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Abstract: In this paper, we establish a stochastic delayed avian influenza model with saturated
incidence rate. Firstly, we prove the existence and uniqueness of the global positive solution with
any positive initial value. Then, we study the asymptotic behaviors of the disease-free equilibrium and
the endemic equilibrium by constructing some suitable Lyapunov functions and applying the Young’s
inequality and Holder’s inequality. If %, < 1, then the solution of stochastic system is going around
disease-free equilibrium while the solution of stochastic system is going around endemic equilibrium
as %, > 1. Finally, some numerical examples are carried out to illustrate the accuracy of the theoretical
results.
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1. Introduction

Avian influenza is an animal infectious disease caused by the transmission of influenza A viruses.
Influenza A viruses are divided into subtypes according to two proteins on the surface of the virus:
Hemagglutinin (HA) and neuraminidase (NA) [1]. Most avian influenza viruses infect only certain
species and do not infect humans. However, a few avian influenza viruses have crossed the species
barrier to infect humans and even kill them, such as HSN1, H7N1, H7N2, H7N3, H7N7, HON2 and
H7N9. Among them, H5N1 is a highly pathogenic avian influenza virus, which was first detected in
human in Hong Kong in 1997. After that, humans infection with avian influenza have occurred from
time to time. As of December 2019, the global cumulative number of cases of human infection with
H5N1 avian influenza arrives 861, with 455 deaths. Unlike H5SN1, H7NO is classified as a low
pathogenicity avian influenza virus [2]. In March 2013, there was the first case of human infection
with the H7N9 avian influenza virus in Shanghai, China. In the following weeks, this virus spread to
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several provinces and municipalities in mainland China. As of May 2017, H7N9 has resulted in 1263
human cases in China, of whom 459 died, with a mortality rate of nearly 37%. The frequent outbreak
of avian influenza in the world not only brings a serious threat to human health, but also causes
psychological panic and huge social impact, and brings a huge blow to the national economy.
Therefore, it has been important to understand the dynamical behavior of avian influenza and to
predict what may occur. Mathematical modeling has been a useful tool to describe the dynamical
behavior of avian influenza and to obtain a better understanding of transmission mechanisms.
Recently, many avian influenza models have been built from different perspectives (see [2—12] and
references therein).

As we all know, there exist time delays during the spread of avian influenza, which can be used to
describe not only the infection period of avian influenza virus in poultry (human) population, but also
the incubation period of avian influenza in poultry (human) population and the immune period of
recovered human to avian influenza. Therefore, the time delays should be considered such that the
avian influenza models are more realistic. Generally speaking, delayed differential equations exhibit
more complex dynamical behavior than differential equations without delay because time delay can
make a stable equilibrium position to be unstable [13—-16]. Consequently, it is of great interest to
describe the transmission mechanism of avian influenza by introducing time delay into the models.
For example, Liu et al. [7] and Kang et al. [12] established avian influenza models with different time
delays in the poultry and human populations by considering the incubation periods of avian influenza
virus and the survival probabilities of infected poultry and humans. By considering the existence of
intracellular delay between initial infection of a cell and the release of new virus particles,
Samanta [17] established a non-autonomous ordinary differential equation with distributed delay to
characterize the spread of avian influenza between poultry and humans. These surveys imply that the
research of time delay on avian influenza is a meaningful issue and is still open for study.

On the other hand, many existing literatures only focus on the deterministic avian influenza models
that do not consider the impact of environmental noise. However, in the real world, the spread of
avian influenza is often affected by the variations of environmental factors, such as humidity,
temperature and so on [18, 19]. Due to the fluctuations in the environment, an actual avian influenza
system would not remain in a stable state, which would interfere with this stable state by acting
directly on the density or indirectly affecting the parameter values. Therefore, it is of great
significance to reveal the impact of environmental noise on avian influenza model by using stochastic
model, so as to obtain more real benefits and accurately predict the future dynamics of avian
influenza. To better understand the transmission dynamics of avian influenza, some authors have
introduced stochastic perturbations into the deterministic models [20-22]. Zhang et al. [20]
constructed a stochastic avian-human influenza model with logistic growth for avian population, and
discussed the dynamical behavior of this model. Further, Zhang et al. [21] investigated a stochastic
avian-human influenza epidemic model with psychological effect in human population and saturation
effect within avian population. On the basis of the deterministic model established by Iwami et al. [3],
Zhang et al. [22] established the corresponding stochastic model by introducing density disturbance.
All the papers mentioned above only focused on the extinction and persistence of stochastic avian
influenza models. However, to the best of our knowledge, there is no results related to the asymptotic
behavior of stochastic avian influenza model around the equilibria of the corresponding deterministic
model.
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Motivated by the above discussions, in this paper, we investigate the asymptotic behavior of a
stochastic delayed avian influenza model with saturated incidence rate. This work differs from
existing results [7, 12, 17,20-22] in that (a) time delays and white noise are taken into account to
describe the latency period of avian influenza virus in both poultry and human population and the
environmental fluctuations; (b) asymptotic behavior of a stochastic delayed avian influenza model is
studied. Overview of the rest of the article is as follows: In section 3, we show that there exists a
unique global positive solution of system (2.3) with the given initial value (2.4). In section 4, we
prove that the solution of system (2.3) is going around E° under certain conditions. Further, we derive
that the solution of system (2.3) is going around E* under certain conditions in section 5. In section 6,
some numerical examples are introduced to illustrate the effectiveness of theoretic results. Finally,
some conclusions are given in section 7.

2. Model description and formulation

Although the avian influenza virus spreads between wild birds and poultry, and between poultry
and humans, we will only consider the transmission dynamics of avian influenza between poultry and
humans because poultry is the main source of infection. Moreover, we assume that the virus is not
spread between humans and mutate. We denote the total population of poultry and humans at time ¢ by
N,(t) and N,(t), respectively. When the susceptible poultry contact with the infected poultry closely,
there is usually no quick way to detect whether they are infected or the detection cost is too high, which
makes it impossible to distinguish whether the close contacts of poultry are infected with the avian
influenza virus. Therefore, the poultry population is divided into three sub-populations depending on
the state of the disease: susceptible poultry S ,(#), exposed poultry E,(¢) and infected poultry /,(¢). The
total poultry population at time ¢ is denoted by N,(t) = S.(¢) + E,(¢) + [,(¢). The human population
is divided into three sub-populations, which are susceptible human S ,(¢), infected human with avian
influenza /,(¢) and recovered human from avian influenza R;(#). The total population of human at time
tis given by Ny(t) = S (1) + I (1) + Ry(2).

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ii:ii:ii:ii:ii:;i:ii: l ;:ii:i’i’;i’f:ii:ii:ii:ii:ii:ii:ii:ii:ii
- Human population cay /-

3 Ah 4”/’ 7 y)
T S Be | 4, R,

Figure 1. Schematic diagram of the model (2.1).

The reason why we do not consider the exposed class for human population is that the close contacts
of human beings are usually isolated and tested to determine whether they are infected with the avian
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influenza virus. The poultry in E, either shows symptoms after incubation period and move to /,, or
always stays in E, until natural death. The number of susceptible poultry (human) is increased by
new recruitment, but decreases by natural death and infection (moving to class I, (1;)). The number
of infected poultry (human) is increased by the infection of susceptible poultry (human) and reduced
through natural and disease-related death. In addition, the number of infected humans is also reduced
by recovery from the disease (moving to class Rj). Based on the above discussions, we obtain the
schematic diagram of our model (see Figure 1).
The corresponding avian influenza model can be represented by the following equations:

as. _ . _ BaSa(O1(1)
- Au — oS o) Tra L)
dEa(t) _ Bae_ﬂaTaSa(t - Tu)la(t B Ta) _
7 Tt ail(—1) (Ha + Ya) Ea(0),
dl,
dft) = ’)/aEa(t) - (lla + 6a)la(t)’ 51
ASi0) _ o BSiOLO —
ar TR T T L@
dl (@) _ Bue ™Syt — t)la(t = T)
7 T+ aal(t— 1) (tn + On + )1 (2),
TD = u10) - o).

All parameters in model (2.1) are assumed non-negative and described in Table 1.

Table 1. Parameters description in the model (2.1).

Parameter Description

Ag new recruitment of the poultry populations

Ay new recruitment of the human population

B the transmission rate from infective poultry to susceptible poultry
B the transmission rate from infective poultry to susceptible human
U the natural death rate of poultry populations

Uy the natural death rate of human populations

04 the disease-related death rate of poultry populations

On the disease-related death rate of humans populations

Ya the transfer rate of exposed poultry to infected poultry

0y the recovery rate of the infective human

ai(i=1,2) parameters that measure the inhibitory effect

Because the removed human populations R,(¢) has no effect on the dynamics of the first five
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equations, system (2.1) can be decoupled to the following system:

db;;t(t) _ ﬁae‘/‘alTa f CZ]_(:_)IT(; —Ta) o+ YOED,
dl;ft) = YaEu(t) — (g + 62)1,(0), (2.2)
dlgit) _ ﬁhe-ﬂhlfhf }iiI:(:}fliZ; —Th) o+ 65 + GO,

A realistic avian influenza system would not remain in this stable state due to environmental
fluctuations. In this paper, we will reveal how the environmental white noise affects the spread of
avian influenza through investigating the dynamics of a stochastic delayed avian influenza model with
saturated incidence rate. Taking the same approach as the literatures [23, 24], we assume that the
environmental white noise is directly proportional to the variables S ,(¢), E,(?), 1,(¢), S;(¢) and I,(¢),
respectively. Then, corresponding to system (2.2), the stochastic avian influenza model with time
delay is of the following form

BaS o()14(1)

dSa(t) = (Aa _,uaSa(t) - 1+ a1

)dt + 018 .(1)dB (1),

_ ﬁae_'uﬂaSa(t - Ta)la(ZL - Ta) _
dEa(t) - ( 1+ a/lla(t _ Ta) (/Ja + Ya)Ea(t))dt + O-ZEa(t)dBZ(t)’
dl,(t) = (%Ea(t) — (o + 5a)1a(t))dt + 031,(1)dBs (1), (2.3)
S0,
ds (1) = (Ah — S i0) - f%)dt + 4S s(DdBy(1)

Bre Sy (t = 1)1 (t — 1)
1+ apl,(t— 1))

dl (1) = ( — (up + 0p + 9h)1h(t))dt + 051, (1)dBs (1),

in which Bi(t) i = 1,2,---,5) are mutually independent standard Brownian motions defined on a
complete probability space (Q2, 7, P) with a filtration{F},5¢ satisfying the usual conditions (i.e., it is

increasing and right continuous while %, contains all P-null sets), o; (i = 1,2,---,5) denote the
intensities of the white noises. The initial value of system (2.3) are

{ Sa(0) = ¢1(0), Ea(6) = ¢2(0), 1.(0) = ¢3(0), S () = ¢4(6), 1n(6) = ¢5(6), 2.4)

i(6) € C([-7,01,RY),i = 1,2,3,4,5,7 = max{t,, 74},
where C is the Banach space C([—-T, 0]; Ri) of continuous functions mapping the interval [—7, 0] into
Ri, and Ri = {x = (x1, X2, X3, X4, x5) : x; > 0,1 =1,2,3,4,5}. By a biological meaning, we assume that

wi(0)>0@G=1,2,3,4,5).
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3. Existence and uniqueness of the global positive solution

In this section, we prove that the solution of system (2.3) is global and positive for any initial value
(2.4).

Theorem 1. For any initial value (2.4), system (2.3) has a unique positive solution (S ,(t), E,(t), 1,(1),

Sy, L(t)) on t > 0 and the solution will remain in RS with probability one, in other words,
(S o(0), Eo(0), 1,(1), S w(2), I(1)) € R for all t > 0 almost surely.

Proof. Since the coeflicients of system (2.3) satisfy the local Lipschitz conditions, then for any initial
value (2.4), there exists a unique local solution (S ,(?), E,(¢), 1,(¢), S 1(¢), I,(t)) on t € [-T7,T,), where T,
is the explosive time. To show this solution is global, we only need to show that 7, = oo a.s. To this
end, let ky > 1 be sufficiently large such that (S ,(0), E.(0), 1,(6), S 1,(6), I,(0)) (6 € [—T,0]) all lie within
the interval [é, ko]. For each integer k > k(, define the stopping time as

T =1nf{r € [0,7,) : S,(?) ¢ (%,k) or E (1) ¢ (%,k)

or 1,(1) ¢ (%,k) or S,4(1) ¢ (%k) or I,(1) ¢ (%,k».

We set inf @ = co. Obviously, 7, increasing when k — oo. Let 7o, = limy_,, 7, Where 7, < 7, a.s. If
we can verify 7., = o a.s., then 7, = oo and (S ,(1), E (1), 1,(1), S (1), I,(1)) € R a.s. for all # > 0. That
is to say, to complete the proof we only need to show that 7, = co a.s. If this assertion is not true, then
there is a pair of constants 7 > 0 and € € (0, 1) such that

Pt <T} > e.
There exists an integer k; > kj such that
P{t, < T} >¢eforall k > k. 3.1

Define a C>-function V: R] — R, by

V(S Eas Ly Sy 1) = (S, —a—aln ﬁ) +(Ey—1—InE)+I,—1-1nl)
a

! Sa(s)la(s) Sh
+Baeteme | 2O gy oS, — b — bln 2L
Pae L{,Halla(s) sHemG ")

)

+(Ih—1—1n1h)+5he—umf S n(8)1a(s)

-z, 1+ aad,(s)
in which a and b are positive constants to be determined later. The nonnegativity of this function can
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be derived from x — 1 — Inx > O for any x > 0. Applying the It6’s formula to V, we get

dV =eHat (1 - Sﬁa) s, + e_”“T"2 2(a’Sa) + (1 - Eia) dE, + 2E2 ~2(dEs)
" (1 - 1)d1a SdLy + ﬁae S ale B S olt = Ta)lalt ~ Ta)
1, 212 1 +al, I+ a1l (t—74)
+ e Hm (1 - E)dSh + e"“’”i(a’S; Y+ - l)dlh + L(dlh)2 (3.2)
S, 252" I, 21 '
.\ Bre™ Sl Bre™ ™S p(t = Tp)la(t — Th)
1+ ayl, 1+ axl,(t — 713)

—LVdi + e o (S, — a)dBy (1) + 0o(E, — 1)dBs(f) + o5(I, — 1)dBs(1)
+ e Moy (S ), — b)dBu(t) + os(I, — 1)dBs(1),

where
e a 1
LV =eFa'a I_S_ (Aa_ﬂaSa)_ I_E_ wa+yg)Ea
1 —HnTh b
+ 1_1_ (yaEa_(lla+5a)Ia)+e ' I_S_ (Ah_ﬂhsh)
1 1 5+ 0 it a(T% 0'% 0'2 . bO‘i 0'%
—[(1-—= +6, + + g HaTa— 4 + + g H + =
Ih(”hhh)”ezzzezz
a(r% 2 2
< e M, + apge i + Te‘““” + 2y + 00+ Y+ 592% 503
o2
+ e TN + Bune M+, + 8 + ) + 745“””' + Eag
+ (aBae™ ™ + bBre ™™ — (U + 64)) 1.
Choose a = and b = 22" orq = %™ and b = ”“e ™ such that

ﬂa C B Ba

aB.e " + bBre M — (u, + 6,) =0
Then, we can get

LV(S ., EL L, Sy, 1) <e A, + ause ™ ™ + e ™Ay, + bupe™™ + 2,ua + v,
ao-z MaTa i _HhTh
+ 0, +,Uh+5h+9h+76 + — > + (a'2+0'3+0'5)

=K,
where K is a positive constant. It thus follows from (3.2) that

dV(S 4 Eqy 15, Sy Iy) <Kdt + e o (S, — a)dB(t) + 02(E, — 1)dB,(t) + 03(1, — 1)dBs(t)

_ 3.3)
+e 'uhThO'4(Sh — b)dBy4(t) + o5(I, — 1)dBs(1).
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Integrating both sides of (3.3) from O to 7, A T = min{7y, T} and then taking the expectation results in

EV(IS (i NT),Ei(ti NT), L,(tix AT),Sp(tie ANT), I(tx A T))
<V(S$4(0), E,(0),1,(0), S 1(0), I(0)) + KE(7x A T) (3.4)
<V(§.0), E.(0), 1,(0), § ,(0), I,(0)) + KT.

Set Q; = {ry < T} for k > ki, and according to (3.1), we have P(€);) > &. For every w € €,

there exists S (7, w) or E (14, w) or I,(ty, w) or S (74, w) or I,(14, w) equals either k or % Therefore,

V(S (T, w), Eo(Tx, @), L(Tg, ), S 1(Tie, 0), (T4, )) is no less either k — 1 —Ink or 1 — 1 — ln% or

k
k—a—aln§or%—a+alnakork—b—bln§0r%—b+blnbk.

Therefore, we have
V(S o(ti, w), Eo(Ti, ), 1,(Ti, ), S 1(Ti, w), (T, w))
1 k
Z(k—l—lnk)/\(%—1+lnk)/\(k—a—aln—)
a
1 k 1
/\(%—a+alnak)/\(k—b—blnz)/\(%—b+blnbk).

It follows from (3.4) that

V(S 4(0), E4(0), 1,(0), S 1(0), 1,(0)) + KT
ZE[le V(Sa(Tk9 (,l)), Ea(Tk9 (U), Ia(Tka C()), Sh(Tka (1)), Ih(Tk’ (,()))]

>el(k -1 —lnk)/\(%— 1 +1nk)/\(k—a—a1n§)
A (% —a+alnak) A (k— b—bln%) A (% — b+ blInbk)],
where 1, denotes the indicator function of €. Letting k — oo, then
00 > V(S 4(0), E4(0), 1,(0), S 1(0), 1,(0)) + KT = oo,

which leads to the contradiction. This completes the proof. O
4. Asymptotic behavior of system (2.3) around the disease-free equilibrium E°

In this section, we will investigate the solution of system (2.3) around disease-free equilibrium E°
under certain conditions. It is worthwhile to mention that, if Z, = % < 1, the deterministic
system (2.2) is globally asymptotically stable around the unique disease-free equilibrium
E® = (52,0,0,59,0) = (%,O, 0, %,0) , but E is not the equilibrium of the stochastic system (2.3).
Thus, the result concerning the solution of stochastic system (2.3) around E° is presented by the
following theorem.

Theorem 2. Let (S (1), E (1), 1,(1), S 1(2), I(t)) be the solution of system (2.3) with the initial value
(2.4). If Zy < 1 and the following conditions hold

2 2 2 2 2
01 < Mg 05 < g+ Va, 03 < g + 04,04 < fp, 05 < tp + Op + O,
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then,
1 Aa\ o2\
limsup—Ef (Sa——) ds < ﬁ,
PRV 0 Ha (g — o7)
. 1 ! 2 2 Pl
limsup—-F | (E,+1)ds < —,
oo I Jo M,
1 A\ A2
limsup—Ef(Sh——h) dSSz—hz(O'i+ﬁ—h),
t—oo 1 0 HMh ,Llh(,l,lh - 0-4) @2
1 !
lim sup —Ef I}zlds < P,
t—o00 0
where
e FVa— 02 (Ug+Va— ) (g + 64 — ) (g + 6,
M, = min M Y 2’ (/J Y 2)(:“ 3)(/1 ) ’
4 4y2
et [ 1 (202 + 21y + Y2
P1: 2la|: 2(/’ta Ma’y ya+0'%)+l,
Hy MHa — 07 z(ﬂa + Ya)
26_2#“"[\}[ CYQO'% +ﬁh 2/12 + 2/1;1(5;, + 2/,(;19}, + (0, + eh)Z 2 )
Py = 3 5 3 T Oy +0y].
/Jh(/.lh + 5;, + 9;1 - 0'5) a’z(/.lh — 0'4) 2(/1;, + 6h + 6;,)

Proof. Since (S 2, 0,0,S 2, 0) is the disease-free equilibrium of system (2.2), then
A, = /Jasg’ Ay = /Jth

According to system (2.3), we can obtain that

Aa aSaIa
ds.6) = |-, (s, - Be) = B di + 1S ,dB, (1)
a 1+ al,
4.1
s,-Da)_p s, D) Lo g AL |y o6 aB
=" Ma\Pa—™ — )" Pal|lPa™ — —Pa— T194 >
K . o | 1+ aql, o 1+ aql, ! !
and
a + a a + a
d [Ea(t o)+ B Yy cr eyl = ab, o+ 1) + B Y0 1+ 1)
Aa Ia atVa at 6a
S[ﬁae_ﬂﬂu (Sa - _) - (/1 7 )(IJ )Ia(t + Ta)
Ha 1 + a’lla 761
Aa a + a
+ ﬁae-ﬂafa—la]d: o E(t + tdBo(r) + ZH Y 1 B (4.2)
Aa Ia a1 Ya at 6a
S[ﬁae_"““ S, — = g WY Wat 0 1y g lar
o] 1+ a4, Ya
a + a
o E(t+1)dByt) + BHT YD B,

a
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2
LetV, = % (S a— 2—(}) , then applying the Itd’s formula to Vi, together with (4.1), we have

av S Aq S Aa BalS Aq la B Aa_ Lo + ! 252\ dt
= a” — || Ma|Pa™ — | " Pal|Pa—™ — ~—Pa— =0
1 Ha H HMa Ha 1+alla Ha 1"'alla 2 1

a

Ay
+018S,185.,——|dB;(¥)
Ma
AqY AN L Aq AN 1
=|-u|Sa——| —BalSa——| m————Ba—|Sa—— +—0'%S§ dt
U U] 1+ a1, Ha ol 1+aql, 2
A
+0'1Sa Sa—— dBl(t)
Ha
A,
= LVidt+o,S,1S,— —)dBl(t),

where

LV, < —u (s A”Z,BA“S M\ L ofs M), A
1S —Hq a j a j a L 1+a’1]g (O a j D)

Ha
2 2A2
A, A, A, I, o Aa
:_(ya—af)(sa——) —ﬁa—(Sa——) ¢ e
HMa Ha Ha 1+alla My

4.3)

Similarly, let Vy = E(1 +7,) + H22 (1 + 7,) + Yottt [ 1(s)ds, it follows from (4.2) that

I o+ Ya
+ oE(t + 1 )dBa) + BH Y 1 e aBa),
1+ Qlla Ya

A,
dVs < Bae (Sa - —)
Ha

Define V = e #™V, + %Vz, then

_ A\ A2
dV <|—e M (u, — o) (Sa - —) + e‘“”’“oﬁ—;} dt
A Ma /'ta (4.4)
+ S, (Sa - —“) AB(1) + E. (1 + T)dBy(t) + 2 YD 1 B,

Integrating both sides of (4.4) from O to ¢ and taking expectation, we get

_ _ 4 A 2 A2
EV() - EVO) 5 i, = 0V [ [5,- 5] dss ot
0 Ha M,
Therefore, we can obtain
1 (" A\ 02A2
limsup—Ef(Sa——) ds < — 1 N
t—eo 1 0 Ha :ua(/'la - 0-1)

Similarly, we define
2

’

1 A,
V3 = 5 [e_#a‘ra (Sa - _) + Ea(t + Ta)
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then,

2
A, A,
LV3 = - e_Z#QTa,ua (Sa - _) - e_'uaTa(zlua + ’)/a) (Sa - _) Ea(t + Ta)
M

a a

1 1
— (Ua + YO E2(1 + T0) + Ee‘zﬂﬂaafsz + 20'2E2(t +7,)

A\ e+ Ve 2ty + yg) e e AL\
<=y, (s, = Da) pHatYapa o CGHatya)e S, — =4
a 2 2(Ua + Va) Ha

2 272
A, oA, 1
— (U + Y)EX(t + T,) + e a7 (Sa - —) + 6_2““7“1—2 + —05EX(t+1,)

2

2%+ 2u, Y, + V2 AL\

e (B A
2(a + Ya) Ha

1 o2A?

- E(:uu +Ya— 0'§)E§(f + Ta) + e—2,u,l‘r,, o

2
a

a

Let Vi = V3 + 2(ua + Yo — 03) fZHT“ E2(s)ds, we get

LV4 < e—Z/J,,,Ta 2/1121 + 2/10’)/(1 + Yzzl + 0_2 S — ﬁ
B 2(1a + Ya) e

Let V5 = é]ﬁ, the derivative of Vs can be calculated as

o2A2
1A

2
a

2
) - _(/Ja +Ya— 0-2)E2 + e—Z#aTu

a

1
LVs =y E d, — (g + 6)I> + =031

2
HMa + 6u 2 ytzl 2 2 1 2
< I — (U + ), + I
3 Lt 5 ey Ba T WatOIla ¥ 50
Y2

1
- Y B+ 6. - 0D
2t + 0, e 2 73

The Young’s inequality is used above. Let

. “HaTa (D0 + 21 ¥0 + Y2 _ + Y4 +6
V=v,+-L Ha + 2y nﬂﬁ) (Mo + Ya = o) Mo +00) Vi,

V+
Ha — O-% 2(/1(4 + Ya) 2751
which implies that

[\

| A2 oA (2 4 Dye + 72
LV < - _(/Ja + Yo — 0.2)E2 + e—2ﬂuTa + . 1 . ( My HaY Ya %)
lua (/Ja -0 ) Z(ﬂa + 7a

1 0t Ve— O wt0,— 0O ot 04
+—0ua+7a—0§)E§—('u Y. o + D )

4 4
1 N (:ua +Ya— O-%)(ﬂa Zaé‘a - 0'%)(/1“ + 641) 2 (45)
== J (o + 7o~ ODE; - o I}
+ e—Z,u,,-r,, O-%Ag [ 1 (2/'13 + zﬂaya + ')’5 + 2) + 1
/JLZI Ma — O'% Z(ﬂa + 7(4)
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Integrating both sides of (4.5) from O to ¢ and then taking expectation yields

EV(t)— EV(0) < - %(/ua +7v,— 0HE f EX(s)ds
0

aF Ve — 0Dy + 6, — ), + 6, ¢

(a+ e = oD 2) 1 )Ef1§<s>ds
4%2, 0

O'%Ai [ 1 (2/42 + 22Uy Y + yi

/1521 Ma — O'% 2(,Ua + )/a)

+ T 1.

+o-%)+1

Consequently, we can obtain
1 ! P
limsup —E f (EX(s) + I(s))ds < —,
t—o0 ! 0 M 1

where M, and P, are defined in Theorem 2. Further, according to system (2.3), we have

A I,
ds (1) = [—uh (Sh _ —’) _ B
Hn I+ i,

dt + 048 ,dB,(1)

(4.6)
Ay Ap)  Buls BrAnl,
=(-u, 1S, ——|-1S,— — - dt + 048 ,dB,(1),
['Uh( ! llh) ( " /lh)1+a21a (1 + asly,) 743 ndBa(0)
and
—ﬂhThS Iu
d]h(t + Th) = ﬁhle_i_—lh - (/Jh +9, + Qh)lh([ + Th) dt + O'SIh(t + Th)dBS(t)
a1,
—ﬂhThIa A Al —HMhTh .
< ﬁhe—(sh——”)+M—(p,,+5h+9,1)1h(r+7h) di @.7)
1+ ayl, Mp Uy
+ O'5Ih(t + Th)dB5(t).
Let Vs = £ (S, - )", Noting (4.6), we h
6=38n—%)" oting (4.6), we have
2 2
Ah Ah Ia Ah Ah Ia 1 202
LVg=—up|Spn— —) - S,—-— - Bp—IS,- — + =058
° 'u]( ! ,Uh) ﬁh( ! ,Uh) 1 +asl, ﬂhﬂh( ! ,Uh)1+021a 2747
2 2 2A2
A A A I, A oA\
S—/Jh(Sh——h) —ﬁh—h(Sh——h) +Gi(Sh——h) + 42h
M M Hr) 1+ axl, Hn M
A A A I o2A?
2 h h h a 443
= —(u, — Sp——\ =-Br—1S,— — + .
(o 04)( " ,Uh) o ( " ﬂh)1+azla .
Let V; = e #™Ve + %Ih(t + 13,), it follows from (4.7) that
2 2A2 2 T,
A o A A e MhTh A1
LV7 < = ey - 03) (Sh - —”) pemn Tt PR R s g4
M Hy, axuy, Hn (4 8)

2 2
A A
< _ e_ﬂhTh(/,th _ O-Z) (Sh _ h) + e—#h‘fh_h(o-i + &)

- 2
/’lh h (0%)
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Integrating both sides of (4.8) from O to ¢ and then taking the expectation yields

A 2
EV7(Z) - EV7(O) < —e_“’””(,uh - Ui)Ef (Sh - —) ds+e _’uhTh 2 4 ﬁh t,
0 Hn My, 052

therefore, we can get

1 A A;
limsup—Ef (Sh——h) ds < 2—1’2( ﬁh)
s 1 Jo Hn M, (up — o)

Let Vg = 4 [ (S, = %) + 1, + 7). then

A
LVg = (e_“'m’ (Sh - —h) + Iy(t + Th)) [e7"™" (A = pnS 1) — (pn + O + Ot + 74)]
M

1 1
+ Ee_z"”’lo'iSi + Ea'gli(t +73)

(2,uh + 0, + 9;,)26_2#””’ ( Ay )2

2(up + 05 + 6y) h_ﬂ_h

A 2
< - e_z’uh‘rh/Jh (Sh - #—h) +
h

Mp + 05 + Oy
_I_ _—
2
e—2,u;,‘rho_2A2 1
+——2 2aﬁlz(t +73)
My

:e—zﬂhTh (2/.1%1 + 2[1;,5;, + 2/Jh9h + (6;1 + 9},)2 )( Ah)

g, — =k
2(/-1h+6h+9h) " HMh

A
I,%(l + Th) - (,Llh + 6h + Qh)l}zl(l‘ + Th) + 6_2%‘”'0' (Sh - —h)
M

=2UnTh +2 A2
e o\,

1
= 5w+ 8+ 6 — oDt + 1) + -

h
Defining
e 2#}21 + 2/1115/1 + 2/1]10}1 + (6}1 + gh)Z 2 1 5 ftH'h 5
Vo= Vg + Vi + =(up + 06, + 6, — I2(s)ds,
T ,Uh—O'i( 2(up + 05 + 6) Ta) V7 2(”’1 nt 6 —0%) t W (s)ds
we get

1
LVy < — E(ﬂh + 0, + 6, —O'%)Ii
4.9)

N 672#"7/’/\%! 1 ( N ﬁ_h) 2,ui + 2,[1;,5;, + 2/.1;,0;1 + (o), + 6?,,)2 2) N 0_2
2 |y - o 74T, 2w + 61 + 6)) 4

Integrating both sides of (4.9) from O to 7 and taking expectation, we obtain

ef2ﬂhThAz 1 ﬁh
2 ( 4 + _)
My, Hn — @
(2,11% + 2048 + 246 + (S5 + 6,)? 2) 2]

2(/1;, + 6;1 + 9},)

1 !
EVo(t) = EVo(0) < = =y + 0 + 0 = o)E f L(s)ds +
0
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Consequently, we can obtain

t
limsupEf Ii(s)ds < Py,
0

t—00

where P, is defined in Theorem 2. This completes the proof. O
5. Asymptotic behavior of system (2.3) around the endemic equilibrium E*

If Zy > 1, there exists an endemic equilibrium E* = (S, E}, I;,S7,1;) of system (2.2), but it is
A(1+a11}) % _ BalAgeHaral; s« _ Ha(Po—1)

#a(1+011§)+ﬁ¢112’ a (ﬂzl+7¢l>[ﬂu(1+all )+Bu ]’ a a’l#a"’,Bu >
In this section, we show that the solution of system (2.3) is

not the equilibrium of system (2.3), where S, =
§* = Al+anly)  ps BreHhThS Iy

h = (eI 4Bpls > @ = (upton+Op)(tarly)”
going around E* under certain conditions.

Theorem 3. Let (S ,(t), E (1), 1,(t), S 1(2), I,(t)) be the solution of system (2.3) with initial value (2.4).
If %y > 1 and the following conditions hold

. 1 1 .
(i) 07 < fa 05 < 3(Ua + Va)s 05 < 3(Ha + 60), 05 < fn, 03 < iy + 6 + O,

(ii) max(VPs, VP, VPs, VPs) < d(E", E°),

then
lim sup Ef(S — S*)ds < Ps,
t—o00
. %2 %2 Ll
limsup E [(Ea(s) —E)" +,(s)=1I)1ds < 7 =: Py,
t—oo 0 2
!
limsup E f (S, —S})ds < Ps,
—00 0
!
limsup E f I, - Ih*)zds < P,
1—00 0
where

2

2
d(E*,E%) = \/(S; - ﬁ) +(E2? + (ID)* + (S* - A—) +(I)?
H Hn

a

1 o2S:L L 1 a+Ya

Py = 2[(;}(5;)2 oty (eﬂafasg + _3ﬂ - )( 2E; 4 H Y aglg)],

Ma — O 2U, Uge HaTa |\ 2 2Y,

L o2(S¥)?

L2 Mn — 0-4
P, = oil; . 203(I;)*

(un — Ty + 65 + Oy — 022 iy + 6y + Oy — 0%

“HaTa (D02 + 21V + V2 o2S:L
Ha — 0] 2(/-la + 7a) zlua
L 1 1, +v,
+ (TS + & %E Ha ¥ O'%I;‘ ] + 6_2“”7“0'%(SZ)2
HgeHaTa 2 2 Va .
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03 (Ha + 6)(fha + Va — 205

2 #\2 5\ 2
+ o-Z(Ea) + 273 (Ia) s
0Dy + v, — 20 (u, + 8, — 202
Lzzmin{ sy — 20, Bt 00t Y0 = 27 3>},
4y2
S i
L3 - ﬁ a-a , L4 — ﬁh h .
I +a1l; I +ayl}

Proof. Since (S}, E;,1;,S7,1;) is the interior equilibrium of system (2.2), then

ST WAL b I ’
Aa = #aSZ + IB s (ﬂa a)E IB—, = Y s
1+a I* 1 +a1l; E: g, +0, 51
A S* ,Bh h a s 0 )I* ﬁhe_lv‘hThSZIZ ( . )
= , + 6, + = ="
h =M+ 1+ aol: (n + 65 + )1, 1+l

Define the Lyapunov function Wy as W, =S,-S> - S ln from which we have

ﬂaSaIa AaSZ % ﬁa a a .
AWy, =(Ay — S o — - S+ S dt+ Sa—8,)dB(t
: ( K Tvail, S, Hat e T204 i 4B
Sl S S Sal(1 + a1
:[ ,UaSZ""B | ____) B *(_ **( a 1)
1+ 11 S 1+ CZ]Ia Sala(l + Q]Ia)

Su , Ll +aily) 1)
Sy (1 +al,)
=LW,dt + 0'](Sa - SZ)dB](l),

I
+ 38l ]dt+0‘1(5 _ SY)dBy(1)

where

* _ Q)2 *
LW1:—(a+ Pela )(S“ %) )( Lo La ) Ly (5.2)

(S — + =S’o7.
Tvalr) s, P ltal, l+alz) 2797

Similarly, we can define W, as

E,(t+ 1,
( T)+,U

Wa = Byt +70) = Ej = Ejln—"—

a Iat+ a
e (Ia(r+ra)—1; —Ijlng).

I*

Va a

By using the Itd’s formula, the derivative of W, is calculated as follows

E Boe TS I, Ha + Ya
LW, =(1 - a —(uy +v)E(t + 1) | +
2 ( Ea(t+7'a))( Tral, et YaEd T)) ]

I 1 . HaF Ve .
1 — —2— | (yEt + 7, w+ 0Lt + 7)) + =02E" + 2
( T+ a))()’ (t+7.)—(u Mot +74)) 792k 2. o3,

:ﬁa —#aml*( s )(1 + a’llz Iu _ 1) lgae—#aTaSZ]Z (&
1 +al Sa I 1+al, l+a: \S:
l+alr S, B, lxely d o L+7)
S:lx 1+ a1l E(t+71,) I 1+al, I
_ Ea(t + Ta) IZ ) 1 ZE* 1/151 + Ya
Er LG+t 2 72 2 vy,

(5.3)

2
o3l

Mathematical Biosciences and Engineering Volume 17, Issue 5, 5341-5368



5356

Since x — 1 —Inx > O for x > 0, the following estimate can be obtained

l+al;, S., E;
S:l 1+ a1l E(t+1,)
l+a I} S, E:
>1 +In [ —a g (5.4)
S:lx 1+ a1l E(t+71,)
S I(t+71,) 1 I, + o) I E(t+7) I

“1+1In2% ] .
s T T "rAvady " Er LG+t

a

Substituting (5.4) into (5.3), we can get

Boe el NIEXT A Bae TS I (Sa S,
LW, <2< a5, - S* S PSS e T Y IS R P
2 1+a11;( 2 I 1+ail, 1+al; \S: S:
L(t+1, L(1+a I E(t+1,) I 1+ I* I,
+1n ( T)—n ( a1)+n (t+7a) <+ i
I L +al,) E? L(t+1,) I 1+al,
L(t+ 7, E. (t+ 1, I 1 1u, +v,
_Lltr 7)) Bt )+—a’%EZ+—'u )’0_%[;
I E:r L(t+71)) 2 2 v, 5.5)
Bae™ el ~1ral, I, ﬁae_"“T“SZI;‘[ Sa S ’
2 g, S S Pl Y |
Trarl N Tval, Trar 15 Mg

L(t+71,) 1 L(t+7,) N I,(1+al) 1 L(1+a.l})
- —1In —1In
I I L1+ al,) L1+ al,)
E,(t+1, r E,(t+7, I 1 . e+ v .
_ B+ ) “— —1In (+7) —1]+—0'§Ea+—ﬂ Y ol
E; L(t+1,) E; L(t+1,) 2 2 v,

—HaTa § * [* 1+T, .
Choose W53 = W, + ﬂ“eliTSI ft o (@ —1In @ - l) ds. Therefore, LW5 can be obtained as follows

by using (5.5):

Py LA+l S (S, S,
ngsﬁ—e “(Sa—S,) Ldxal) ) Fue™Sulaf (S Sa
1+ CL’]]Z I:;(l + alla) 1+ Q’II; SZ SZ

B (Ia(t +7,) B I,(t+ Ta)) N (Ia(l +ail}) 1 I,(1+ allz))

In —1In
I I (1l +al,) (1 +al,)

E,(t+1, I E,(t+1, I 1 1 g +7va
- (+7) —1In (+7) -1 +—0'§EZ+—'u yo%lz
E: L(t+71,) E: L(t+71,) 2 2 vy, (5.6)
Bae TS (L(t+ 1,) L(t+71,) Boe TSI (1, I, ’
+ ~1In |2 Pdlafle gpa
1+l I I l+o; \I' I
e HaTa[* L(1+a I e St S, Sk I,
Sb(a— ;)w_“rﬁe—_ Sa_q_2
1'|'CL’1I;< IZ(l'l‘CZ]Iu) 1 +CZ]IZ SZ Sa IZ
L(1 +a I r'a+al)l, 1 Lpg+va 5.
Plldrad) o LAdrel)l ), ) R
' +al,) LA +a ) 2 2 vy, :
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Noting that x — 1 — Inx > 0 holds for x > 0, we also have
I, L(1+aI) Ll+aly)l,
+ +In —
o r+al,) LA+a )
1, N I,(1 + o I}) N Ll+aly)l,

I I+al) L(A+a )

Ld+al)l, (I a1 1)(Ia(l +aily) 1) (5.7)
TL(+ ) AL+ il I, (1 +ail,)
_(A+al)d +aily) ( 1 )( L L ) »

I; l+al, l1+al)\1+ail, 1+al} ’

* _Qo#)\2
substituting (5.7) into (5.6) and using i— + ;— -2= (S; ;:‘) , we know that

Bue el L+, Bue Iy (Sa=S* 1 o LtV
LWy <2€ Tag gy TM ), a ) 4 —2E+ I'. (58
SEF 11*( N+l ral: S, 2773 T3la (5:8)

a

Let Wy = W) + ﬁ:;fa'fflé (ya + 15211;1;) W5. Applying the Itd’s formula, together with (5.2) and (5.8),
derives that

1+ a1 Bal,
LWy =LW; + ——— |u, + LW5
Bae Hatel? 1 +al;

Bali \(S.—S5)? . 1, I I ..
< — 1 ~BuSq~S - ~oiS

1+a’1[:; 1+G,’112lk

1+a11* Baly, \|Bae™ I, I(1 +a1)
o+ =S\ Eav ) !
,Ba e Hata]? l+alz)| 1+ oI L1 +al,)
e M F (S, — S*)? 1 1 g+ va
+ﬁ e a( a) %E /’l y 0_21*
1+a112 Sa 2 2 a

Bal, o (11 + ar 1) . 1,
= ("“ T1r allg)(sa =S4 (1;(1 Tl 1) ~PulSa S“)(l T,
1
2

r 1+l I\ (1 1 o + Ve
- )+ —oISE —— Puda —o2E 4 Y oIl
1 +al; BaeHaTal* I+al:)\2 2 ya

(s, — 50—t I Bl \Lraid
T+ad, 1+al )|\ Tvar) o “

I +al; o 1 1 o+ Va

(5.9)

2S>k

"B e HaTa T+ )(272 N
(1 +aI}) . 1, I I ..
=t e, -8 - +~02S
I ( NTval, Trar) 271

1+0/11* ﬁal* 1 2 1/~la+ya 2
ot = —05E; + = o3l .
* Baerel, (“ 1+a11;)(2 2T ) 3

Ya

P N 2 . . . .
Choose Lyapunov function W5 as W5 = w, then its derivative is

* ﬁasala 1 202
L a Aa a® a [ —
Ws (S Sa)l —/JS —1 N2 + O—ISa
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:(Sa _SZ) ,uaSZ_l-laSa"'

Sily _ BuSala |1
BSil _ BuS ]+

2¢2
~o28
l+talr 1+ail,| 27017¢

(Sa =S5 = BuS(Su— 57— i ) _pys,—snp—te 1o

a - - a - a - - 4 _0—

s +(le 1+a11* 1+a/11u 2 1Fa
1, I

<~ 1a(Sa =83 = BuS (S S)( . )+O-%(Su_SZ)2+O-%(S:)2

+CY]I 1 +C¥112
1, r .
)+a§(sa)2.

l+al, l+al

== (=S 0 =S5 = BuSiS, - S:)(

Let W = Ws + 254« _w, one can derive that

lla(l"'a/lla)
LW <=y —0)(Sa =S = BuSHSa—S5) Lo L +03(S7)?
N ¢ ! ¢ “ ¢ 1+al, 1 + (}’1[2 1 a
SEI L+l I, I
PaSala [“( @l _ g0 + =028

ua(1 + a1 I) I 1+a4l, 1+ a I} 2
1 +a I I 1 1, +7v,
etk (o Pda Vg etV o) ] (5.10)
,8 e HaTa]* I +al3)\2 2 v,

BaSala 5.
0-1 a
2u(1 + ay1})

ST | 1 g + Ya »..
o PaS ol 2B + M Ya o
HgeHae(l + a %) 2 2 YVa

== (e = 0N(Sa =S + 0S5 +

Integrating both sides of (5.10) from O to 7 and then taking expectation yields

! % Tk
- - % * ﬁaSaIa *
EW(t) — EW(0) < — (u, — 0)E fo (S.(s) = SH)ds + [a%(sa)z + ma% .

S | 1 g + 74
+ (eﬂafasg; 4 PaSdls )( 2B+ e aglg)]t.
HgeHaTa(1 + a1 I%) ) \2 2 YVa

Then, we can get

lim sup — Ef(Sa(s) S )2ds<P3,

t—00

where P; is defined in Theorem 3. Defining Wy = % [eHTa(S, =S+ E(t+71,) — E;';]2, the use of
[t6’s formula yields that

LW6 = ,uae_zﬂa‘ra(sa - S;)2 - (/Ja + Ya)(Ea(t + Ta) - EZ)Z - (2/161 + ')/a)e_ﬂaTa(Sa - S;)

1 1
56_2#“7“0'%52 + EoﬁEz(t +7,)

<- ,uae_zﬂa‘ra(s S ) - (;ua + ya)(E (t + Ta) E;, ) + (E (t + Ta) - E, )
Quta + ya) e H

2(pta + Ya)
+ 2 *\2 2 #\2
o5(E(t +7,) — E)” + 05(E)

(Ea(t +74) — EQ) +

(Sa= S+ e To(S, = S)" + e-zﬂafaaf(s o)
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a + a E3
+ aﬁ) (Sa— ST = (’% - ag) (Eu(t +172) - E7Y

— = HaTa (2/15 + 20 Ya + 72
2(pa + ¥a)
+ e T (S 1) + oN(E)

Let Wy = We + (432 — o2) [ (Eu(s) - E,*ds and W = 1(I, - I})*. We have

2

2/12 + 2ﬂa'ya + 72 2) 2
a “ 4o (Sa—SZ)—(
2(ta + Ya) !

+ e Mg (S + 05(ED),

a+ a *
lJ 2’}/ _0_5)(Ea_Ea)2

LW, Se_zﬂaT“ (
(5.11)

and

. 1
LWy =(I, — I) (v E, — (ua + 62)1,) + 50'513

1
=Ya(Ba = Ea = 1) = (o + )L = 1Y + 031,

Ha+ 04 Y.
=" 2(ta + 04)
- (/'lu + 611)(161 - I;)Z + U%(Ia - 12)2 + 0-%([2)2

e

"2, + 0,)

(I, - L)+ (E, — E2)? (5.12)

Ma+0a
2

(B~ E'Y - ( ag) Uy~ ) + AT

o1 "~ 222aa 2 ¥ a+6a at a_20.2
LetW:W7+e”“T"2(”“+”7+7"+o-f)W+—(” Nt u=20)

Wg. Making use of (5.10), (5.11) and (5.12)

Ha=07 2(Ha+Ya) 2y2
yields that
- “HaTa (2 + 22Uy, + Y2 _ a + 0o + Vo — 207
LW =LW, + =< 2('”“ Hay y“+crf)LW+(/J U 2)/ 2)LW8
Ma — 0 z(lla + ya) 27a
(,ua + 6a)(,ua Yo — 20—%)(ﬂa + 5a - 20—%)

1
<= o+ va = 203)(Ea — ) - (I.— I}’ + Li.

(5.13)

4y?

Integrating both sides of (5.13) from O to ¢ and then taking expectation yields

EW(t) — EW(0) < — i(ya +7y, - 203)E f (E,(s) — E})ds
0

(,ua + 6a)(/1a t Vo — 20—%)(ﬂa + é‘a -
4y;

2073) ' 2
E f (L(s) = I)ds + Lyt.
0
Therefore, we can obtain

f
L
lim supEf [(E.(s) — E;)2 + (1, (s) — 12)2]ds < L—l =: Py,
0 2

t—00
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where L;, L, have been defined in Theorem 3. Taking U, = %(S =S ;)2, we have

. BiSal; 1 5.
LU, =Sy = SD(Ap — upS j — =2 )+ 5058

1+a’2];
ﬁhSZIZ ,BhShI* 1
=(Sp =S| unS; — nSy + - |4 =g2S;
(S = S0 | HaS i = S l+alk 1+ arl: 2 T4 (5

I . ) )
ﬁ"az 7S n - S +03(S, = S;) +05(S))?

== (un + 1
— (= oS = S}’ + oy

Integrating both sides of (5.14) from O to ¢ and then taking expectation, we get

!
EU(t) - EU(0) < — (uy — 0)E f (S —S;)ds + o3(ST).
0
Therefore, we can obtain

2
lim sup E f (Sy—S;)ds < uiCI :

t—0o0 h—0-4

Let U, = 3[I,(t + 74) — I;]*, we have

1
LU, =(Iy(t +14) = ) ﬁ n il 1 — (i + 8 + OOt + )| + Eaglﬁ(t + 1)
ﬁh a % * *\2 1 2712
= ~(i(E+70) = L)(Sh = 8)) — (i + 6 + O) (¢ + 73) — 1) + 051, (t + 75)
1+ azla 2
2([*)? +6,+ 6, — 0?2
< Al R e A TN
2(1 + Qz[j)z(ﬂh +0,+6,— 0'5) 2
— (W + O + O)Un(t + 1) = I + o2t + 1) = I)* + o2(I))*
2([)2(S, — S*)? +6,+0), — o2
__ AU O S It + 1) — L)+ oI
2(1 + Qz[j)z(ﬂh +6,+ 6, — O'g) 2
Let U = Al U, + U,, then
T 2o (el (A oy +Op—0D) ! 2

— + 64 + 6, — 03 2(I202(S1)?
LU — _/’th h h S(Ih(t + Th) _ I;;)Z + ﬁh( a) 4( h)
2 2, — o1+ L2y + 64 + 6, — 02)

+ o3I
Sp+Op—02 " .
Let Uz = W ftHTh(Ih(s) — I*)*ds, we obtain

op+6,—0o
Luy = B 5[+~ 1 + (= 17
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LetU =U + Us, then,

. +0, +60 _0-2 21*20.25*2
LU = - Hin T On = O 2 (Iy(t + 1) -+ > AU 24( W .
2up — o) + axl3)*(uy + 6 + 0y — 075)

2
,uh+6h+9h—a'§
2

+ o3I + [t + 1) = 1) + (U - 1) (5.15)
B0y (S )
2(/1;, - O'i)(l + azlz)z(ﬂh +0,+ 6, — O'g)

/lh+6h+9h_0-§
- 2

Iy = 1) +

+ o3I

Integrating both sides of (5.15) from O to ¢ and then taking expectation, we have

+6u+ O -0 [T
A L SEf(Ih—I;)zds
0

2 I* 20_2 S* 2
n . Al 24( » —t+ o3’
2(pp — o)1 + aa3)*(pn + 64 + 0, — 05)

EU(t) - EU(0) < -

Therefore, we can obtain

t
lim sup E f (I, — I})*ds < Ps,
t—o00 0

where P has been defined in Theorem 3. The proof is completed. O

a5 100 5100 14000

—_— Fl0 =4.8269 —_— Hu =4.8269

25 —R,=32823 12000 ——R;=32828

RD=1v9308 10000 HU=1.9308

2 —H0:1,3515 —Rn:1.3515
8000

w 15 _©
6000
! 4000
os| | Agzemenis et ool || Aiinmsdt gy
0 100 200 300 400 500 00 100 200 300 400 500 00 100 200 300 400 500
Time[day] Time[day] Time[day]

Figure 2. The behavior of avian population under different %, > 1.
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Figure 3. The behavior of human population under different %, > 1.
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6. Numerical simulation

This section is devoted to illustrating the theoretical results by numerical examples. The parameters
of system (2.3) are selected as in Table 2, @; and a, are varying parameters that is taken value from
0.001 to 0.1, and oy = 0.01, 0 = 03 = 05 = 0.04, 04 = 0.008. The initial conditions of system (2.3)
are S,(6) = 3,000,000, E,(6) = 1,000, 1,(6) = 10,5 ,(6) = 1,000, I,,(6) = 5, 0 € [-7,0]. The Milstein
method [25] is used to obtain the discrete form of system (2.3) as follows:

BaS a(k)1a(k)

Salk+1) = S.(k) + (A“ ~ HaSa(k) = 1+ al,(k)

)At + 018 o(k) VA& (k)

+1a%sa<k><§%<k> ~ DA,

2
ﬁae_ﬂa‘r“sa( - Z_l;)la( - Z_a,)
1+ (I]Ia(k — %)

E(k+ 1) = Ea<k>+( ~ +ya>Ea<k>) At

+0 E, (k) VALE (k) + %aiEa(k)(fi(k) — DA,

Lk + 1) = L) + (YaEa(k) = (1t + 8)1,(0)) At + o3 1,(k) VAL (k) + %aﬁla(k)@%(k) - DA, (6.1)

BiS n(k)1a(k)

Splk + 1) = S ,(k) + (Ah — S k) = S )Az + 048 (k) VALE (k)

+1aish<k><§i<k> ~ DAL,

2
e HntnS, (k — 2y, (k — 3
B h allk = 3) (up + O + Hh)lh(k)) At

1+ a’zla(k - %

Ih(k + 1) = Ih(k) + (

1
+ors 1 (k) VALEs(k) + STRNEK) = DAL,

where &;(k) ~ NO, )i =1,---,5k=1,2,---) are independent Gaussian random variables. Initially,
we study the effect of %, which, by Theorems 2 and 3, can govern the asymptotic behavior.

Table 2. Parameter values used in numerical simulations for model (2.3).

Parameter Value Source of data
A, 30000 Assumed
Ay u, X 1000 Assumed
Ba (0.5—12.5) x 10-°day™! [10]

Bu 3% 107 [10]

Uy 1/100day ™" [10]

I 200/(70 x 365)day ™" Assumed
S Sday~! [10]

S 0.03day ™" [10,11]
Ya 0.3day™! [11]

6, 0.16day ™" [11]

T, 7 day Assumed
T 14 day Assumed
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Example 1. Effect of basic reproduction number %,.

Choose different 8, such that %, take different values, which are shown in Table 3. Since O'% =
107 < p, = 102,02 = 0.0016 < %(,ua + Ya) = 0.155,0’% = 0.0016 < %(,ua +0,) = 5.01,07 =
0.000064 < w; = 0.0078,03 = 0.0016 < w, + 64 + 6, = 0.1978, the condition (i) of Theorem 3 is
satisfied. From Table 3, we see that for each %, the inequality P,, < dg holds, which means the
condition (ii) of Theorem 3 is also satisfied. Thus, all the conclusions of Theorem 3 hold. It follows
from Table 3 that the change of %, can result in different values of E*, which also illustrate the value
of E* is related to %,. By the discrete form of system (2.3), the numerical results under different
%, are presented by Figures 2 and 3 when %, > 1, which show that the solution of system (2.3)
goes around the endemic equilibrium E*. The effectiveness of Theorem 3 is also indicated by these
two figures. In addition, we can see from Figures 2 and 3 and Table 3 that the number of infected
poultry and humans will reduce with the decrease of %,. On the other hand, in order to explore
if the results of Theorem 3 hold, we enhance the intensity of perturbation as o = (oy,---,05) =
(0.02,0.08,0.08,0.016,0.08) (Case I: condition (i) of Theorem 3 is satisfied but condition (ii) is not
satisfied), o = (0.06,0.24,0.24,0.048,0.24) (Case II: Both conditions (i) and (ii) are not satisfied)
and o = (0.10,0.40, 0.40,0.080, 0.40) (Case III: Both conditions (i) and (i1) are not satisfied). The
simulation results are presented in Figure 4, which are obtained by computing the average of 800
simulations. The equilibrium of corresponding deterministic model is E* = (2.3931 x 10%, 1.8254 x
10%,0.7812 x 10%,227.3975, 11.5855). From Figure 4, we see that the curves will move away from the
equilibrium point E* with the increasing of intensity of perturbation, which violate the conclusions of
Theorem 3.

Table 3. Value of E*(S;, E;, I};,S;, 1) under different K.

70 S:(x10%)  Ex(x10%)  I:(x10°) S; I P, (x10%)¢  dg (x10°)*
4.8269 0.7977 6.6239 2.8348  212.6795 11.8062 2.5226 22.033
32823  1.1336 5.6137 24024 2137049 11.7908 2.7378 18.673
1.9308  1.7948 3.6249 1.5513 2173720 11.7359 3.2294 12.057
1.3515 2.3931 1.8254 0.7812  227.3975 11.5855 3.7266 6.072

tiPm = max( \/P_’ \/P_, \/P_’ \/P_6), dE = d(E*, EO)

According to the values of o, ---, 05 and the parameters values in Table 2, we easily verify the
conditions of Theorem 2 are satisfied. Therefore, from Theorem 2 we know that the solution of
system (2.3) will go around the disease-free equilibrium E° when %, < 1. The numerical simulation
results of %, are presented in Figures 5 and 6. These figures show E,, I, and I, all go to zero when
Zy < 1, which illustrate the effectiveness of the theoretical results in Theorem 2. Meanwhile, Figures
5 and 6 also show that the rate of E,, I, and I, converges to zero is increasing with the decrease of %.
The conditions of Theorem 2 are only a sufficient ones, so we want to know whether the conclusions
of Theorem 2 hold when the intensity of perturbation increase such that these conditions are not
satisfied. Thus, we choose o = (o1,---,05) = (0.02,0.08,0.08,0.016,0.08) (Case I),
o = (0.06,0.24,0.24,0.048,0.24) (Case II) and o = (0.12,0.48,0.48,0.096, 0.48) (Case III), and the
simulation results are presented in Figure 7. Figure 7 shows E,, I, and I, converge to zero for each
cases, so the results of Theorem 2 also hold.
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Figure 4. The trajectories of E,, I, and I, for large perturbation when %, = 1.3515 > 1.
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Figure 5. The behavior of infected avian population under different %, < 1.
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Figure 6. The behavior of infected human population under different %, < 1.
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Figure 7. The trajectories of E,, I, and I, for large perturbation when %, = 0.7723 < 1.
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Example 2. Effect of time delays 7, and 7.

In order to study the effect of time delays, we consider the average peak values of E,, I, and I, and
the time of reaching average peak values by 300 simulation runs. The simulation results are shown
in Figures 8 and 9. It follows from Figure 8 that the increase of time delay 7, or 7, can reduce the
peak value of both infected poultry and human population. Meanwhile, from Figure 9, we know that
the large time delay also lead to the delay of reaching peak value. Thus, we may conclude that time
delays have significate influence for the spread of avian influenza. According to the practical meaning
of 7, and 7, related department can adopt some measures to increase the spread delay to suppress the
outbreak of influenza, such as isolation. In addition, the adopting of those control measures will win
time for taking drug control.
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s 3 « 12000

©
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10000

8000

©
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Average Peak Value of Ih
3

Average Peak Value of E
Average Peak Value of |

Figure 8. The average peak values of E,, I, and I;, under different 7, and 7;, by 300 simulation
runs.
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Figure 9. The time of reaching average peak values of E,, I, and I, by 300 simulation runs.

Example 3. Effect of saturation constants o; and a,.

According to the analysis of Introduction, the saturation constants a; and @, are important
parameters for avian influenza. We thus explore the effects of @; and @, in this example. In order to
explore the effect of a; under fixed a,, we run 1000 simulations and take their average values. The
results are shown in Figure 10. It follows from Figure 10 that a; can influence the rate of convergence
to the equilibria of the poultry population, while it can not significantly influence the rate of
convergence to the equilibria of the human population. In addition, we study the influence of @, under
fixed . The simulation results are presented in Figure 11, which implies that @, can not change the
rate of convergence to the equilibria of the poultry population. Figure 11 also means that @, can not
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increase the rate of convergence to the equilibria of the human population, but it can evidently reduce
the peak value of 7,(f). In summary, @; and @, have evidently influence to the spreading of avian
influenza among both avian and human population.

1000 407

—a, =0001, a, =0.001 —a, =0001, a, =0.001

——a, =001, a,=0001 ——a, =001, a,=0001
a,=0.1,0,=0001 30 a,=0.1,0,=0001

0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time[day] Time[day] Time[day]

Figure 10. The effect of @ and @, by 1000 simulation runs (for fixed a;).
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Figure 11. The effect of @; and @, by 1000 simulation runs (for fixed a;).

7. Concluding remarks

In this paper, we establish a stochastic delayed avian influenza model with saturated incidence rate.
To begin with, we investigate the existence and uniqueness of the global positive solution to the system
(2.3) with any positive initial value (2.4). Since there is no equilibrium point in the system (2.3) at
this time, thus, the asymptotic behaviors of the disease-free equilibrium and the endemic equilibrium
are given by constructing some suitable Lyapunov functions and applying the Young’s inequality and
Holder’s inequality. Theorem 2 shows that if %, < 1, then the solution of system (2.3) is going around
E° while from Theorem 3, we obtain that if %, > 1, then the solution of system (2.3) is going around
E*. Finally, some numerical examples are given to illustrate the accuracy of the theoretical results.

There are some interesting issues deserve further investigations. On the one hand, we can formulate
some more realistic but complex avian influenza models, such as considering the effects of Lévy jumps
or impulsive perturbations on system (2.3). On the other hand, the coefficients in our model studied
in this paper are all constants. If the coefficients are with Markov switching, how will the properties
change? We leave these investigations as our future work.
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