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Abstract: Traditional feature dimensionality reduction (FDR) algorithms can extract features by 

reducing feature dimensions. However, it may lose some useful information and affect the accuracy 

of classification. Normally, in traditional defect feature extraction, it first obtain the defect area of the 

defect image by image preprocessing and defect segmentation, select the original feature set of 

defects by prior knowledge, and extract the optimal features by traditional FDR algorithms to solve 

the problem of “curse of dimensionality”. In this paper, a feature extraction and classification 

algorithm based on improved sparse auto-encoder (AE) is proposed. We adopt three traditional FDR 

algorithms at the same time, combine the defect features obtained in pairs, take the merged defect 

features as the input of sparse AE, then use the “bottleneck” of sparse AE to conduct the defects 

classification by Softmax classifier. The experimental results show that the proposed algorithm can 

extract the optimal features of round steel surface defects with less network training time than 

individual sparse AE, finally get higher classification accuracy than individual FDR algorithm in the 

actual production line.  
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1. Introduction  

Round steel is a typical steel product, widely used in aerospace, transportation, civil and 

industrial construction, equipment manufacturing, marine engineering and other fields [1]. In the 

process of round steel production, due to the equipment failure, product material changes, product 
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process fluctuations and other factors, the final products will inevitably have some surface quality 

problems, such as scratches, ears, cracks, scars, fold over, roll marks, etc [2]. Machine vision based 

defects detection has become one of the important technologies for modern steel enterprises to solve 

the product surface quality problems [3–7], which mainly includes image acquisition, image 

preprocessing, defect segmentation, defect feature extraction and classification [8]. Among all of 

them, an efficient and accurate defect feature extraction algorithm is core of the technology, so that 

enterprises can quickly and accurately detect the surface defects, adjust equipment parameters and 

optimize production processes. 

In general, the defect features of steel surface mainly include color features [9–13], texture 

features [14–18] and shape features [19–23]. However, not all of the features are valuable for defects 

classification. Too many features will cause high dimensions of the classifier, which will increase 

network training time and reduce classification accuracy. On this basis, the feature dimensionality 

reduction (FDR) algorithms are adopted to find the optimal features from original image features, so 

as to reduce the complexity of classification and improve classification accuracy [24,25]. Principal 

component analysis (PCA), kernel principal component analysis (KPCA) and linear discriminant 

analysis (LDA) are the three commonly used traditional FDR algorithms. These FDR algorithms 

reduce the feature dimensions in particular theories, but all have certain limitations. The main one is, 

some useful information may be ignored, which will affect classification accuracy. 

Deep learning can also be used for feature extraction [26–32]. It is s special type of machine 

learning and a kind of artificial intelligence [33]. With the development of deep learning, some 

scholars have begun to study the use of deep learning for steel surface defect detection. For example, 

Wang et al. [34] proposed a method of strip surface defect detection method based on deep learning. 

It took Resnet101 for feature extraction, then used the transfer learning method to train the network 

to ensure the stability and convergence of the network. Yi et al. [35] proposed a strip surface defect 

recognition system based on deep CNNs. It used original defect image as input and defect category 

as output for seven main classes of steel strip defects classification. In the practical application, due 

to the high dimensions of round steel surface defects, the network training of deep learning requires 

large amount of computation, which will increase the costs of enterprises.  

In view of the above problems and causes, this paper proposed a feature extraction and 

classification algorithm based on improved sparse AE. It first selected the original feature set of 

round steel surface defects by the statistical features of the image, then adopts three traditional FDR 

algorithms at the same time to reduce the feature dimensions, combines these defect features 

obtained in pairs, takes the merged defect features as the input of sparse AE, and uses the 

“bottleneck” of sparse AE to conduct classification by Softmax. In order to verify the feasibility and 

effectiveness of proposed algorithms, we take four batches of round steel surface images collected on 

the actual production line as the test set, compare the defect classification accuracy of proposed 

algorithm with individual traditional FDR algorithm. As the consequence, the advantages of 

proposed algorithm can be proved.  

This paper is organized as follows: in Section 1, we give an overview of the research 

background and related works. In Section 2, we describe six typical round steel surface defects and 

their main image features, on this basis, the initial feature set is selected. In Section 3, we introduce 

the traditional FDR algorithms: PCA, KPCA and LDA and deep learning FDR algorithm: sparse AE, 

and their limitations in feature extraction. Our proposed algorithms are given in Section 4, which 

include: the feature extraction and classification algorithm based on PCA, KPCA and sparse AE 
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(PKAE), the feature extraction and classification algorithm based on PCA, LDA and sparse AE 

(PLAE) and the feature extraction and classification algorithm based on KPCA, LDA and sparse AE 

(KLAE). The experimental results are provided in Section 5, in which the algorithm with best 

classification accuracy and minimum network training time are selected as optimal algorithm, and 

the feasibility and effectiveness of the optimal algorithm are verified in an actual production line. 

Finally, concluding remarks and future work are presented in Section 6. 

2. The initial feature set of round steel surface defects 

2.1. Six typical round steel surface defects 

The six typical round steel surface defects we selected in this research are: scratches, ears, 

cracks, scars, fold over and roll marks. The sample images of each defect and their main image 

features are shown as follows:  

 

Scratches 

  

Image features Generally, scratches are straight or arc-shaped. The defects are equal width 

linear stripes and bright in color. Compared with the background, the defects 

have obvious shape, texture and gray-scale differences. Therefore, they can be 

distinguished by shape, gray-scale and texture features.   

Ears 

  

Image features Generally, ears are stripe bulges and parallel to the axis. The defects may 

appear on one side or both sides of the products. Compared with the 

background, the defects have obvious shape and texture differences. 

Therefore, they can be distinguished by shape and texture features.  

racks 

  

Image features Generally, cracks are straight or Y-shaped. The direction of the defects 

basically consistent with rolling direction, and the defects are deep and 

black in color. Compared with the background, the defects have obvious 

shape, texture and gray-scale differences. Therefore, they can be 

distinguished by shape, gray-scale and texture features. 
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Fold over 

  

Image features Fold over defects are similar to cracks, but the edges are zigzag. The 

defects distributed continuously or intermittently, with iron oxide 

inclusions in the middle and black in color. Compared with the 

background, the defects have obvious texture and gray-scale differences. 

Therefore, they can be distinguished by texture and gray-scale features.  

Scars 

  

Image features Generally, scars are tongue-shape or nail-shaped, sometimes in a close 

curve. Compared with the background, the defects have obvious shape and 

gray-scale differences. Therefore, they can be distinguished by shape and 

gray-scale features.  

Roll marks 

  

Image features Generally, roll marks are continuous or periodic depression and bulges, 

with different colors in the images. The occurrence of defects corresponds 

to the defects on roll handling equipment one by one. Compared with the 

background, the defects have obvious shape and gray-scale differences. 

Therefore, they can be distinguished by shape and gray-scale features. 

2.2. Initial feature set of round steel surface defects 

When using the traditional FDR algorithms to extract defect features, it is often based on prior 

knowledge to select a reasonable set of features as the initial feature set. On the basis of Section 2.1, 

the following features are selected as the initial feature set of round steel surface defects: 

2.2.1. Shape features 

• Perimeter 

Perimeter of the defect is the length of boundary line between the defect area and the 

background. For binary image, if 1 is the target and 0 is the background, its perimeter is the number 

of pixels with a boundary value of 1. The calculation formula is as follows:  
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• Area  

Area of the defect is the number of pixels occupied by the defect. For binary image, if 1 is the 

target and 0 is the background, its area is the number of pixels with a value of 1 in the defect part. 

The calculation formula is as follows: 
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• Centroid 

Centroid of the defect is the center point of the defect. The calculation formula is as follows: 
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• Compactness 

Compactness represents the shape complexity of the defect. The smaller the value is, the 

simpler the defect shape is. The calculation formula is as follows: 
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• Linearity 

Linearity is the maximum length of the defect measured from all directions. The smaller the 

value is, the more linear distribution the defect is. The calculation formula is as follows: 

P

A
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• Hu’s moment invariants 

Hu’s moment invariants are the features with translation, rotation and size invariance. For image

),( yxf , the qp + moment is defined as: 
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The central moment is defined as: 
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where x and y are the central coordinates of the defect: 
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The central moment can satisfy translation invariance in affine transformation. The normalized 
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central moment formula of ),( yxf is: 
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where 20 represents the extension range of the defect in the horizontal direction, 02 represents 

the extension range of the defect in the vertical direction, 11 represents the inclination of the defect, 30

represents the degree of shift of the defect gravity center in the horizontal direction, 03 represents the 

degree of shift of the defect gravity center in the vertical direction, 12 represents the degree of 

equilibrium of the vertical extension range of the defect, 21 represents the degree of equilibrium of the 

horizontal extension range of the defect. 

2.2.2. Gray-scale features 

The probability density function can be used to represent the gray-scale distribution of  defect 

image. The first order probability distribution of image gray-scale is defined as: 

 byxFPbp == ),()( 10 − Lb                        (17) 
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where b is the quantization level, L level in total. ),( yxF is the gray-scale level of the pixel ),( yx . 

Therefore, the first-order histogram is defined as: 
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where )(bN is the total number of pixels with gray-scale value b, M is the total number of pixels. The 

gray-scale features obtained from the gray-scale histogram can describe the defect area of the defect 

image as a whole. On this basis, the gray-scale features selected in this research are: 

• Gray-scale mean 

Gray-scale mean represents the overall gray-scale level of defect area. The calculation formula 

is as follows: 
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• Gray-scale variance 

Gray-scale variance represents the discrete degree of the gray-scale distribution of the defect 

area. The calculation formula is as follows: 
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• Gray-scale skewness 

Gray-scale skewness represents the degree of asymmetry of the gray-scale histogram between 

different defects. The calculation formula is as follows: 
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• Gray-scale kurtosis 

Gray-scale kurtosis represents the density of the gray-scale histogram around the gray-scale 

mean. The calculation formula is as follows: 
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• Gray-scale energy 

Gray-scale energy is used to measure the amount of information in the image. When the 

probability of gray-scale distribution of the defect image is equal, the minimum value is taken. The 

calculation formula is as follows: 
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• Gray-scale entropy 
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Gray-scale entropy is also used to measure the amount of information in the image, which 

represents the amount of information contained in the aggregation feature of gray-scale distribution 

in the defect image. When the probability distribution of defect image is equal, it reaches the 

maximum value. The calculation formula is as follows: 

( ) bPbPE
L

b

(log)(-
1

0

2
−

=

=

                               

24) 

2.2.3. Texture features 

Gray-scale co-occurrence matrix (GLCM) is an effective method for texture feature selection. It 

starts from the pixel ),( yx whose gray-scale level is i, and counts the probability ),,,( jip of its 

simultaneous occurrence with the pixel whose distance is  , direction is (  13595450 ，，，= ) and 

gray-scale level is j ( )yyxx ++ , . The expression of GLCM is:  

 jyyxxfiyxfyyxxyxjip =++=++= ),(,),(),(),,(),,,( 
              

(25) 

where 1,,2,1,0 −= xNx  , 1,,2,1,0 −= yNy  , 1,,2,1,0, −= Lji  . L is the gray-scale level of the image; yx, is 

the pixel coordinate in the image;
XN and

yN are the number of rows and columns of the image 

respectively. 

According to GLCM, a large number of texture features can be defined. In this case, the following 

4 most commonly used features are selected in this research: 

• Texture energy 

Texture energy represents the texture roughness of the defect image. The calculation formula is 

as follows: 
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where ),( jip expresses the joint probabilities between two pixels with gray level i and j in distance

and direction .  

• Texture inertia 

Texture inertia represents the texture depth of the defect image. The larger the value is, the 

deeper the texture is. The calculation formula is as follows: 
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• Texture entropy 

Texture entropy represents the complexity of the texture in the defect image. The larger the 
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value is, the greater the randomness of texture is. The calculation formula is as follows: 
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• Texture correlation 

Texture correlation represents the texture direction of the defect image. The larger the value is, 

the stronger the texture is in this direction than in other directions. The calculation formula is as 

follows: 
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where μx and σx represent the mean value and standard deviation of gray-scale rows; μy and σy 

represent the mean value and standard deviation of gray-scale columns. 

GLCM only represents the comprehensive information of the defect image in certain range and 

angle of change, we also need to calculate its variance and inverse variance to represent the texture 

features of the whole image more comprehensively: 

• Texture variance 

Texture variance represents the texture’s period of the defect image. The calculation formula is 

as follows: 

( ) ( )jipiQ
L

i

L

j

,
1-

0

1

0

2

5 
=

−

=

−= 

                          

(30) 

• Texture inverse variance 

Texture inverse variance represents the texture changes in the defect image.The larger the value 

is, the slower the texture changes. The calculation formula is as follows: 
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In summary, the initial feature set of round steel surface defects we selected in this research is 

shown in Table 1. 

No.19~No.24 represent the texture features of the defect image in one direction. We need to 

calculate the texture features in 4 directions:  0∘，45∘，90
∘，135∘ . Therefore, 42 features are 

selected as the initial feature set of round steel surface defects. 

3. Feature dimensionality reduction (FDR) algorithms 

3.1. Principal Component Analysis 

PCA is a multivariate statistical method proposed by Pearson in 1901, and developed by 

Hotelling in 1993 [36]. It is the most widely used FDR algorithm. The main idea of PCA is to map 

n-dimensional features to k-dimensions, which is a set of orthogonal features also known as the 

principal components. The process of PCA is to find a set of mutually orthogonal coordinate axes in 

order from the original space. The first new axis selection of PCA is the direction of the largest 

variance in the original data, the second new axis selection is the plane orthogonal to the first axis to 
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make the largest variance, and the third axis is the plane orthogonal to the first and second axes to 

make the largest variance. By analogy, we can get n such axes. From the new coordinate axes 

obtained in this way, it can be found that most of the variance is contained in the first k coordinate 

axes, and the variance of the latter is almost 0. Therefore, we can ignore the remaining coordinate 

axes and only keep the first k coordinate axes with most of the variance. In fact, this is equivalent to 

only retaining the dimension features that contain most of the variance, while ignoring the feature 

dimensions that contain almost 0 variance, so as to realize dimensionality reduction of features.  

Table 1. Initial feature set of round steel surface defects. 

No Feature Feature description Feature type 

1 P Perimeter Shape feature 

2 A Area Shape feature 

3 X/Y Centroid Shape feature 

4 C Compactness Shape feature 

5 L Linearity Shape feature 

6 1m  First order moment Shape feature 

7 2m  Second order moment Shape feature 

8 3m  Third order moment Shape feature 

9 4m  Fourth order moment Shape feature 

10 5m  Fifth order moment Shape feature 

11 6m  Sixth order moment Shape feature 

12 7m  Seventh order moment Shape feature 

13 b  Gray-scale mean Gray-scale feature 

14 
2

b  Gray-scale variance Gray-scale feature 

15 S Gray-scale skewness Gray-scale feature 

16 K Gray-scale kurtosis Gray-scale feature 

17 GP  Gray-scale energy Gray-scale feature 

18 E Gray-scale entropy Gray-scale feature 

19 1Q  Texture energy Texture feature 

20 2Q  Texture inertia Texture feature 

21 3Q  Texture entropy Texture feature 

22 4Q  Texture correlation Texture feature 

23 5Q  Texture variance Texture feature 

24 6Q  Texture inverse variance Texture feature 

 

When PCA is used for feature extraction, it should meet the requirements that the variance of 

samples after dimensionality reduction is as large as possible, the mean square error is as small as 

possible. PCA looks for the principal axis direction which is used to effectively represent the 

common features of the same kind of samples [37], which is very effective for representing the 

common features of the same kind of data samples, but it is not suitable to distinguish different 

sample classes [38]. Therefore, PCA is generally not used for feature extraction, but for 

dimensionality reduction. It needs to be combined with other FDR algorithms to achieve the purpose 

of feature extraction. 
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3.2. Linear Discriminant Analysis (LDA) 

LDA is a probabilistic model-based algorithm proposed by Blei et al in 2003 [39]. It is a 

supervised FDR algorithm. Compared with PCA, PCA and LDA have different constraints in the 

process of projection. The idea of PCA is “the projection method that makes the average points of 

different categories farthest away”, so its main function is to remove the redundant dimensions of the 

original data. For data set with different distributions, the maximum variance target after PCA 

projection will result in data sample mixed or no longer linearly separable. However, the basic idea 

of LDA is to select an optimal projection direction, so that the data of the same category after 

projection is closely, and the data of different categories are as far away from each other as possible. 

The goal of LDA is to reduce the dimensionality of labeled data and project it into a low dimensional 

space, which meets three conditions at the same time: keep as much information as possible (that is, 

select the largest feature value as the direction represented by the corresponding feature vector), find 

the best projection direction that makes samples as easy to distinguish as possible, makes the same 

type of samples as close as possible and different types of samples as far as possible after projection.  

 As PCA has advantages in dimensionality reduction, LDA has better distinguishing ability, 

combine these two algorithms can effectively improving the ability of feature extraction [40].  

3.3. Kernel Principal Component Analysis (KPCA) 

Many machine learning algorithms assume that the input data is linearly separable. However, in 

real world, we may face non-linear problems in most cases [41]. In this case, PCA and LDA are not 

the optimal algorithms. KPCA can realize the non-linear dimensionality reduction of data, which is 

used to process the non-linear separable data set [42]. The basic idea of KPCA is: for the matrix X in 

the input space, we first map all the samples in X to a high-dimensional or even infinite dimensional 

feature space with a non-linear mapping to make it linearly separable, and then carry out PCA in this 

high-dimensional space.  

Compared with PCA, KPCA can extract the information of the original data to the maximum 

extent, but it also has the same problem as PCA, that is, it is not suitable to distinguish different 

sample classes [43]. Therefore, KPCA and LDA can also be combined to better extract the features.  

3.4. Auto-encoder (AE) 

Deep learning is a feature learning method [44]. With the increase of network level, the more 

complex features are easier to learn, so it is suitable for processing the data with high dimensions. 

However, too many layers of network will lead to long training time and easy to over-fit. 

Auto-encoder (AE) is the basic model in deep learning and it can also be used for feature extraction [45]. 

The standard AE is a typical three-layer neural network unsupervised learning model, which includes 

an input layer, a hidden layer and an output layer, in which the input layer and the output layer have 

the same dimensions [46]. AE can learn the implicit features of input data, which is called “coding”, 

at the same time, it can reconstruct the original input data with new features, which is called 

“decoding”. Compared with traditional feature extraction algorithm, AE can better extract the 

features of original data. The expression of AE is as follows: 

'
)()(

xhx
xgxf

→→                                  (32) 
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In the training process, a loss function is designed to make the input and output of the encoder as 

similar as possible, that is: 

'xx                                     (33) 

where ( ))(' xfgx = . 

In general, the mean square error can be used to measure the similarity between the input data and 

the output data, and its expression is as follows: 
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where datapxE ~ indicates that sample x meets the expectation of sample distribution p.  

In the learning process, the mean square error may become very small, which will lead to 

over-fitting. The expectation of AE is to have coding ability for the same type of data, that is to say, the 

network is required to have strong generalization ability. In this case, the L1 regularization or the 

Kullback-Leibler divergence (KLD) penalty item needs to be added to the loss function to make AE 

learn the sparse feature, that is sparse AE. The expression of two loss functions are as follows: 
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where λ is the regular parameter, which is used to balance loss function and regular term in penalty 

regression. hi is the excitation value of the ith neuron. 
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where β is the weight of control sparsity penalty factor. ρ is the sparsity parameter, generally, its value 

is set to be close to 0.
j̂ is the average excitation value of neuron j, which is calculated on the training 

set. If the value of
j̂ is close to 0, only a small number of samples can make this neuron work, which is 

called the sparse restriction. Since most of the hidden neurons are expected to be “inactive” to learn the 

specific structures,
j̂ is expected to be close to ρ. 

When the activation function of hidden layer is Sigmoid, the output value of hidden layer is 

between (0,1), KLD penalty item can be used. When the activation function of hidden layer is ReLU, 

the output value of hidden layer is between (0, + ), the L1 regulation function can be used.  

In practical application, we can stack multiple sparse AE to obtain a better feature extraction 

result, which is called the stacked AE. However, the multi-layer network structure will increase the 

complexity of network training.  

4. Feature extraction and classification based on improved sparse AE 

We choose 6 kinds of typical round steel surface defect sample images collected in the actual 
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production line as training set, and each defect contains 500 images. All the 3000 images are 

preprocessed and the defect parts are segmented. In Section 2.2, 42 features are selected as the initial 

feature set of round steel surface defects. On this basis, the horizontal direction of the data matrix is 

3000 defect images and the vertical direction of the data matrix is 42 feature parameters. In our 

proposed algorithms, the feature matrix of 3000×42 is operated as follows (Figure 1): 
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Figure 1. Feature extraction and classification based on improved sparse AE. 

An architecture overview of the network of purposed algorithms is shown in Figure 2. The 

shaded part represents the neurons that are not activated in sparse AE. The sparse AE is pre-trained, 

then as the input of the Softmax classifier.  

Output

Softmax classifer

Features after combination

h1 h2 h3 hn

Features extracted
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x1 x2 x3 xn

Hidden layer

Input layer

 

Figure 2. The architecture overview of the network. 
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The Softmax classifier is derived from statistical Logistic regression. The core idea of Logistic 

regression is to use the logical regression method in classification, which can judge the input data 

and then output a single discrete result to classify the extracted features. It first determines the 

probability of the extracted features and then classifies them. For the dataset, it gives the probability 

sum of all vectors to be 1. In Softmax, the specific mapping probability given by the function makes 

the sum of the probabilities of all categories 1. The Softmax functions are as follows: 


=

k

z

Z

j
k

j

e

e
zf )(                               (37) 

Where z is the vector of inputs, the results are mapped from the exponential domain to the 

probability, and the sum of probabilities is guaranteed to be 1. The Softmax loss function mainly uses 

the cross-entropy loss function, and its formula is as follows: 

)log(


−=

j

f

f

i
j

i

e

e
L                               (38) 

For the Softmax loss function, it can be understood from the point of view of information theory, 

and the loss function can be regarded as the entropy of two probabilities, and its formula is as 

follows: 

−= x
xqxpqpH )(log)(),(                          (39) 

The purpose of the loss function is to measure the error between the true classification result 

and the predicted classification result, and then optimize and modify it based on this value. 

Where p represents the probability of true classification, and q represents the probability of 

predicting classification. 

4.1. PKAE 

PCA is a linear FDR algorithm and KPCA is a nonlinear FDR algorithm. If PCA or KPCA is 

used for feature extraction, the feature extracted is the linear or nonlinear representation of the 

original input data. However, the relationship between round steel surface defects is complex. There 

may be not only linear relationships, but also non-linear relationships. It is necessary to combine 

PCA and KPCA features to obtain more complex features, then as the input of sparse AE to extract 

optimal features. In order to verify the performance of the Softmax classifier, k-fold cross validation 

is adopted. The original training set is divided into six parts, one of which is taken as the test set each 

time, and the other five parts are taken as the training set. Iterating 20 times, and taking the mean 

value of classification accuracy as the final experimental results.  

Suppose that the sample matrix is X ( ( )
mnijxX


= ). Where n is the total number of samples, m is the 

number of features and
ijx represents the jth feature value of the ith sample, where ni ,2,1= ,

mj ,,2,1 = . The specific steps of PKAE are as follows: 
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4.1.1. Feature extracted by PCA 

• Step 1 

Standardize the original data, all the samples are subtracted from the mean value of 

corresponding feature. The calculation formula of the mean value is as follows: 


=

=
n

i

ijj x
n

x
1

1

                                 

 (40) 

• Step 2 

Calculate the covariance matrix P ( ( )
mmjkrP


= ), where m is the number of features. 

jkr

represents the correlation between the jth and kth feature, where mj ,,2,1 = , mk ,,2,1 = : 
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(41) 

• Step 3 

Calculate the eigenvalue λi and the eigenvector еi of the covariance matrix P: 

ii Pee =i                                   
 (42) 

• Step 4 

Record the resulting eigenvalues in the order of large to small: k  21 , calculate the 

contribution rate of each principal component. The formula of contribution rate is as follows: 

 =

k

g g

g

1




                                          

 
(43)

   

where kg ,,2,1 = . The higher the contribution rate is, the stronger the information of the original 

variables contained in the principal component is. Generally, the top eigenvalues with cumulative 

variance contribution is more than 85% are considered.  

• Step 5 

Transform the original sample matrix X into a new matrix Y1 ( ( )
1

1 mnijYY


= ), where

ni ,,2,1 = ,
1,,2,1 mj = : 

 
1

,, 211 meeeXY =

                          

         (44)   

where  
1

,, 21 meee  represents a new feature space composed of m1 feature vectors. m1 are the principal 

components extracted by PCA. 
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4.1.2. Feature extracted by KPCA 

• Step 1 

Mapping each original sample data ix into high dimensional space by nonlinear function ( )x : 

( )ixx →
                                  

(45) 

where ni ,,2,1 = . 

• Step 2 

Calculated the kernel matrix   ( ) ( )( )jiijij xxKK == , . Use Gaussian function as the kernel 

function, then the expression function of K is as follows: 

( ) ）（
2

2

exp,


ji

ji

xx
xxK

−
−=

                                  
(46) 

where δ is the width, given by experience. 

• Step 3 

Calculate the central kernel matrix: 

nnnn KllKlKlKK −−−=
~

                                   
(47) 

• Step 4 

Calculate the eigenvalue and eigenvector of K
~

 

• Step 5 

Record the resulting eigenvalues in order of large to small:
k  21
, calculate the 

contribution rate of each principal component. Generally, the top eigenvalues with cumulative 

variance contribution is more than 95% are considered. 

• Step 6 

Transform the original sample matrix X into a new matrix Y2 ( ( )
2

2 mnijYY


= ), where

ni ,,2,1 = ,
2,,2,1 mj = : 

 
2

,, 212 meeeXY =                             (48) 

4.1.3. Feature extracted by PKAE 

• Step 1 

Add KPCA features belonging to the same sample to PCA features to get a new sample matrix 
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Y (  21,YYY = ): 

    ( )
)21 mmnijYY

+
=

（
                             (49)        

                
  

• Step 2 

The new sample matrix is divided in to training set and test set by 6-fold cross validation. Use 

sparse AE to learn the optimal features. Sigmoid is adopted as the activation function of hidden layer, 

in this case, the equation (36) is used as the loss function of sparse AE. 
 

• Step 3 

Add Softmax classifier at the top layer of the network, use the labeled data to train Softmax, and 

use back-propagation (BP) algorithm to adjust the weights in the network. The Softmax loss is used 

as the loss function. 

• Step 4 

Train the whole network and conduct classification by Softmax. 

4.2. 
 
PLAE 

PCA and LDA are both linear FDR algorithms, combine the features by these two FDR 

algorithms, then as the input of sparse AE, can learn the linear relationship and the possible hidden 

nonlinear relationship between round steel defects. In order to verify the performance of the Softmax 

classifier, k-fold cross validation is adopted. The original training set is divided into six parts, one of 

which is taken as the test set each time, and the other five parts are taken as the training set. Iterating 

20 times, and taking the mean value of classification accuracy as the final experimental results.  

Suppose that the sample matrix is X ( ( )
mnijxX


= ). n is the total number of samples, m is the 

number of features, and ijx represents the jth feature value of the ith sample, where
ni ,2,1=

,

mj ,,2,1 =
. The specific steps of PLAE are as follows: 

4.2.1. Feature extracted by PCA 

This step is the same as Section 4.1, after feature extracted by PCA, the original sample matrix 

X is transformed into a new matrix Y1 . 

4.2.2. Feature extracted by LDA 

LDA uses the following Fisher criteria to obtain the projection vector: 




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
w

T

b

T

S

S
J maxarg)( =

                          

 (50) 
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where
bS represents the inter-class dispersion matrix, and

wS represents the intra-class dispersion matrix. 

The calculation formulas are as follows: 

( )( )
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i iiib uuuun
n

S  =
−−=

1
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(51) 
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where  =
=

in

j

i

j

i

i x
n

u
1

1 represents the average value of the features of all samples belonging to class i, 

and  = =
=

c

i

n

j

i

j

i

x
n

u
1 1

1
represents the average value of the features of all samples. c represents there 

are a total of c defect types. 

The optimal projection vector α is the eigenvector corresponding to the maximum eigenvalue of 

the equation:  bw SS = . Let   km

k R  ，， 21 ,  be the set of the first k eigenvectors selected, where 

k=c-1. Then we can transform the original sample matrix X into a new matrix Y2 ( ( )
knijyY


=2

), where

ni ,2,1= , kj ,,2,1 = : 

 kXY  ,,, 212 =                            
(53) 

4.2.3. Feature extracted by PLAE 

• Step 1 

Add LDA features belonging to the same sample to PCA features to get a new sample matrix: 

 21,YYY =  

• Step 2 

The new sample matrix is divided in to training set and test set by 6-fold cross validation. Use 

sparse AE to learn the optimal features. Sigmoid is adopted as the activation function of hidden layer, 

in this case, the equation (36) is used as the loss function of sparse AE.  

• Step 3 

Add Softmax classifier at the top layer of the network, use the labeled data to train Softmax, and 

use back-propagation (BP) algorithm to adjust the weights in the network. The Softmax loss is used 

as the loss function. 

• Step 4 

Train the whole network and conduct classification by Softmax. 
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4.3. KLAE 

KPCA is a nonlinear FDR algorithm. The feature extracted by LDA is the linear representation 

of the original data. Combining these two FDR algorithms can extract the linear and nonlinear 

relationship of the round steel surface defects, then as the input of sparse AE to extract optimal 

features. In order to verify the performance of the Softmax classifier, k-fold cross validation is 

adopted. The original training set is divided into six parts, one of which is taken as the test set each 

time, and the other five parts are taken as the training set. Iterating 20 times, and taking the mean 

value of classification accuracy as the final experimental results.   

Suppose that the sample matrix is X ( ( )
mnijxX


= ). n is the total number of samples, m is the 

number of features, and
ijx represents the jth feature value of the ith sample, where ni ,2,1= ,

mj ,,2,1 = . The specific steps of KLAE are as follows: 

4.3.1. Feature extracted by KPCA 

This step is the same as Section 4.1, after feature extracted by KPCA, the original sample 

matrix X is transformed into a new matrix Y1 . 

4.3.2. Feature extracted by LDA 

This step is the same as Section 4.2, after feature extracted by LDA, the original sample matrix 

X is transformed into a new matrix Y2 . 

4.3.3. Feature extracted by KLAE 

• Step 1 

Add LDA features belonging to the same sample to KPCA features to get a new sample matrix: 

 21,YYY =  

• Step 2 

The new sample matrix is divided in to training set and test set by 6-fold cross validation. Use 

sparse AE to learn the optimal features. Sigmoid is adopted as the activation function of hidden layer, 

in this case, the equation (36) is used as the loss function of sparse AE.   

• Step 3 

Add Softmax classifier at the top layer of the network, use the labeled data to train Softmax, and 

use back-propagation (BP) algorithm to adjust the weights in the network. The Softmax loss is used 

as the loss function. 

• Step 4 

Train the whole network and conduct classification by Softmax. 
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5. Experimental results and discussions 

The data samples used in the experiment are 3000 selected round steel surface defect images as 

introduced in Section 4, which include 6 kinds of defects and 500 images of each defect. The images 

are preprocessed and defect parts are segmented. In order to verify the advantage of our proposed 

algorithms, we compared proposed algorithms with individual sparse AE and individual traditional 

FDR algorithm in classification accuracy. At the same time, we also provided a comparison of 

network training time between the proposed algorithms and individual sparse AE. Through the 

comparisons, the algorithm with best classification accuracy and minimum network training time are 

selected as the optimal algorithm. Finally, the feasibility and effectiveness of the optimal algorithm 

are verified in the context of actual production, 4 batches of round steel surface images collected on 

an actual production line were used as the test set to compare the defects classification accuracy 

between optimal algorithm and individual traditional FDR algorithm. 

5.1. Experimental environment and parameter settings 

The experimental environment was win 7, 32-bit system, i7 processor, 3.4 GHz main frequency 

and 4GB memory. All the programmings were completed on Matlab 2014. In order to obtain more 

advanced and complex features, the Sigmoid was selected as the active function. At the same time, 

the number of network training will affect the classification accuracy. After several experiments, the 

number of network training was selected as 1500, and the learning rate was set as 0.5. In the actual 

production line, the detection of surface defects, the change of production process parameters, the 

adjustment of energy data and the diagnosis of equipment operation parameters all share an ERP 

system, in this case, each function unit is required not to occupy too much computing resources. 

Therefore, the lower the network complexity is and the less network training time is, the better.  

5.2. Results and discussions 

In order to retain as much information as possible, in this research, the cumulative principal 

component contribution rate of PCA and KPCA was selected as 99%. The kernel function of KPCA 

is Gaussian kernel function. As a result, 15 features were remained after PCA, 12 features were 

remained after KPCA. The features remained after LDA were the number of defect types minus 1 

(that is 5).  

The number of hidden layer nodes will affect the performance of final network. At present, the 

common method to determine the number of hidden layer nodes is trail and error method. The same 

sample set is used to train the network with different numbers of hidden layer nodes, and the value 

corresponding to the minimum network error is selected. If the number of nodes in the input layer is 

n and the number of nodes in the output layer is l, the determination of the initial number of nodes in 

the hidden layer m is generally calculated by the following empirical formulas: 

++= lnm
                            

(54) 

where   is a constant between 1 and 10. 
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nm 2log=
                             

(55) 

nlm =
                             

(56) 

The advantage of sparse AE is that when the number of nodes in the hidden layer is large, it can 

learn the advanced features of input data by adding sparsity constraints. Therefore, formula (56) was 

adopted to determine the initial number of nodes in the hidden layer in this paper, then increased the 

number of nodes in hidden layer for training and compared the error of network with different 

numbers of nodes in hidden layer. The results are as follows (from Table 2 to Table 4): 

Table 2. The number of nodes in hidden layer comparison (PKAE). 

Number of nodes in hidden layer 27 29 31 

Error 0.00025471 0.00025449 0.00026228 

Table 3. The number of nodes in hidden layer comparison (PLAE). 

Number of nodes in hidden layer 20 22 24 

Error 0.00012659 0.00012046 0.00011305 

Table 4. The number of nodes in hidden layer comparison (KLAE). 

Number of nodes in hidden layer 17 19 21 

Error 0.00011545 0.00010816 0.00010538 

 

It can be seen from Table 2 to Table 4 that, in most cases, with the increase of the number of 

nodes in the hidden layer, the output error of the network decreases slightly, but not obviously. At the 

same time, when the number of nodes in the hidden layer is equal to the input layer and output layer, 

the error value is far less than the error requirement of 0.001. Therefore, in order to reduce the 

network complexity and reduce the network training time, the number of nodes in the hidden layer 

was set to be the same as the input layer and the output layer. In this case, in PKAE, the node number 

of input layer, hidden layer and output layer were the same, which was the sum of dimensions of 

PCA features and KPCA features (that is 27). In PLAE, the node number of input layer, hidden layer 

and output layer were the same, which was the sum of dimensions of PCA features and LDA features 

(that is 20). In KLAE, the node number of input layer, hidden layer and output layer were the same, 

which was the sum of dimensions of KPCA features and LDA features (that is 17). The experimental 

results of defects classification accuracy are shown in Table 5. For the better comparison, Softmax 

classifier is used for defects classification by all algorithms. 

It can be seen from Table 5: 

(1) The classification accuracy of the proposed algorithms (PKAE, PLAE and KLAE) are 

significantly better than individual traditional FDR algorithm and sparse AE.  

(2) The classification accuracy of PKAE is worse than PLAE and KLAE. This may be due to 

the similarity between different types of round steel surface defects, and LDA has the advantage in 

distinguishing different defect types. 



5390 

Mathematical Biosciences and Engineering  Volume 17, Issue 5, 5369–5394. 

(3) The classification accuracy of KLAE is better than PLAE. It is proved that there are both 

linear and nonlinear relationships between round steel surface defects. 

(4) KLAE has the best classification accuracy, and the classification accuracy on scratches 

reaches 99.12%. However, the classification accuracy of fold over and cracks are relatively low, 

which may be due to the similarity between these two defect types in shape and grayscale features, 

and sometimes it is difficult to distinguish them in the image.  

Table 5. Defects classification accuracy comparison. 

 PCA  LDA KPCA Sparse AE PKAE PLAE KLAE 

Scratches 88.53%  69.97% 89.31% 92.01% 92.54% 94.36% 99.12% 

Cracks 80.12%  60.01% 81.43% 84.36% 88.23% 90.49% 98.41% 

Ears 85.33%  66.30% 85.19% 90.62% 90.77% 93.12% 98.87% 

Fold over 81.04%  61.12% 81.90% 85.27% 89.01% 91.22% 97.96% 

Scarring 82.67%  63.32% 82.77% 87.30% 91.95% 92.97% 98.64% 

Roll marks 87.26%  66.43% 97.94% 90.43% 90.83% 93.75% 98.79% 

 

We also compared the network training time of the proposed algorithms with individual sparse 

AE. The experimental results of network training time are shown in Table 6. 

It can be seen from Table 6 that compared with individual sparse AE, the network training time 

of the proposed algorithms is greatly reduced. Among of them, KLAE requires less network training 

time, which is 45.99s. As KLAE has advantages in both classification accuracy and network training 

time, we finally chose KLAE as the final feature learning network.  

Table 6. Feature learning time comparison (s). 

Algorithm Sparse AE PKAE PLAE KLAE 

Time 624.26 70.62 46.80 45.99 

 

The experimental results of defects classification sensitivity and specificity were also provided 

to prove the effectiveness of KLAE. The results are shown in the table below (Table 7). 

It can be seen from the Table 7 that KLAE has both high defects classification sensitivity and 

specificity, so the algorithm proposed in this paper is very effective.  

Table 7. Defects classification accuracy, sensitivity and specificity of KLAE. 

 Accuracy Sensitivity Specificity 

Scratches 99.12% 98.59% 99.23% 

Cracks 98.41% 97.30% 98.63% 

Ears 98.87% 98.17% 99.01% 

Fold over 97.96% 96.61% 98.22% 

Scarring 98.64% 97.75% 98.82% 

Roll marks 98.79% 98.01% 98.94% 
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In order to further verify the feasibility of KLAE in the practical industrial application, 4 

batches of round steel surface images collected on the actual production line were used as the test set 

to compare the defects classification accuracy of KLAE and traditional FDR algorithm. The defects 

classification process of KLAE is shown in Figure 3: 
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Figure 3. The process of defects classification in actual production line. 

After image preprocessing and defect image screening, the number of defect images in each 

batch is: 401, 428, 500, 379. Then the features of defect part were extracted by KLAE, and classified 

by Softmax. The experimental results are shown in Table 8. 

As can be seen from Table 8 compared with traditional FDR algorithm, KLAE can significantly 

improves round steel surface defects classification accuracy in the actual production line. In actual 

production process, there may be multiple defects coverage in one round steel surface image, which 

may affect the accuracy of classification. In general, the defects classification accuracy in Table 5 

can satisfy the actual production application requirements. In this case, the proposed algorithm is 

feasible and effective. 

Table 8. Defects classification results in actual production line. 

 PCA LDA KPCA KLAE 

Batch 1 84.15% 65.51% 89.19% 98.64% 

Batch 2 86.19% 67.59% 84.33% 98.91% 

Batch 3 85.53% 66.79% 85.10% 99.23% 

Batch 4 87.74% 60.96% 81.29% 98.62% 

6. Conclusion 

Surface defects defection is particularly important for enterprises to meet different production 

standards and requirements. Normally, in defect feature extraction, we first obtain the defect area of 

the defect image by image preprocessing and defect segmentation, select the original feature set of 

defects by prior knowledge, evaluate the importance of selected features by using the traditional 

FDR algorithms and extract the optimal features according to the importance rank of features. In this 

paper, a feature extraction and classification algorithm based on improved sparse AE is proposed. We 



5392 

Mathematical Biosciences and Engineering  Volume 17, Issue 5, 5369–5394. 

adopt three traditional FDR algorithms at the same time, combine the defect features obtained in 

pairs, take merged defect features as the input of sparse AE, then use the “bottleneck” of sparse AE 

to conduct defects classification. The experimental results show that our proposed algorithm KLAE 

can extract the optimal features of round steel surface defects with less network training time than 

individual AE, and finally get higher classification accuracy than individual traditional FDR 

algorithm in the actual production line. 

Due to the limitation of time and conditions, this research still has some limitations. In the 

future research, improvements can be made in the following aspects: 

(1) Parameters in the network, such as the number of nodes in the hidden layer, the number of 

network training times and the activation function are all given based on experience, which will 

affect the classification accuracy of the final network. 

(2) Considering that stacked AE may increase the complexity of network training, this research only 

use the basic sparse AE with one hidden layer, which is proved can satisfy the actual production 

application requirements. However, stacked AE is also valuable for study to obtain better defect 

classification accuracy.  

(3) With the increase of production, new types of defects will also appear. In this research, we have 

considered the 6 typical round steel surface defects. In the future research, more abundant defects 

information can be obtained by updating the defect sample database to better classify the defects 

in the actual production line.  
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