parts: signal acquisition, signal analysis and feature extraction. 

 

Figure 15. Schematic diagram of the rolling bearing fault diagnosis process. 

Firstly, the continuous vibration signal of the rolling bearing is measured by the acceleration 

sensor, and then the signal is converted into digital vibration signal through A/D. The digital signal is 

pre-processed for noise reduction, and the processed signal is decomposed into several IMFs. The 

method proposed in this paper is used to calculate the instantaneous frequency and instantaneous 

amplitude (IA) of each IMF and generate the local Hilbert marginal spectrum. The peak value in the 

marginal spectrum is compared with the fault characteristic frequency of the rolling bearing to judge 

whether there is a problem in the bearing and the location of the problem. 

4.1. Outer ring fault 

The vibration signal of the rolling bearing with outer ring fault is selected with a speed of 

1200r/min and a sampling frequency of 25 kHz, as shown in figure 16. According to (14), the fault 

characteristic frequency of the outer ring is 131Hz. Using the method mentioned in the second chapter, 

the vibration signal is divided into several segments and the IF of each segment is calculated 

respectively. And then connect them in time order into a complete IF in the time domain. The results 

were compared with the traditional HHT method, as shown in figure 17(a) and figure 18(a). Moreover, 

its Hilbert marginal spectrum is obtained for comparison, as shown in figure 17(b) and figure 18(b). 

It can be seen from figure 17(a) that the IF obtained by the HHT method has some negative 

frequencies, while the IF obtained by the threshold segmentation method in figure 17(a) eliminates 

this problem well. In addition, by comparing the two marginal spectra of figure 17(b) and figure 

18(b), the peak value in figure 18(b) is more prominent and the outer ring fault of the rolling bearing 

can be judged more effectively. The result of fault detection can be achieved while simplifying the 

calculation principle. 
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Figure 16. Vibration signal. 

 

(a) IF                          (b) Hilbert marginal spectrum 

Figure 17. The HHT method. 

 

(a) IF                           (b) Hilbert marginal spectrum 

Figure 18. The threshold segmentation method. 

4.2. Inner ring fault 

The vibration signal of the rolling bearing with inner ring fault is selected with a speed of 

1200r/min and a sampling frequency of 25kHz, as shown in figure 19. According to equation (15), the 

fault characteristic frequency of the inner ring is 192.50Hz. In the same way, the IF of the signal is 

obtained by the HHT method and the threshold segmentation method, and then its Hilbert marginal 

spectrum is obtained for comparison, as shown in figure 20 and figure 21. 
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Figure 19. Vibration signal. 

Similarly, comparing figure 20(a) and figure 21(a), the threshold segmentation method eliminates 

the phenomenon of negative frequency. The peak value in figure 21(b) is also more obvious than the 

peak value in figure 20(b), and the interference is reduced, which can effectively judge the inner ring 

failure of the rolling bearing. Moreover, the calculation principle is relatively simple, which can save 

time in fault detection. 

 

(a) IF                         (b) Hilbert marginal spectrum 

Figure 20. The HHT method. 

 

(a) IF                          (b) Hilbert marginal spectrum 

Figure 21. The threshold segmentation method. 
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5. Conclusion 

For fault diagnosis of rolling bearings, the IF calculation has many potential benefits, it can reflect 

the transient components of the non-stationary signal. In this paper, a single component signal is 

compared with ODEs in polar coordinates, and a relatively simple method for calculating the IF is 

developed. The formula is explained mathematically. Simulations, mathematical derivations and 

experimental tests are used to highlight the performance of the proposed method. It can eliminate 

meaningless negative frequency, and reduce the unnecessary impact of IF due to sudden changes in 

amplitude. Its calculation principle is simple, and it can be applied to the occasions with high real-time 

requirements in the actual production. 
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