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Abstract: In this paper, we establish a stochastic delayed avian influenza model with saturated
incidence rate. Firstly, we prove the existence and uniqueness of the global positive solution with
any positive initial value. Then, we study the asymptotic behaviors of the disease-free equilibrium and
the endemic equilibrium by constructing some suitable Lyapunov functions and applying the Young’s
inequality and Hölder’s inequality. If R0 < 1, then the solution of stochastic system is going around
disease-free equilibrium while the solution of stochastic system is going around endemic equilibrium
as R0 > 1. Finally, some numerical examples are carried out to illustrate the accuracy of the theoretical
results.
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1. Introduction

Avian influenza is an animal infectious disease caused by the transmission of influenza A viruses.
Influenza A viruses are divided into subtypes according to two proteins on the surface of the virus:
Hemagglutinin (HA) and neuraminidase (NA) [1]. Most avian influenza viruses infect only certain
species and do not infect humans. However, a few avian influenza viruses have crossed the species
barrier to infect humans and even kill them, such as H5N1, H7N1, H7N2, H7N3, H7N7, H9N2 and
H7N9. Among them, H5N1 is a highly pathogenic avian influenza virus, which was first detected in
human in Hong Kong in 1997. After that, humans infection with avian influenza have occurred from
time to time. As of December 2019, the global cumulative number of cases of human infection with
H5N1 avian influenza arrives 861, with 455 deaths. Unlike H5N1, H7N9 is classified as a low
pathogenicity avian influenza virus [2]. In March 2013, there was the first case of human infection
with the H7N9 avian influenza virus in Shanghai, China. In the following weeks, this virus spread to
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several provinces and municipalities in mainland China. As of May 2017, H7N9 has resulted in 1263
human cases in China, of whom 459 died, with a mortality rate of nearly 37%. The frequent outbreak
of avian influenza in the world not only brings a serious threat to human health, but also causes
psychological panic and huge social impact, and brings a huge blow to the national economy.
Therefore, it has been important to understand the dynamical behavior of avian influenza and to
predict what may occur. Mathematical modeling has been a useful tool to describe the dynamical
behavior of avian influenza and to obtain a better understanding of transmission mechanisms.
Recently, many avian influenza models have been built from different perspectives (see [2–12] and
references therein).

As we all know, there exist time delays during the spread of avian influenza, which can be used to
describe not only the infection period of avian influenza virus in poultry (human) population, but also
the incubation period of avian influenza in poultry (human) population and the immune period of
recovered human to avian influenza. Therefore, the time delays should be considered such that the
avian influenza models are more realistic. Generally speaking, delayed differential equations exhibit
more complex dynamical behavior than differential equations without delay because time delay can
make a stable equilibrium position to be unstable [13–16]. Consequently, it is of great interest to
describe the transmission mechanism of avian influenza by introducing time delay into the models.
For example, Liu et al. [7] and Kang et al. [12] established avian influenza models with different time
delays in the poultry and human populations by considering the incubation periods of avian influenza
virus and the survival probabilities of infected poultry and humans. By considering the existence of
intracellular delay between initial infection of a cell and the release of new virus particles,
Samanta [17] established a non-autonomous ordinary differential equation with distributed delay to
characterize the spread of avian influenza between poultry and humans. These surveys imply that the
research of time delay on avian influenza is a meaningful issue and is still open for study.

On the other hand, many existing literatures only focus on the deterministic avian influenza models
that do not consider the impact of environmental noise. However, in the real world, the spread of
avian influenza is often affected by the variations of environmental factors, such as humidity,
temperature and so on [18, 19]. Due to the fluctuations in the environment, an actual avian influenza
system would not remain in a stable state, which would interfere with this stable state by acting
directly on the density or indirectly affecting the parameter values. Therefore, it is of great
significance to reveal the impact of environmental noise on avian influenza model by using stochastic
model, so as to obtain more real benefits and accurately predict the future dynamics of avian
influenza. To better understand the transmission dynamics of avian influenza, some authors have
introduced stochastic perturbations into the deterministic models [20–22]. Zhang et al. [20]
constructed a stochastic avian-human influenza model with logistic growth for avian population, and
discussed the dynamical behavior of this model. Further, Zhang et al. [21] investigated a stochastic
avian-human influenza epidemic model with psychological effect in human population and saturation
effect within avian population. On the basis of the deterministic model established by Iwami et al. [3],
Zhang et al. [22] established the corresponding stochastic model by introducing density disturbance.
All the papers mentioned above only focused on the extinction and persistence of stochastic avian
influenza models. However, to the best of our knowledge, there is no results related to the asymptotic
behavior of stochastic avian influenza model around the equilibria of the corresponding deterministic
model.
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Motivated by the above discussions, in this paper, we investigate the asymptotic behavior of a
stochastic delayed avian influenza model with saturated incidence rate. This work differs from
existing results [7, 12, 17, 20–22] in that (a) time delays and white noise are taken into account to
describe the latency period of avian influenza virus in both poultry and human population and the
environmental fluctuations; (b) asymptotic behavior of a stochastic delayed avian influenza model is
studied. Overview of the rest of the article is as follows: In section 3, we show that there exists a
unique global positive solution of system (2.3) with the given initial value (2.4). In section 4, we
prove that the solution of system (2.3) is going around E0 under certain conditions. Further, we derive
that the solution of system (2.3) is going around E∗ under certain conditions in section 5. In section 6,
some numerical examples are introduced to illustrate the effectiveness of theoretic results. Finally,
some conclusions are given in section 7.

2. Model description and formulation

Although the avian influenza virus spreads between wild birds and poultry, and between poultry
and humans, we will only consider the transmission dynamics of avian influenza between poultry and
humans because poultry is the main source of infection. Moreover, we assume that the virus is not
spread between humans and mutate. We denote the total population of poultry and humans at time t by
Na(t) and Nh(t), respectively. When the susceptible poultry contact with the infected poultry closely,
there is usually no quick way to detect whether they are infected or the detection cost is too high, which
makes it impossible to distinguish whether the close contacts of poultry are infected with the avian
influenza virus. Therefore, the poultry population is divided into three sub-populations depending on
the state of the disease: susceptible poultry S a(t), exposed poultry Ea(t) and infected poultry Ia(t). The
total poultry population at time t is denoted by Na(t) = S a(t) + Ea(t) + Ia(t). The human population
is divided into three sub-populations, which are susceptible human S h(t), infected human with avian
influenza Ia(t) and recovered human from avian influenza Rh(t). The total population of human at time
t is given by Nh(t) = S h(t) + Ih(t) + Rh(t).
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Figure 1. Schematic diagram of the model (2.1).

The reason why we do not consider the exposed class for human population is that the close contacts
of human beings are usually isolated and tested to determine whether they are infected with the avian
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influenza virus. The poultry in Ea either shows symptoms after incubation period and move to Ia, or
always stays in Ea until natural death. The number of susceptible poultry (human) is increased by
new recruitment, but decreases by natural death and infection (moving to class Ia (Ih)). The number
of infected poultry (human) is increased by the infection of susceptible poultry (human) and reduced
through natural and disease-related death. In addition, the number of infected humans is also reduced
by recovery from the disease (moving to class Rh). Based on the above discussions, we obtain the
schematic diagram of our model (see Figure 1).

The corresponding avian influenza model can be represented by the following equations:



dS a(t)
dt

= Λa − µaS a(t) −
βaS a(t)Ia(t)
1 + α1Ia(t)

,

dEa(t)
dt

=
βae−µaτaS a(t − τa)Ia(t − τa)

1 + α1Ia(t − τa)
− (µa + γa)Ea(t),

dIa(t)
dt

= γaEa(t) − (µa + δa)Ia(t),

dS h(t)
dt

= Λh − µhS h(t) −
βhS h(t)Ia(t)
1 + α2Ia(t)

,

dIh(t)
dt

=
βhe−µhτhS h(t − τh)Ia(t − τh)

1 + α2Ia(t − τh)
− (µh + δh + θh)Ih(t),

dRh(t)
dt

= θhIh(t) − µhRh(t).

(2.1)

All parameters in model (2.1) are assumed non-negative and described in Table 1.

Table 1. Parameters description in the model (2.1).

Parameter Description
Λa new recruitment of the poultry populations
Λh new recruitment of the human population
βa the transmission rate from infective poultry to susceptible poultry
βh the transmission rate from infective poultry to susceptible human
µa the natural death rate of poultry populations
µh the natural death rate of human populations
δa the disease-related death rate of poultry populations
δh the disease-related death rate of humans populations
γa the transfer rate of exposed poultry to infected poultry
θh the recovery rate of the infective human
αi(i = 1, 2) parameters that measure the inhibitory effect

Because the removed human populations Rh(t) has no effect on the dynamics of the first five
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equations, system (2.1) can be decoupled to the following system:

dS a(t)
dt

= Λa − µaS a(t) −
βaS a(t)Ia(t)
1 + α1Ia(t)

,

dEa(t)
dt

=
βae−µaτaS a(t − τa)Ia(t − τa)

1 + α1Ia(t − τa)
− (µa + γa)Ea(t),

dIa(t)
dt

= γaEa(t) − (µa + δa)Ia(t),

dS h(t)
dt

= Λh − µhS h(t) −
βhS h(t)Ia(t)
1 + α2Ia(t)

,

dIh(t)
dt

=
βhe−µhτhS h(t − τh)Ia(t − τh)

1 + α2Ia(t − τh)
− (µh + δh + θh)Ih(t).

(2.2)

A realistic avian influenza system would not remain in this stable state due to environmental
fluctuations. In this paper, we will reveal how the environmental white noise affects the spread of
avian influenza through investigating the dynamics of a stochastic delayed avian influenza model with
saturated incidence rate. Taking the same approach as the literatures [23, 24], we assume that the
environmental white noise is directly proportional to the variables S a(t), Ea(t), Ia(t), S h(t) and Ih(t),
respectively. Then, corresponding to system (2.2), the stochastic avian influenza model with time
delay is of the following form

dS a(t) =

(
Λa − µaS a(t) −

βaS a(t)Ia(t)
1 + α1Ia(t)

)
dt + σ1S a(t)dB1(t),

dEa(t) =

(
βae−µaτaS a(t − τa)Ia(t − τa)

1 + α1Ia(t − τa)
− (µa + γa)Ea(t)

)
dt + σ2Ea(t)dB2(t),

dIa(t) =

(
γaEa(t) − (µa + δa)Ia(t)

)
dt + σ3Ia(t)dB3(t),

dS h(t) =

(
Λh − µhS h(t) −

βhS h(t)Ia(t)
1 + α2Ia(t)

)
dt + σ4S h(t)dB4(t),

dIh(t) =

(
βhe−µhτhS h(t − τh)Ia(t − τh)

1 + α2Ia(t − τh)
− (µh + δh + θh)Ih(t)

)
dt + σ5Ih(t)dB5(t),

(2.3)

in which Bi(t) (i = 1, 2, · · · , 5) are mutually independent standard Brownian motions defined on a
complete probability space (Ω,F ,P) with a filtration{Ft}t≥0 satisfying the usual conditions (i.e., it is
increasing and right continuous while F0 contains all P-null sets), σi (i = 1, 2, · · · , 5) denote the
intensities of the white noises. The initial value of system (2.3) are S a(θ) = ϕ1(θ), Ea(θ) = ϕ2(θ), Ia(θ) = ϕ3(θ), S h(θ) = ϕ4(θ), Ih(θ) = ϕ5(θ),

ϕi(θ) ∈ C([−τ, 0],R5
+), i = 1, 2, 3, 4, 5, τ = max{τa, τh},

(2.4)

where C is the Banach space C([−τ, 0];R5
+) of continuous functions mapping the interval [−τ, 0] into

R5
+, and R5

+ = {x = (x1, x2, x3, x4, x5) : xi > 0, i = 1, 2, 3, 4, 5}. By a biological meaning, we assume that
ϕi(0) > 0 (i = 1, 2, 3, 4, 5).
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3. Existence and uniqueness of the global positive solution

In this section, we prove that the solution of system (2.3) is global and positive for any initial value
(2.4).

Theorem 1. For any initial value (2.4), system (2.3) has a unique positive solution (S a(t), Ea(t), Ia(t),
S h(t), Ih(t)) on t ≥ 0 and the solution will remain in R5

+ with probability one, in other words,
(S a(t), Ea(t), Ia(t), S h(t), Ih(t)) ∈ R5

+ for all t ≥ 0 almost surely.

Proof. Since the coefficients of system (2.3) satisfy the local Lipschitz conditions, then for any initial
value (2.4), there exists a unique local solution (S a(t), Ea(t), Ia(t), S h(t), Ih(t)) on t ∈ [−τ, τe), where τe

is the explosive time. To show this solution is global, we only need to show that τe = ∞ a.s. To this
end, let k0 ≥ 1 be sufficiently large such that (S a(θ), Ea(θ), Ia(θ), S h(θ), Ih(θ)) (θ ∈ [−τ, 0]) all lie within
the interval [ 1

k0
, k0]. For each integer k ≥ k0, define the stopping time as

τk = inf{t ∈ [0, τe) : S a(t) < (
1
k
, k) or Ea(t) < (

1
k
, k)

or Ia(t) < (
1
k
, k) or S h(t) < (

1
k
, k) or Ih(t) < (

1
k
, k)}.

We set inf ∅ = ∞. Obviously, τk increasing when k → ∞. Let τ∞ = limk→∞ τk, where τ∞ ≤ τe a.s. If
we can verify τ∞ = ∞ a.s., then τe = ∞ and (S a(t), Ea(t), Ia(t), S h(t), Ih(t)) ∈ R5

+ a.s. for all t ≥ 0. That
is to say, to complete the proof we only need to show that τ∞ = ∞ a.s. If this assertion is not true, then
there is a pair of constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T } > ε.

There exists an integer k1 ≥ k0 such that

P{τk ≤ T } ≥ ε for all k ≥ k1. (3.1)

Define a C2-function V: R5
+ → R+ by

V(S a, Ea, Ia, S h, Ih) =e−µaτa(S a − a − a ln
S a

a
) + (Ea − 1 − ln Ea) + (Ia − 1 − ln Ia)

+ βae−µaτa

∫ t

t−τa

S a(s)Ia(s)
1 + α1Ia(s)

ds + e−µhτh(S h − b − b ln
S h

b
)

+ (Ih − 1 − ln Ih) + βhe−µhτh

∫ t

t−τh

S h(s)Ia(s)
1 + α2Ia(s)

ds,

in which a and b are positive constants to be determined later. The nonnegativity of this function can
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be derived from x − 1 − ln x ≥ 0 for any x > 0. Applying the Itô’s formula to V , we get

dV =e−µaτa

(
1 −

a
S a

)
dS a + e−µaτa

a
2S 2

a
(dS a)2 +

(
1 −

1
Ea

)
dEa +

a
2E2

a
(dEa)2

+

(
1 −

1
Ia

)
dIa +

a
2I2

a
(dIa)2 +

βae−µaτaS aIa

1 + α1Ia
−
βae−µaτaS a(t − τa)Ia(t − τa)

1 + α1Ia(t − τa)

+ e−µhτh

(
1 −

b
S h

)
dS h + e−µhτh

b
2S 2

h

(dS h)2 + (1 −
1
Ih

)dIh +
1

2I2
h

(dIh)2

+
βhe−µhτhS hIh

1 + α2Ia
−
βhe−µhτhS h(t − τh)Ia(t − τh)

1 + α2Ia(t − τh)
=LVdt + e−µaτaσ1(S a − a)dB1(t) + σ2(Ea − 1)dB2(t) + σ3(Ia − 1)dB3(t)

+ e−µhτhσ4(S h − b)dB4(t) + σ5(Ih − 1)dB5(t),

(3.2)

where

LV =e−µaτa

(
1 −

a
S a

)
(Λa − µaS a) −

(
1 −

1
Ea

)
(µa + γa)Ea

+

(
1 −

1
Ia

)
(γaEa − (µa + δa)Ia) + e−µhτh

(
1 −

b
S h

)
(Λh − µhS h)

−

(
1 −

1
Ih

)
(µh + δh + θh)Ih + e−µaτa

aσ2
1

2
+
σ2

2

2
+
σ2

3

2
+ e−µhτh

bσ2
4

2
+
σ2

5

2

≤ e−µaτaΛa + aµae−µaτa +
aσ2

1

2
e−µaτa + 2µa + δa + γa +

1
2
σ2

2 +
1
2
σ2

3

+ e−µhτhΛh + bµhe−µhτh + µh + δh + θh +
bσ2

4

2
e−µhτh +

1
2
σ2

5

+
(
aβae−µaτa + bβhe−µhτh − (µa + δa)

)
Ia.

Choose a =
µaeµaτa

βa
and b = δaeµhτh

βh
or a = δaeµaτa

βa
and b =

µaeµhτh

βh
such that

aβae−µaτa + bβhe−µhτh − (µa + δa) = 0.

Then, we can get

LV(S a, Ea, Ia, S h, Ih) ≤e−µaτaΛa + aµae−µaτa + e−µhτhΛh + bµhe−µhτh + 2µa + γa

+ δa + µh + δh + θh +
aσ2

1

2
e−µaτa +

bσ2
4

2
e−µhτh +

1
2

(σ2
2 + σ2

3 + σ2
5)

=: K,

where K is a positive constant. It thus follows from (3.2) that

dV(S a, Ea, Ia, S h, Ih) ≤Kdt + e−µaτaσ1(S a − a)dB1(t) + σ2(Ea − 1)dB2(t) + σ3(Ia − 1)dB3(t)
+ e−µhτhσ4(S h − b)dB4(t) + σ5(Ih − 1)dB5(t).

(3.3)
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Integrating both sides of (3.3) from 0 to τk ∧ T = min{τk,T } and then taking the expectation results in

EV(S a(τk ∧ T ), Ea(τk ∧ T ), Ia(τk ∧ T ), S h(τk ∧ T ), Ih(τk ∧ T ))
≤V(S a(0), Ea(0), Ia(0), S h(0), Ih(0)) + KE(τk ∧ T )
≤V(S a(0), Ea(0), Ia(0), S h(0), Ih(0)) + KT.

(3.4)

Set Ωk = {τk ≤ T } for k ≥ k1, and according to (3.1), we have P(Ωk) ≥ ε. For every ω ∈ Ωk,
there exists S a(τk, ω) or Ea(τk, ω) or Ia(τk, ω) or S h(τk, ω) or Ih(τk, ω) equals either k or 1

k . Therefore,
V(S a(τk, ω), Ea(τk, ω), Ia(τk, ω), S h(τk, ω), Ih(τk, ω)) is no less either k − 1 − ln k or 1

k − 1 − ln 1
k or

k − a − a ln k
a or 1

k − a + a ln ak or k − b − b ln k
b or 1

k − b + b ln bk.
Therefore, we have

V(S a(τk, ω), Ea(τk, ω), Ia(τk, ω), S h(τk, ω), Ih(τk, ω))

≥(k − 1 − ln k) ∧ (
1
k
− 1 + ln k) ∧ (k − a − a ln

k
a

)

∧ (
1
k
− a + a ln ak) ∧ (k − b − b ln

k
b

) ∧ (
1
k
− b + b ln bk).

It follows from (3.4) that

V(S a(0), Ea(0), Ia(0), S h(0), Ih(0)) + KT

≥E[1ΩkV(S a(τk, ω), Ea(τk, ω), Ia(τk, ω), S h(τk, ω), Ih(τk, ω))]

≥ε[(k − 1 − ln k) ∧ (
1
k
− 1 + ln k) ∧ (k − a − a ln

k
a

)

∧ (
1
k
− a + a ln ak) ∧ (k − b − b ln

k
b

) ∧ (
1
k
− b + b ln bk)],

where 1Ωk denotes the indicator function of Ωk. Letting k → ∞, then

∞ > V(S a(0), Ea(0), Ia(0), S h(0), Ih(0)) + KT = ∞,

which leads to the contradiction. This completes the proof. �

4. Asymptotic behavior of system (2.3) around the disease-free equilibrium E0

In this section, we will investigate the solution of system (2.3) around disease-free equilibrium E0

under certain conditions. It is worthwhile to mention that, if R0 =
βaγaΛae−µaτa

µa(µa+δa)(µa+γa) < 1, the deterministic
system (2.2) is globally asymptotically stable around the unique disease-free equilibrium
E0 = (S 0

a, 0, 0, S
0
h, 0) = (Λa

µa
, 0, 0, Λh

µh
, 0) , but E0 is not the equilibrium of the stochastic system (2.3).

Thus, the result concerning the solution of stochastic system (2.3) around E0 is presented by the
following theorem.

Theorem 2. Let (S a(t), Ea(t), Ia(t), S h(t), Ih(t)) be the solution of system (2.3) with the initial value
(2.4). If R0 < 1 and the following conditions hold

σ2
1 < µa, σ

2
2 < µa + γa, σ

2
3 < µa + δa, σ

2
4 < µh, σ

2
5 < µh + δh + θh,

Mathematical Biosciences and Engineering Volume 17, Issue 5, 5341–5368



5349

then,

lim sup
t→∞

1
t

E
∫ t

0

(
S a −

Λa

µa

)2

ds ≤
σ2

1Λ
2
a

µ2
a(µa − σ

2
1)
,

lim sup
t→∞

1
t

E
∫ t

0
(E2

a + I2
a)ds ≤

P1

M1
,

lim sup
t→∞

1
t

E
∫ t

0

(
S h −

Λh

µh

)2

ds ≤
Λ2

h

µ2
h(µh − σ

2
4)

(
σ2

4 +
βh

α2

)
,

lim sup
t→∞

1
t

E
∫ t

0
I2
hds ≤ P2,

where

M1 = min
{
µa + γa − σ

2
2

4
,

(µa + γa − σ
2
2)(µa + δa − σ

2
3)(µa + δa)

4γ2
a

}
,

P1 =
e−2µaτaσ2

1Λ
2
a

µ2
a

[
1

µa − σ
2
1

(
2µ2

a + 2µaγa + γ2
a

2(µa + γa)
+ σ2

1

)
+ 1

]
,

P2 =
2e−2µhτhΛh

µ2
h(µh + δh + θh − σ

2
5)

[
α2σ

2
4 + βh

α2(µh − σ
2
4)

(
2µ2

h + 2µhδh + 2µhθh + (δh + θh)2

2(µh + δh + θh)
+ σ2

4

)
+ σ2

4

]
.

Proof. Since (S 0
a, 0, 0, S

0
h, 0) is the disease-free equilibrium of system (2.2), then

Λa = µaS 0
a, Λh = µhS 0

h.

According to system (2.3), we can obtain that

dS a(t) =

[
−µa

(
S a −

Λa

µa

)
−

βaS aIa

1 + α1Ia

]
dt + σ1S adB1(t)

=

[
−µa

(
S a −

Λa

µa

)
− βa

(
S a −

Λa

µa

)
Ia

1 + α1Ia
− βa

Λa

µa

Ia

1 + α1Ia

]
dt + σ1S adB1(t),

(4.1)

and

d
[
Ea(t + τa) +

µa + γa

γa
Ia(t + τa)

]
= dEa(t + τa) +

µa + γa

γa
dIa(t + τa)

≤

[
βae−µaτa

(
S a −

Λa

µa

)
Ia

1 + α1Ia
−

(µa + γa)(µa + δa)
γa

Ia(t + τa)

+ βae−µaτa
Λa

µa
Ia

]
dt + σ2Ea(t + τa)dB2(t) +

σ3(µa + γa)
γa

Ia(t + τa)dB3(t)

≤

[
βae−µaτa

(
S a −

Λa

µa

)
Ia

1 + α1Ia
+

(µa + γa)(µa + δa)
γa

(Ia(t) − Ia(t + τa))
]
dt

+ σ2Ea(t + τa)dB2(t) +
σ3(µa + γa)

γa
Ia(t + τa)dB3(t).

(4.2)
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Let V1 = 1
2

(
S a −

Λa
µa

)2
, then applying the Itô’s formula to V1, together with (4.1), we have

dV1 =

[(
S a −

Λa

µa

) (
−µa

(
S a −

Λa

µa

)
− βa

(
S a −

Λa

µa

)
Ia

1 + α1Ia
− βa

Λa

µa

Ia

1 + α1Ia

)
+

1
2
σ2

1S 2
a

]
dt

+ σ1S a

(
S a −

Λa

µa

)
dB1(t)

=

−µa

(
S a −

Λa

µa

)2

− βa

(
S a −

Λa

µa

)2 Ia

1 + α1Ia
− βa

Λa

µa

(
S a −

Λa

µa

)
Ia

1 + α1Ia
+

1
2
σ2

1S 2
a

 dt

+ σ1S a

(
S a −

Λa

µa

)
dB1(t)

=: LV1dt + σ1S a

(
S a −

Λa

µa

)
dB1(t),

where

LV1 ≤ −µa

(
S a −

Λa

µa

)2

− βa
Λa

µa

(
S a −

Λa

µa

)
Ia

1 + α1Ia
+ σ2

1

(
S a −

Λa

µa

)2

+
σ2

1Λ
2
a

µ2
a

= −(µa − σ
2
1)

(
S a −

Λa

µa

)2

− βa
Λa

µa

(
S a −

Λa

µa

)
Ia

1 + α1Ia
+
σ2

1Λ
2
a

µ2
a
.

(4.3)

Similarly, let V2 = Ea(t + τa) +
µa+γa
γa

Ia(t + τa) +
(µa+γa)(µa+δa)

γa

∫ t+τa

t
Ia(s)ds, it follows from (4.2) that

dV2 ≤ βae−µaτa

(
S a −

Λa

µa

)
Ia

1 + α1Ia
+ σ2Ea(t + τa)dB2(t) +

σ3(µa + γa)
γa

Ia(t + τa)dB3(t).

Define V̄ = e−µaτaV1 + Λa
µa

V2, then

dV̄ ≤
−e−µaτa(µa − σ

2
1)

(
S a −

Λa

µa

)2

+ e−µaτaσ2
1
Λ2

a

µ2
a

 dt

+ σ1S a

(
S a −

Λa

µa

)
dB1(t) + σ2Ea(t + τa)dB2(t) +

σ3(µa + γa)
γa

Ia(t + τa)dB3(t).
(4.4)

Integrating both sides of (4.4) from 0 to t and taking expectation, we get

EV̄(t) − EV̄(0) ≤ −e−µaτa(µa − σ
2
1)E

∫ t

0

(
S a −

Λa

µa

)2

ds + e−µaτaσ2
1
Λ2

a

µ2
a

t.

Therefore, we can obtain

lim sup
t→∞

1
t

E
∫ t

0

(
S a −

Λa

µa

)2

ds ≤
σ2

1Λ
2
a

µ2
a(µa − σ

2
1)
.

Similarly, we define

V3 =
1
2

[
e−µaτa

(
S a −

Λa

µa

)
+ Ea(t + τa)

]2

,
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then,

LV3 = − e−2µaτaµa

(
S a −

Λa

µa

)2

− e−µaτa(2µa + γa)
(
S a −

Λa

µa

)
Ea(t + τa)

− (µa + γa)E2
a(t + τa) +

1
2

e−2µaτaσ2
1S 2

a +
1
2
σ2

2E2
a(t + τa)

≤ − e−2µaτaµa

(
S a −

Λa

µa

)2

+
µa + γa

2
E2

a(t + τa) +
(2µa + γa)2e−2µaτa

2(µa + γa)

(
S a −

Λa

µa

)2

− (µa + γa)E2
a(t + τa) + e−2µaτaσ2

1

(
S a −

Λa

µa

)2

+ e−2µaτa
σ2

1Λ
2
a

µ2
a

+
1
2
σ2

2E2
a(t + τa)

=e−2µaτa

(
2µ2

a + 2µaγa + γ2
a

2(µa + γa)
+ σ2

1

) (
S a −

Λa

µa

)2

−
1
2

(µa + γa − σ
2
2)E2

a(t + τa) + e−2µaτa
σ2

1Λ
2
a

µ2
a
.

Let V4 = V3 + 1
2 (µa + γa − σ

2
2)

∫ t+τa

t
E2

a(s)ds, we get

LV4 ≤ e−2µaτa

(
2µ2

a + 2µaγa + γ2
a

2(µa + γa)
+ σ2

1

) (
S a −

Λa

µa

)2

−
1
2

(µa + γa − σ
2
2)E2

a + e−2µaτa
σ2

1Λ
2
a

µ2
a
.

Let V5 = 1
2 I2

a , the derivative of V5 can be calculated as

LV5 =γaEaIa − (µa + δa)I2
a +

1
2
σ2

3I2
a

≤
µa + δa

2
I2
a +

γ2
a

2(µa + δa)
E2

a − (µa + δa)I2
a +

1
2
σ2

3I2
a

=
γ2

a

2(µa + δa)
E2

a −
1
2

(µa + δa − σ
2
3)I2

a .

The Young’s inequality is used above. Let

Ṽ = V4 +
e−µaτa

µa − σ
2
1

(
2µ2

a + 2µaγa + γ2
a

2(µa + γa)
+ σ2

1

)
V̄ +

(µa + γa − σ
2
2)(µa + δa)

2γ2
a

V5,

which implies that

LṼ ≤ −
1
2

(µa + γa − σ
2
2)E2

a + e−2µaτa
σ2

1Λ
2
a

µ2
a

+
e−2µaτaσ2

1Λ
2
a

µ2
a(µa − σ

2
1)

(
2µ2

a + 2µaγa + γ2
a

2(µa + γa)
+ σ2

1

)
+

1
4

(µa + γa − σ
2
2)E2

a −
(µa + γa − σ

2
2)(µa + δa − σ

2
3)(µa + δa)

4γ2
a

I2
a

= −
1
4

(µa + γa − σ
2
2)E2

a −
(µa + γa − σ

2
2)(µa + δa − σ

2
3)(µa + δa)

4γ2
a

I2
a

+ e−2µaτa
σ2

1Λ
2
a

µ2
a

[
1

µa − σ
2
1

(
2µ2

a + 2µaγa + γ2
a

2(µa + γa)
+ σ2

1

)
+ 1

]
.

(4.5)
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Integrating both sides of (4.5) from 0 to t and then taking expectation yields

EṼ(t) − EṼ(0) ≤ −
1
4

(µa + γa − σ
2
2)E

∫ t

0
E2

a(s)ds

−
(µa + γa − σ

2
2)(µa + δa − σ

2
3)(µa + δa)

4γ2
a

E
∫ t

0
I2
a(s)ds

+ e−2µaτa
σ2

1Λ
2
a

µ2
a

[
1

µa − σ
2
1

(
2µ2

a + 2µaγa + γ2
a

2(µa + γa)
+ σ2

1

)
+ 1

]
t.

Consequently, we can obtain

lim sup
t→∞

1
t

E
∫ t

0
(E2

a(s) + I2
a(s))ds ≤

P1

M1
,

where M1 and P1 are defined in Theorem 2. Further, according to system (2.3), we have

dS h(t) =

[
−µh

(
S h −

Λh

µh

)
−

βhS hIa

1 + α2Ia

]
dt + σ4S hdB4(t)

=

[
−µh

(
S h −

Λh

µh

)
−

(
S h −

Λh

µh

)
βhIa

1 + α2Ia
−

βhΛhIa

µh(1 + α2Ia)

]
dt + σ4S hdB4(t),

(4.6)

and

dIh(t + τh) =

[
βhe−µhτhS hIa

1 + α2Ia
− (µh + δh + θh)Ih(t + τh)

]
dt + σ5Ih(t + τh)dB5(t)

≤

[
βhe−µhτh Ia

1 + α2Ia

(
S h −

Λh

µh

)
+
βhΛhe−µhτh

α2µh
− (µh + δh + θh)Ih(t + τh)

]
dt

+ σ5Ih(t + τh)dB5(t).

(4.7)

Let V6 = 1
2

(
S h −

Λh
µh

)2
. Noting (4.6), we have

LV6 = −µh

(
S h −

Λh

µh

)2

− βh

(
S h −

Λh

µh

)2 Ia

1 + α2Ia
− βh

Λh

µh

(
S h −

Λh

µh

)
Ia

1 + α2Ia
+

1
2
σ2

4S 2
h

≤ −µh

(
S h −

Λh

µh

)2

− βh
Λh

µh

(
S h −

Λh

µh

)
Ia

1 + α2Ia
+ σ2

4

(
S h −

Λh

µh

)2

+
σ2

4Λ
2
h

µ2
h

= −(µh − σ
2
4)

(
S h −

Λh

µh

)2

− βh
Λh

µh

(
S h −

Λh

µh

)
Ia

1 + α2Ia
+
σ2

4Λ
2
h

µ2
h

.

Let V7 = e−µhτhV6 + Λh
µh

Ih(t + τh), it follows from (4.7) that

LV7 ≤ − e−µhτh(µh − σ
2
4)

(
S h −

Λh

µh

)2

+ e−µhτh
σ2

4Λ
2
h

µ2
h

+
βhΛ

2
he−µhτh

α2µ
2
h

−
Λh

µh
(µh + δh + θh)Ih(t + τh)

≤ − e−µhτh(µh − σ
2
4)

(
S h −

Λh

µh

)2

+ e−µhτh
Λ2

h

µ2
h

(σ2
4 +

βh

α2
).

(4.8)
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Integrating both sides of (4.8) from 0 to t and then taking the expectation yields

EV7(t) − EV7(0) ≤ −e−µhτh(µh − σ
2
4)E

∫ t

0

(
S h −

Λh

µh

)2

ds + e−µhτh
Λ2

h

µ2
h

(σ2
4 +

βh

α2
)t,

therefore, we can get

lim sup
t→∞

1
t

E
∫ t

0

(
S h −

Λh

µh

)2

ds ≤
Λ2

h

µ2
h(µh − σ

2
4)

(σ2
4 +

βh

α2
).

Let V8 = 1
2

[
e−µhτh

(
S h −

Λh
µh

)
+ Ih(t + τh)

]2
, then

LV8 =

(
e−µhτh

(
S h −

Λh

µh

)
+ Ih(t + τh)

) [
e−µhτh(Λh − µhS h) − (µh + δh + θh)Ih(t + τh)

]
+

1
2

e−2µhτhσ2
4S 2

h +
1
2
σ2

5I2
h(t + τh)

≤ − e−2µhτhµh

(
S h −

Λh

µh

)2

+
(2µh + δh + θh)2e−2µhτh

2(µh + δh + θh)

(
S h −

Λh

µh

)2

+
µh + δh + θh

2
I2
h(t + τh) − (µh + δh + θh)I2

h(t + τh) + e−2µhτhσ2
4

(
S h −

Λh

µh

)2

+
e−2µhτhσ2

4Λ
2
h

µ2
h

+
1
2
σ2

5I2
h(t + τh)

=e−2µhτh

(
2µ2

h + 2µhδh + 2µhθh + (δh + θh)2

2(µh + δh + θh)
+ σ2

4

) (
S h −

Λh

µh

)2

−
1
2

(µh + δh + θh − σ
2
5)I2

h(t + τh) +
e−2µhτhσ2

4Λ
2
h

µ2
h

.

Defining

V9 = V8 +
e−µhτh

µh − σ
2
4

(
2µ2

h + 2µhδh + 2µhθh + (δh + θh)2

2(µh + δh + θh)
+ σ2

4

)
V7 +

1
2

(µh + δh + θh − σ
2
5)

∫ t+τh

t
I2
h(s)ds,

we get

LV9 ≤ −
1
2

(µh + δh + θh − σ
2
5)I2

h

+
e−2µhτhΛ2

h

µ2
h

[
1

µh − σ
2
4

(σ2
4 +

βh

α2
)
(
2µ2

h + 2µhδh + 2µhθh + (δh + θh)2

2(µh + δh + θh)
+ σ2

4

)
+ σ2

4

]
.

(4.9)

Integrating both sides of (4.9) from 0 to t and taking expectation, we obtain

EV9(t) − EV9(0) ≤ −
1
2

(µh + δh + θh − σ
2
5)E

∫ t

0
I2
h(s)ds +

e−2µhτhΛ2
h

µ2
h

[ 1
µh − σ

2
4

(σ2
4 +

βh

α2
)(

2µ2
h + 2µhδh + 2µhθh + (δh + θh)2

2(µh + δh + θh)
+ σ2

4

)
+ σ2

4

]
t.
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Consequently, we can obtain

lim sup
t→∞

E
∫ t

0
I2
h(s)ds ≤ P2,

where P2 is defined in Theorem 2. This completes the proof. �

5. Asymptotic behavior of system (2.3) around the endemic equilibrium E∗

If R0 > 1, there exists an endemic equilibrium E∗ = (S ∗a, E
∗
a, I
∗
a, S

∗
h, I
∗
h) of system (2.2), but it is

not the equilibrium of system (2.3), where S ∗a =
Λa(1+α1I∗a)

µa(1+α1I∗a)+βaI∗a
, E∗a =

βaΛae−µaτa I∗a
(µa+γa)[µa(1+α1I∗a)+βaI∗a] , I∗a =

µa(R0−1)
α1µa+βa

,

S ∗h =
Λh(1+α2I∗a)

µh(1+α2I∗a)+βhI∗a
, E∗a =

βhe−µhτh S ∗hI∗a
(µh+δh+θh)(1+α2I∗a) . In this section, we show that the solution of system (2.3) is

going around E∗ under certain conditions.

Theorem 3. Let (S a(t), Ea(t), Ia(t), S h(t), Ih(t)) be the solution of system (2.3) with initial value (2.4).
If R0 > 1 and the following conditions hold

(i) σ2
1 < µa, σ

2
2 <

1
2 (µa + γa), σ2

3 <
1
2 (µa + δa), σ2

4 < µh, σ
2
5 < µh + δh + θh;

(ii) max(
√

P3,
√

P4,
√

P5,
√

P6) < d(E∗, E0),

then

lim sup
t→∞

1
t

E
∫ t

0
(S a − S ∗a)2ds ≤ P3,

lim sup
t→∞

E
∫ t

0
[(Ea(s) − E∗a)2 + (Ia(s) − I∗a)2]ds ≤

L1

L2
=: P4,

lim sup
t→∞

E
∫ t

0
(S h − S ∗h)2ds ≤ P5,

lim sup
t→∞

E
∫ t

0
(Ih − I∗h)2ds ≤ P6,

where

d(E∗, E0) =

√(
S ∗a −

Λa

µa

)2

+ (E∗a)2 + (I∗a)2 +

(
S ∗h −

Λh

µh

)2

+ (I∗h)2

P3 =
1

µa − σ
2
1

[
σ2

1(S ∗a)2 +
σ2

1S ∗aL3

2µa
+

(
eµaτaS ∗a +

L3

µae−µaτa

) (
1
2
σ2

2E∗a +
µa + γa

2γa
σ2

3I∗a

) ]
,

P4 =
L1

L2
, P5 =

σ2
4(S ∗h)2

µh − σ
2
4

,

P6 =
σ2

4L2
4

(µh − σ
2
4)(µh + δh + θh − σ

2
5)2

+
2σ2

5(I∗h)2

µh + δh + θh − σ
2
5

,

L1 =
e−µaτa

µa − σ
2
1

(
2µ2

a + 2µaγa + γ2
a

2(µa + γa)
+ σ2

1

) [
σ2

1(S ∗a)2 +
σ2

1S ∗aL3

2µa

+

(
eµaτaS ∗a +

L3

µae−µaτa

) (
1
2
σ2

2E∗a +
1
2
µa + γa

γa
σ2

3I∗a

) ]
+ e−2µaτaσ2

1(S ∗a)2
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+ σ2
2(E∗a)2 +

σ2
3(µa + δa)(µa + γa − 2σ2

2)
2γ2

a
(I∗a)2,

L2 = min
{

1
4

(µa + γa − 2σ2
2),

(µa + δa)(µa + γa − 2σ2
2)(µa + δa − 2σ2

3)
4γ2

a

}
,

L3 =
βaS ∗aI∗a

1 + α1I∗a
, L4 =

β∗hS ∗hI∗a
1 + α2I∗a

.

Proof. Since (S ∗a, E
∗
a, I
∗
a, S

∗
h, I
∗
h) is the interior equilibrium of system (2.2), then

Λa = µaS ∗a +
βaS ∗aI∗a

1 + α1I∗a
, (µa + γa)E∗a =

βae−µaτaS ∗aI∗a
1 + α1I∗a

,
I∗a
E∗a

=
γa

µa + δa
,

Λh = µhS ∗h +
βhS ∗hI∗a

1 + α2I∗a
, (µh + δh + θh)I∗h =

βhe−µhτhS ∗hI∗a
1 + α2I∗a

.

(5.1)

Define the Lyapunov function W1 as W1 = S a − S ∗a − S ∗a ln S a
S ∗a

, from which we have

dW1 =

(
Λa − µaS a −

βaS aIa

1 + α1Ia
−

ΛaS ∗a
S a

+ µaS ∗a +
βaS ∗aIa

1 + α1Ia
+

1
2

S ∗aσ
2
1

)
dt + σ1(S a − S ∗a)dB1(t)

=

[ (
µaS ∗a +

βaS ∗aI∗a
1 + α1I∗a

)
(2 −

S ∗a
S a
−

S a

S ∗a
) +

βaS ∗aI∗a
1 + α1I∗a

(
−

S aIa(1 + α1I∗a)
S ∗aI∗a(1 + α1Ia)

+
S a

S ∗a
+

Ia(1 + α1I∗a)
I∗a(1 + α1Ia)

− 1
)

+
1
2

S ∗aσ
2
1

]
dt + σ1(S a − S ∗a)dB1(t)

=LW1dt + σ1(S a − S ∗a)dB1(t),

where

LW1 = −

(
µa +

βaI∗a
1 + α1I∗a

)
(S a − S ∗a)2

S a
− βa(S a − S ∗a)

(
Ia

1 + α1Ia
−

I∗a
1 + α1I∗a

)
+

1
2

S ∗aσ
2
1. (5.2)

Similarly, we can define W2 as

W2 = Ea(t + τa) − E∗a − E∗a ln
Ea(t + τa)

E∗a
+
µa + γa

γa

(
Ia(t + τa) − I∗a − I∗a ln

Ia(t + τa)
I∗a

)
.

By using the Itô’s formula, the derivative of W2 is calculated as follows

LW2 =

(
1 −

E∗a
Ea(t + τa)

) (
βae−µaτaS aIa

1 + α1Ia
− (µa + γa)Ea(t + τa)

)
+
µa + γa

γa(
1 −

I∗a
Ia(t + τa)

)
(γaEa(t + τa) − (µa + δa)Ia(t + τa)) +

1
2
σ2

2E∗a +
µa + γa

2γa
σ2

3I∗a

=
βae−µaτa I∗a
1 + α1I∗a

(S a − S ∗a)
(
1 + α1I∗a

I∗a

Ia

1 + α1Ia
− 1

)
+
βae−µaτaS ∗aI∗a

1 + α1I∗a

(S a

S ∗a

−
1 + α1I∗a

S ∗aI∗a

S aIa

1 + α1Ia

E∗a
Ea(t + τa)

+
1 + α1I∗a

I∗a

Ia

1 + α1Ia
−

Ia(t + τa)
I∗a

−
Ea(t + τa)

E∗a

I∗a
Ia(t + τa)

)
+

1
2
σ2

2E∗a +
1
2
µa + γa

γa
σ2

3I∗a.

(5.3)
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Since x − 1 − ln x ≥ 0 for x > 0, the following estimate can be obtained

1 + α1I∗a
S ∗aI∗a

S aIa

1 + α1Ia

E∗a
Ea(t + τa)

≥1 + ln
(
1 + α1I∗a

S ∗aI∗a

S aIa

1 + α1Ia

E∗a
Ea(t + τa)

)
=1 + ln

S a

S ∗a
− ln

Ia(t + τa)
I∗a

+ ln
Ia(1 + α1I∗a)
I∗a(1 + α1Ia)

− ln
Ea(t + τa)

E∗a

I∗a
Ia(t + τa)

.

(5.4)

Substituting (5.4) into (5.3), we can get

LW2 ≤
βae−µaτa I∗a
1 + α1I∗a

(S a − S ∗a)
(
1 + α1I∗a

I∗a

Ia

1 + α1Ia
− 1

)
+
βae−µaτaS ∗aI∗a

1 + α1I∗a

(S a

S ∗a
− 1 − ln

S a

S ∗a

+ ln
Ia(t + τa)

I∗a
− ln

Ia(1 + α1I∗a)
I∗a(1 + α1Ia)

+ ln
Ea(t + τa)

E∗a

I∗a
Ia(t + τa)

+
1 + α1I∗a

I∗a

Ia

1 + α1Ia

−
Ia(t + τa)

I∗a
−

Ea(t + τa)
E∗a

I∗a
Ia(t + τa)

)
+

1
2
σ2

2E∗a +
1
2
µa + γa

γa
σ2

3I∗a

=
βae−µaτa I∗a
1 + α1I∗a

(S a − S ∗a)
(
1 + α1I∗a

I∗a

Ia

1 + α1Ia
− 1

)
+
βae−µaτaS ∗aI∗a

1 + α1I∗a

[
(
S a

S ∗a
− ln

S a

S ∗a
)

−

(
Ia(t + τa)

I∗a
− ln

Ia(t + τa)
I∗a

)
+

(
Ia(1 + α1I∗a)
I∗a(1 + α1Ia)

− ln
Ia(1 + α1I∗a)
I∗a(1 + α1Ia)

)
−

(
Ea(t + τa)

E∗a

I∗a
Ia(t + τa)

− ln
Ea(t + τa)

E∗a

I∗a
Ia(t + τa)

)
− 1

]
+

1
2
σ2

2E∗a +
1
2
µa + γa

γa
σ2

3I∗a.

(5.5)

Choose W3 = W2 +
βae−µaτa S ∗aI∗a

1+α1I∗a

∫ t+τa

t

(
Ia(s)

I∗a
− ln Ia(s)

I∗a
− 1

)
ds. Therefore, LW3 can be obtained as follows

by using (5.5):

LW3 ≤
βae−µaτa I∗a
1 + α1I∗a

(S a − S ∗a)
(

Ia(1 + α1I∗a)
I∗a(1 + α1Ia)

− 1
)

+
βae−µaτaS ∗aI∗a

1 + α1I∗a

[ (
S a

S ∗a
− ln

S a

S ∗a

)
−

(
Ia(t + τa)

I∗a
− ln

Ia(t + τa)
I∗a

)
+

(
Ia(1 + α1I∗a)
I∗a(1 + α1Ia)

− ln
Ia(1 + α1I∗a)
I∗a(1 + α1Ia)

)
−

(
Ea(t + τa)

E∗a

I∗a
Ia(t + τa)

− ln
Ea(t + τa)

E∗a

I∗a
Ia(t + τa)

)
− 1

]
+

1
2
σ2

2E∗a +
1
2
µa + γa

γa
σ2

3I∗a

+
βae−µaτaS ∗aI∗a

1 + α1I∗a

(
Ia(t + τa)

I∗a
− ln

Ia(t + τa)
I∗a

− 1
)
−
βae−µaτaS ∗aI∗a

1 + α1I∗a

(
Ia

I∗a
− ln

Ia

I∗a
− 1

)
≤
βae−µaτa I∗a
1 + α1I∗a

(S a − S ∗a)
(

Ia(1 + α1I∗a)
I∗a(1 + α1Ia)

− 1
)

+
βae−µaτaS ∗aI∗a

1 + α1I∗a

[
S a

S ∗a
+

S ∗a
S a
− 1 −

Ia

I∗a

+
Ia(1 + α1I∗a)
I∗a(1 + α1Ia)

+ ln
I∗a(1 + α1Ia)
Ia(1 + α1I∗a)

Ia

I∗a
− 1

]
+

1
2
σ2

2E∗a +
1
2
µa + γa

γa
σ2

3I∗a.

(5.6)
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Noting that x − 1 − ln x ≥ 0 holds for x > 0, we also have

−
Ia

I∗a
+

Ia(1 + α1I∗a)
I∗a(1 + α1Ia)

+ ln
I∗a(1 + α1Ia)
Ia(1 + α1I∗a)

Ia

I∗a

≤ −
Ia

I∗a
+

Ia(1 + α1I∗a)
I∗a(1 + α1Ia)

+
I∗a(1 + α1Ia)
Ia(1 + α1I∗a)

Ia

I∗a
− 1

≤
I∗a(1 + α1Ia)
Ia(1 + α1I∗a)

Ia

I∗a

(
Ia(1 + α1I∗a)
I∗a(1 + α1Ia)

I∗a
Ia
− 1

) (
Ia(1 + α1I∗a)
I∗a(1 + α1Ia)

− 1
)

=
(1 + α1Ia)(1 + α1I∗a)

I∗a

(
1

1 + α1Ia
−

1
1 + α1I∗a

) (
Ia

1 + α1Ia
−

I∗a
1 + α1I∗a

)
< 0,

(5.7)

substituting (5.7) into (5.6) and using S a
S ∗a

+
S ∗a
S a
− 2 =

(S a−S ∗a)2

S aS ∗a
, we know that

LW3 ≤
βae−µaτa I∗a
1 + α1I∗a

(S a−S ∗a)
(

Ia(1 + α1I∗a)
I∗a(1 + α1Ia)

− 1
)
+
βae−µaτa I∗a
1 + α1I∗a

(S a − S ∗a)2

S a
+

1
2
σ2

2E∗a +
1
2
µa + γa

γa
σ2

3I∗a. (5.8)

Let W4 = W1 +
1+α1I∗a

βae−µaτa I∗a

(
µa +

βaI∗a
1+α1I∗a

)
W3. Applying the Itô’s formula, together with (5.2) and (5.8),

derives that

LW4 =LW1 +
1 + α1I∗a
βae−µaτa I∗a

(
µa +

βaI∗a
1 + α1I∗a

)
LW3

≤ −

(
µa +

βaI∗a
1 + α1I∗a

)
(S a − S ∗a)2

S a
− βa(S a − S ∗a)

(
Ia

1 + α1Ia
−

I∗a
1 + α1I∗a

)
+

1
2
σ2

1S ∗a

+
1 + α1I∗a
βae−µaτa I∗a

(
µa +

βaI∗a
1 + α1I∗a

) [
βae−µaτa I∗a
1 + α1I∗a

(S a − S ∗a)
(

Ia(1 + α1I∗a)
I∗a(1 + α1Ia)

− 1
)

+
βae−µaτa I∗a
1 + α1I∗a

(S a − S ∗a)2

S a
+

1
2
σ2

2E∗a +
1
2
µa + γa

γa
σ2

3I∗a

]
=

(
µa +

βaI∗a
1 + α1I∗a

)
(S a − S ∗a)

(
Ia(1 + α1I∗a)
I∗a(1 + α1Ia)

− 1
)
− βa(S a − S ∗a)

( Ia

1 + α1Ia

−
I∗a

1 + α1I∗a

)
+

1
2
σ2

1S ∗a +
1 + α1I∗a
βae−µaτa I∗a

(
µa +

βaI∗a
1 + α1I∗a

) (
1
2
σ2

2E∗a +
1
2
µa + γa

γa
σ2

3I∗a

)
=(S a − S ∗a)

(
Ia

1 + α1Ia
−

I∗a
1 + α1I∗a

) [(
µa +

βaI∗a
1 + α1I∗a

)
1 + α1I∗a

I∗a
− βa

]
+

1
2
σ2

1S ∗a

+
1 + α1I∗a
βae−µaτa I∗a

(
µa +

βaI∗a
1 + α1I∗a

) (
1
2
σ2

2E∗a +
1
2
µa + γa

γa
σ2

3I∗a

)
=
µa(1 + α1I∗a)

I∗a
(S a − S ∗a)

(
Ia

1 + α1Ia
−

I∗a
1 + α1I∗a

)
+

1
2
σ2

1S ∗a

+
1 + α1I∗a
βae−µaτa I∗a

(
µa +

βaI∗a
1 + α1I∗a

) (
1
2
σ2

2E∗a +
1
2
µa + γa

γa
σ2

3I∗a

)
.

(5.9)

Choose Lyapunov function W5 as W5 =
(S a−S ∗a)2

2 , then its derivative is

LW5 =(S a − S ∗a)
[
Λa − µaS a −

βaS aIa

1 + α1Ia

]
+

1
2
σ2

1S 2
a
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=(S a − S ∗a)
[
µaS ∗a − µaS a +

βaS ∗aI∗a
1 + α1I∗a

−
βaS aIa

1 + α1Ia

]
+

1
2
σ2

1S 2
a

= − µa(S a − S ∗a)2 − βaS ∗a(S a − S ∗a)
(

Ia

1 + α1Ia
−

I∗a
1 + α1I∗a

)
− βa(S a − S ∗a)2 Ia

1 + α1Ia
+

1
2
σ2

1S 2
a

≤ − µa(S a − S ∗a)2 − βaS ∗a(S a − S ∗a)
(

Ia

1 + α1Ia
−

I∗a
1 + α1I∗a

)
+ σ2

1(S a − S ∗a)2 + σ2
1(S ∗a)2

= − (µa − σ
2
1)(S a − S ∗a)2 − βaS ∗a(S a − S ∗a)

(
Ia

1 + α1Ia
−

I∗a
1 + α1I∗a

)
+ σ2

1(S ∗a)2.

Let W̄ = W5 +
βaS ∗aI∗a

µa(1+α1I∗a)W4, one can derive that

LW̄ ≤ − (µa − σ
2
1)(S a − S ∗a)2 − βaS ∗a(S a − S ∗a)

(
Ia

1 + α1Ia
−

I∗a
1 + α1I∗a

)
+ σ2

1(S ∗a)2

+
βaS ∗aI∗a

µa(1 + α1I∗a)

[µa(1 + α1I∗a)
I∗a

(S a − S ∗a)
(

Ia

1 + α1Ia
−

I∗a
1 + α1I∗a

)
+

1
2
σ2

1S ∗a

+
1 + α1I∗a
βae−µaτa I∗a

(
µa +

βaI∗a
1 + α1I∗a

) (
1
2
σ2

2E∗a +
1
2
µa + γa

γa
σ2

3I∗a

) ]
= − (µa − σ

2
1)(S a − S ∗a)2 + σ2

1(S ∗a)2 +
βaS ∗aI∗a

2µa(1 + α1I∗a)
σ2

1S ∗a

+

(
eµaτaS ∗a +

βaS ∗aI∗a
µae−µaτa(1 + α1I∗a)

) (
1
2
σ2

2E∗a +
1
2
µa + γa

γa
σ2

3I∗a

)
.

(5.10)

Integrating both sides of (5.10) from 0 to t and then taking expectation yields

EW̄(t) − EW̄(0) ≤ − (µa − σ
2
1)E

∫ t

0
(S a(s) − S ∗a)2ds +

[
σ2

1(S ∗a)2 +
βaS ∗aI∗a

2µa(1 + α1I∗a)
σ2

1S ∗a

+

(
eµaτaS ∗a +

βaS ∗aI∗a
µae−µaτa(1 + α1I∗a)

) (
1
2
σ2

2E∗a +
1
2
µa + γa

γa
σ2

3I∗a

) ]
t.

Then, we can get

lim sup
t→∞

1
t

E
∫ t

0
(S a(s) − S ∗a)2ds ≤ P3,

where P3 is defined in Theorem 3. Defining W6 = 1
2

[
e−µaτa(S a − S ∗a) + Ea(t + τa) − E∗a

]2, the use of
Itô’s formula yields that

LW6 = − µae−2µaτa(S a − S ∗a)2 − (µa + γa)(Ea(t + τa) − E∗a)2 − (2µa + γa)e−µaτa(S a − S ∗a)

(Ea(t + τa) − E∗a) +
1
2

e−2µaτaσ2
1S 2

a +
1
2
σ2

2E2
a(t + τa)

≤ − µae−2µaτa(S a − S ∗a)2 − (µa + γa)(Ea(t + τa) − E∗a)2 +
µa + γa

2
(Ea(t + τa) − E∗a)2

+
(2µa + γa)2e−2µaτa

2(µa + γa)
(S a − S ∗a)2 + e−2µaτaσ2

1(S a − S ∗a)2 + e−2µaτaσ2
1(S ∗a)2

+ σ2
2(Ea(t + τa) − E∗a)2 + σ2

2(E∗a)2
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=e−2µaτa

(
2µ2

a + 2µaγa + γ2
a

2(µa + γa)
+ σ2

1

)
(S a − S ∗a)2 −

(
µa + γa

2
− σ2

2

)
(Ea(t + τa) − E∗a)2

+ e−2µaτaσ2
1(S ∗a)2 + σ2

2(E∗a)2.

Let W7 = W6 +
(
µa+γa

2 − σ2
2

) ∫ t+τa

t
(Ea(s) − E∗a)2ds and W8 = 1

2 (Ia − I∗a)2. We have

LW7 ≤e−2µaτa

(
2µ2

a + 2µaγa + γ2
a

2(µa + γa)
+ σ2

1

)
(S a − S ∗a)2 −

(
µa + γa

2
− σ2

2

)
(Ea − E∗a)2

+ e−2µaτaσ2
1(S ∗a)2 + σ2

2(E∗a)2,

(5.11)

and

LW8 =(Ia − I∗a)(γaEa − (µa + δa)Ia) +
1
2
σ2

3I2
a

=γa(Ea − E∗a)(Ia − I∗a) − (µa + δa)(Ia − I∗a)2 +
1
2
σ2

3I2
a

≤
µa + δa

2
(Ia − I∗a)2 +

γ2
a

2(µa + δa)
(Ea − E∗a)2

− (µa + δa)(Ia − I∗a)2 + σ2
3(Ia − I∗a)2 + σ2

3(I∗a)2

=
γ2

a

2(µa + δa)
(Ea − E∗a)2 −

(
µa + δa

2
− σ2

3

)
(Ia − I∗a)2 + σ2

3(I∗a)2.

(5.12)

Let W̃ = W7 + e−µaτa

µa−σ
2
1

(
2µ2

a+2µaγa+γ2
a

2(µa+γa) + σ2
1

)
W̄ +

(µa+δa)(µa+γa−2σ2
2)

2γ2
a

W8. Making use of (5.10), (5.11) and (5.12)
yields that

LW̃ =LW7 +
e−µaτa

µa − σ
2
1

(
2µ2

a + 2µaγa + γ2
a

2(µa + γa)
+ σ2

1

)
LW̄ +

(µa + δa)(µa + γa − 2σ2
2)

2γ2
a

LW8

≤ −
1
4

(µa + γa − 2σ2
2)(Ea − E∗a)2 −

(µa + δa)(µa + γa − 2σ2
2)(µa + δa − 2σ2

3)
4γ2

a
(Ia − I∗a)2 + L1.

(5.13)

Integrating both sides of (5.13) from 0 to t and then taking expectation yields

EW̃(t) − EW̃(0) ≤ −
1
4

(µa + γa − 2σ2
2)E

∫ t

0
(Ea(s) − E∗a)2ds

−
(µa + δa)(µa + γa − 2σ2

2)(µa + δa − 2σ2
3)

4γ2
a

E
∫ t

0
(Ia(s) − I∗a)2ds + L1t.

Therefore, we can obtain

lim sup
t→∞

E
∫ t

0
[(Ea(s) − E∗a)2 + (Ia(s) − I∗a)2]ds ≤

L1

L2
=: P4,
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where L1, L2 have been defined in Theorem 3. Taking U1 = 1
2 (S h − S ∗h)2, we have

LU1 =(S h − S ∗h)(Λh − µhS h −
βhS hI∗a

1 + α2I∗a
) +

1
2
σ2

4S ∗h

=(S h − S ∗h)
[
µhS ∗h − µhS h +

βhS ∗hI∗a
1 + α2I∗a

−
βhS hI∗a

1 + α2I∗a

]
+

1
2
σ2

4S ∗h

= − (µh +
βhI∗a

1 + α2I∗a
)(S h − S ∗h)2 + σ2

4(S h − S ∗h)2 + σ2
4(S ∗h)2

≤ − (µh − σ
2
4)(S h − S ∗h)2 + σ2

4(S ∗h)2.

(5.14)

Integrating both sides of (5.14) from 0 to t and then taking expectation, we get

EU1(t) − EU1(0) ≤ − (µh − σ
2
4)E

∫ t

0
(S h − S ∗h)2ds + σ2

4(S ∗h)2t.

Therefore, we can obtain

lim sup
t→∞

E
∫ t

0
(S h − S ∗h)2ds ≤

σ2
4(S ∗h)2

µh − σ
2
4

.

Let U2 = 1
2 [Ih(t + τh) − I∗h]2, we have

LU2 =(Ih(t + τh) − I∗h)
[
βhS hI∗a

1 + α2I∗a
− (µh + δh + θh)Ih(t + τh)

]
+

1
2
σ2

5I2
h(t + τh)

=
βhI∗a

1 + α2I∗a
(Ih(t + τh) − I∗h)(S h − S ∗h) − (µh + δh + θh)(Ih(t + τh) − I∗h)2 +

1
2
σ2

5I2
h(t + τh)

≤
β2

h(I∗a)2

2(1 + α2I∗a)2(µh + δh + θh − σ
2
5)

(S h − S ∗h)2 −
µh + δh + θh − σ

2
5

2
(Ih(t + τh) − I∗h)2

− (µh + δh + θh)(Ih(t + τh) − I∗h)2 + σ2
5(Ih(t + τh) − I∗h)2 + σ2

5(I∗h)2

=
β2

h(I∗a)2(S h − S ∗h)2

2(1 + α2I∗a)2(µh + δh + θh − σ
2
5)
−
µh + δh + θh − σ

2
5

2
(Ih(t + τh) − I∗h)2 + σ2

5(I∗h)2.

Let U =
β2

h(I∗a)2

2(µh−σ
2
4)(1+α2I∗a)2(µh+δh+θh−σ

2
5)U1 + U2, then

LU = −
µh + δh + θh − σ

2
5

2
(Ih(t + τh) − I∗h)2 +

β2
h(I∗a)2σ2

4(S ∗h)2

2(µh − σ
2
4)(1 + α2I∗a)2(µh + δh + θh − σ

2
5)

+ σ2
5(I∗h)2.

Let U3 =
µh+δh+θh−σ

2
5

2

∫ t+τh

t
(Ih(s) − I∗h)2ds, we obtain

LU3 =
µh + δh + θh − σ

2
5

2

[
(Ih(t + τh) − I∗h)2 + (Ih − I∗h)2

]
.
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Let Ũ = U + U3, then,

LŨ = −
µh + δh + θh − σ

2
5

2
(Ih(t + τh) − I∗h)2 +

β2
h(I∗a)2σ2

4(S ∗h)2

2(µh − σ
2
4)(1 + α2I∗a)2(µh + δh + θh − σ

2
5)

+ σ2
5(I∗h)2 +

µh + δh + θh − σ
2
5

2

[
(Ih(t + τh) − I∗h)2 + (Ih − I∗h)2

]
= −

µh + δh + θh − σ
2
5

2
(Ih − I∗h)2 +

β2
h(I∗a)2σ2

4(S ∗h)2

2(µh − σ
2
4)(1 + α2I∗a)2(µh + δh + θh − σ

2
5)

+ σ2
5(I∗h)2.

(5.15)

Integrating both sides of (5.15) from 0 to t and then taking expectation, we have

EŨ(t) − EŨ(0) ≤ −
µh + δh + θh − σ

2
5

2
E

∫ t

0
(Ih − I∗h)2ds

+
β2

h(I∗a)2σ2
4(S ∗h)2

2(µh − σ
2
4)(1 + α2I∗a)2(µh + δh + θh − σ

2
5)

t + σ2
5(I∗h)2t.

Therefore, we can obtain

lim sup
t→∞

E
∫ t

0
(Ih − I∗h)2ds ≤ P6,

where P6 has been defined in Theorem 3. The proof is completed. �

0 100 200 300 400 500

Time[day]

0.5

1

1.5

2

2.5

3

3.5

S
a

×10
6

R
0
 = 4.8269

R
0
 = 3.2823

R
0
 = 1.9308

R
0
 = 1.3515

0 100 200 300 400 500

Time[day]

0

0.5

1

1.5

2

2.5

3

E
a

×10
5

R
0
 = 4.8269

R
0
 = 3.2823

R
0
 = 1.9308

R
0
 = 1.3515

0 100 200 300 400 500

Time[day]

0

2000

4000

6000

8000

10000

12000

14000

I a

R
0
 = 4.8269

R
0
 = 3.2823

R
0
 = 1.9308

R
0
 = 1.3515

Figure 2. The behavior of avian population under different R0 > 1.
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Figure 3. The behavior of human population under different R0 > 1.
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6. Numerical simulation

This section is devoted to illustrating the theoretical results by numerical examples. The parameters
of system (2.3) are selected as in Table 2, α1 and α2 are varying parameters that is taken value from
0.001 to 0.1, and σ1 = 0.01, σ2 = σ3 = σ5 = 0.04, σ4 = 0.008. The initial conditions of system (2.3)
are S a(θ) = 3, 000, 000, Ea(θ) = 1, 000, Ia(θ) = 10, S h(θ) = 1, 000, Ih(θ) = 5, θ ∈ [−τ, 0]. The Milstein
method [25] is used to obtain the discrete form of system (2.3) as follows:

S a(k + 1) = S a(k) +

(
Λa − µaS a(k) −

βaS a(k)Ia(k)
1 + α1Ia(k)

)
∆t + σ1S a(k)

√
∆tξ1(k)

+
1
2
σ2

1S a(k)(ξ2
1(k) − 1)∆t,

Ea(k + 1) = Ea(k) +

(
βae−µaτaS a(k − τa

∆t )Ia(k − τa
∆t )

1 + α1Ia(k − τa
∆t )

− (µa + γa)Ea(k)
)
∆t

+σ2Ea(k)
√

∆tξ2(k) +
1
2
σ2

2Ea(k)(ξ2
2(k) − 1)∆t,

Ia(k + 1) = Ia(k) + (γaEa(k) − (µa + δa)Ia(k)) ∆t + σ3Ia(k)
√

∆tξ3(k) +
1
2
σ2

3Ia(k)(ξ2
3(k) − 1)∆t,

S h(k + 1) = S h(k) +

(
Λh − µhS h(k) −

βhS h(k)Ia(k)
1 + α2Ia(k)

)
∆t + σ4S h(k)

√
∆tξ4(k)

+
1
2
σ2

4S h(k)(ξ2
4(k) − 1)∆t,

Ih(k + 1) = Ih(k) +

(
βhe−µhτhS h(k − τh

∆t )Ia(k − τh
∆t )

1 + α2Ia(k − τh
∆t )

− (µh + δh + θh)Ih(k)
)
∆t

+σ5Ih(k)
√

∆tξ5(k) +
1
2
σ2

5Ih(k)(ξ2
5(k) − 1)∆t,

(6.1)

where ξi(k) ∼ N(0, 1)(i = 1, · · · , 5; k = 1, 2, · · · ) are independent Gaussian random variables. Initially,
we study the effect of R0, which, by Theorems 2 and 3, can govern the asymptotic behavior.

Table 2. Parameter values used in numerical simulations for model (2.3).

Parameter Value Source of data
Λa 30000 Assumed
Λh µh × 1000 Assumed
βa (0.5—12.5) × 10−6day−1 [10]
βh 3 × 10−4 [10]
µa 1/100day−1 [10]
µh 200/(70 × 365)day−1 Assumed
δa 5day−1 [10]
δh 0.03day−1 [10, 11]
γa 0.3day−1 [11]
θh 0.16day−1 [11]
τa 7 day Assumed
τh 14 day Assumed
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Example 1. Effect of basic reproduction number R0.

Choose different βa such that R0 take different values, which are shown in Table 3. Since σ2
1 =

10−4 < µa = 10−2, σ2
2 = 0.0016 < 1

2 (µa + γa) = 0.155, σ2
3 = 0.0016 < 1

2 (µa + δa) = 5.01, σ2
4 =

0.000064 < µh = 0.0078, σ2
5 = 0.0016 < µh + δh + θh = 0.1978, the condition (i) of Theorem 3 is

satisfied. From Table 3, we see that for each R0, the inequality Pm < dE holds, which means the
condition (ii) of Theorem 3 is also satisfied. Thus, all the conclusions of Theorem 3 hold. It follows
from Table 3 that the change of R0 can result in different values of E∗, which also illustrate the value
of E∗ is related to R0. By the discrete form of system (2.3), the numerical results under different
R0 are presented by Figures 2 and 3 when R0 > 1, which show that the solution of system (2.3)
goes around the endemic equilibrium E∗. The effectiveness of Theorem 3 is also indicated by these
two figures. In addition, we can see from Figures 2 and 3 and Table 3 that the number of infected
poultry and humans will reduce with the decrease of R0. On the other hand, in order to explore
if the results of Theorem 3 hold, we enhance the intensity of perturbation as σ = (σ1, · · · , σ5) =

(0.02, 0.08, 0.08, 0.016, 0.08) (Case I: condition (i) of Theorem 3 is satisfied but condition (ii) is not
satisfied), σ = (0.06, 0.24, 0.24, 0.048, 0.24) (Case II: Both conditions (i) and (ii) are not satisfied)
and σ = (0.10, 0.40, 0.40, 0.080, 0.40) (Case III: Both conditions (i) and (ii) are not satisfied). The
simulation results are presented in Figure 4, which are obtained by computing the average of 800
simulations. The equilibrium of corresponding deterministic model is E∗ = (2.3931 × 106, 1.8254 ×
104, 0.7812× 103, 227.3975, 11.5855). From Figure 4, we see that the curves will move away from the
equilibrium point E∗ with the increasing of intensity of perturbation, which violate the conclusions of
Theorem 3.

Table 3. Value of E∗(S ∗a, E
∗
a, I
∗
a, S

∗
h, I
∗
h) under different R0.

R0 S ∗a(×106) E∗a(×104) I∗a(×103) S ∗h I∗h Pm (×105)] dE (×105)]

4.8269 0.7977 6.6239 2.8348 212.6795 11.8062 2.5226 22.033
3.2823 1.1336 5.6137 2.4024 213.7049 11.7908 2.7378 18.673
1.9308 1.7948 3.6249 1.5513 217.3720 11.7359 3.2294 12.057
1.3515 2.3931 1.8254 0.7812 227.3975 11.5855 3.7266 6.072

] Pm = max(
√

P3,
√

P4,
√

P5,
√

P6), dE = d(E∗, E0).

According to the values of σ1, · · · , σ5 and the parameters values in Table 2, we easily verify the
conditions of Theorem 2 are satisfied. Therefore, from Theorem 2 we know that the solution of
system (2.3) will go around the disease-free equilibrium E0 when R0 < 1. The numerical simulation
results of R0 are presented in Figures 5 and 6. These figures show Ea, Ia and Ih all go to zero when
R0 < 1, which illustrate the effectiveness of the theoretical results in Theorem 2. Meanwhile, Figures
5 and 6 also show that the rate of Ea, Ia and Ih converges to zero is increasing with the decrease of R0.
The conditions of Theorem 2 are only a sufficient ones, so we want to know whether the conclusions
of Theorem 2 hold when the intensity of perturbation increase such that these conditions are not
satisfied. Thus, we choose σ = (σ1, · · · , σ5) = (0.02, 0.08, 0.08, 0.016, 0.08) (Case I),
σ = (0.06, 0.24, 0.24, 0.048, 0.24) (Case II) and σ = (0.12, 0.48, 0.48, 0.096, 0.48) (Case III), and the
simulation results are presented in Figure 7. Figure 7 shows Ea, Ia and Ih converge to zero for each
cases, so the results of Theorem 2 also hold.
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Figure 4. The trajectories of Ea, Ia and Ih for large perturbation when R0 = 1.3515 > 1.
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Figure 6. The behavior of infected human population under different R0 < 1.
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Figure 7. The trajectories of Ea, Ia and Ih for large perturbation when R0 = 0.7723 < 1.
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Example 2. Effect of time delays τa and τh.

In order to study the effect of time delays, we consider the average peak values of Ea, Ia and Ih, and
the time of reaching average peak values by 300 simulation runs. The simulation results are shown
in Figures 8 and 9. It follows from Figure 8 that the increase of time delay τa or τh can reduce the
peak value of both infected poultry and human population. Meanwhile, from Figure 9, we know that
the large time delay also lead to the delay of reaching peak value. Thus, we may conclude that time
delays have significate influence for the spread of avian influenza. According to the practical meaning
of τa and τh, related department can adopt some measures to increase the spread delay to suppress the
outbreak of influenza, such as isolation. In addition, the adopting of those control measures will win
time for taking drug control.
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Figure 8. The average peak values of Ea, Ia and Ih under different τa and τh by 300 simulation
runs.
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Figure 9. The time of reaching average peak values of Ea, Ia and Ih by 300 simulation runs.

Example 3. Effect of saturation constants α1 and α2.

According to the analysis of Introduction, the saturation constants α1 and α2 are important
parameters for avian influenza. We thus explore the effects of α1 and α2 in this example. In order to
explore the effect of α1 under fixed α2, we run 1000 simulations and take their average values. The
results are shown in Figure 10. It follows from Figure 10 that α1 can influence the rate of convergence
to the equilibria of the poultry population, while it can not significantly influence the rate of
convergence to the equilibria of the human population. In addition, we study the influence of α2 under
fixed α1. The simulation results are presented in Figure 11, which implies that α2 can not change the
rate of convergence to the equilibria of the poultry population. Figure 11 also means that α2 can not
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increase the rate of convergence to the equilibria of the human population, but it can evidently reduce
the peak value of Ih(t). In summary, α1 and α2 have evidently influence to the spreading of avian
influenza among both avian and human population.
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Figure 10. The effect of α1 and α2 by 1000 simulation runs (for fixed α2).
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Figure 11. The effect of α1 and α2 by 1000 simulation runs (for fixed α1).

7. Concluding remarks

In this paper, we establish a stochastic delayed avian influenza model with saturated incidence rate.
To begin with, we investigate the existence and uniqueness of the global positive solution to the system
(2.3) with any positive initial value (2.4). Since there is no equilibrium point in the system (2.3) at
this time, thus, the asymptotic behaviors of the disease-free equilibrium and the endemic equilibrium
are given by constructing some suitable Lyapunov functions and applying the Young’s inequality and
Hölder’s inequality. Theorem 2 shows that if R0 < 1, then the solution of system (2.3) is going around
E0 while from Theorem 3, we obtain that if R0 > 1, then the solution of system (2.3) is going around
E∗. Finally, some numerical examples are given to illustrate the accuracy of the theoretical results.

There are some interesting issues deserve further investigations. On the one hand, we can formulate
some more realistic but complex avian influenza models, such as considering the effects of Lévy jumps
or impulsive perturbations on system (2.3). On the other hand, the coefficients in our model studied
in this paper are all constants. If the coefficients are with Markov switching, how will the properties
change? We leave these investigations as our future work.
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