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Abstract: Gene expression is an inherently noisy process due to low copy numbers of mRNA or 

protein. The involved reaction events may happen in a Markov fashion but also in a non-Markov 

manner, depending on waiting-time distributions for the occurrence of reaction events. In recent years, 

many mechanistic models of stochastic gene expression have been developed to forecast fluctuations 

in mRNA or protein levels. Here we discus commonalities between these models as well as their 

extensions from Markov to non-Markov models, focusing on the contributions of noisy sources to the 

protein level. We derive a useful formula for the protein noise quantified by the ratio of the variance 

over the squared mean. This formula, expressed in terms of the frequencies of the probabilistic events, 

can be used in the fast evaluation of fluctuations in the protein abundance. Although the detail of the 

formula may vary from gene to gene, it highlights sources of the protein noise, which can be 

decomposed into two parts: spontaneous fluctuations resulting from the birth and death of the protein 

and forced fluctuations originated from switching between the promoter states. 
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1. Introduction  

Mathematical models are a powerful tool for modeling and analysis of complex gene expression 

processes. An important task of systems biology is to design reasonable mathematical models that 

faithfully describe the dynamics of gene expression. Any theoretical model of gene expression 

established based on the first principles needs to make assumptions. This is because the complexity of 

gene expression would make it difficult to specify what transitions can be condensed into effective 

reaction steps and what concentrations can be absorbed into reaction rate constants. It seems always 

difficult to tell if the correct principles are addressed when modeling a complex process of gene 
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expression. However, it is possible to understand simple mechanistic models of gene expression at the 

initial stage. 

Most published gene models have independently focused on the fundamental genetic information 

flow described by the central dogma in biology (i.e., the information stored in DNA is first transcribed 

into mRNAs, which are then translated into functional proteins). These models include (but do not 

limit to) transcription models [1–5], transcription and translation models [6–9], gene regulatory 

models [10–14], Markov models of gene expression [15], non-Markov (or queuing) models of gene 

expression [16,17]. The underlying fundamental principle may be extended, depending on the 

dissection of molecular details involved in gene expression. A common way of the extension is to 

implicitly include all other processes in effective reaction rates of gene models [2,4–8,12,13,17]. With 

the development of single-cell and single-molecule measurement technologies, more molecular details 

that can significantly impact gene-product levels have been revealed. Here we state key molecular 

events occurring in gene expression processes, which will be partially incorporated in gene models of 

this paper.  

First, activation and inactivation of a gene can have many different molecular causes, such as 

alternative splicing, transcription initiation, recruitment of polymerases, dissociation of repressors, 

association of activators, histone modifications, and chromatin remodeling as well as recruitment of 

transcription factors (TFs). In particular, the activation of a gene depends on the chromatin template 

that accumulates over time until the promoter becomes active [2,18–22], implying a multistep process. 

The details vary from gene to gene and from cell to cell, and can include random transitions between 

different promoter activity states. As a first approximation, the reaction kinetics of promoters in 

prokaryotic and eukaryotic cells may be described as a random telegraph process with constant rates 

or equivalently with exponential waiting-time distributions [23]. 

Second, transcription or translation is often assumed to follow a Poisson process, i.e., the number 

of mRNA or protein molecules produced per time unit is often assumed to follow a Poisson distribution. 

This assumption may or may not be biologically reasonable. Complex regulation may affect 

transcriptional processes: (1) The binding of TFs to DNA sites may change the promoter structure, 

thereby impacting the efficiency of transcription; (2) Replication may alter the chromatin structure, 

giving rise to abrupt changes in expression rates; (3) mRNAs’ entry into or exit from the cellular 

cytoplasm may impact reaction kinetics. 

Third, feedback regulation is not exceptional but is ubiquitous in gene expression systems. 

Positive and negative feedback loops are common regulatory forms found in biological signaling 

systems. For example, in mammals, more than 3000 signaling proteins and more than 15 second 

messengers form hundreds and thousands of cell-specific signaling pathways [24]. Many of these 

signaling pathways may have numerous upstream regulators and downstream targets, which altogether 

constitute a huge web of connectivity within and between signaling pathways [24]. The presence 

of multiple feedback loops poses a challenge to understanding how receptor inputs control the 

cellular behavior. 

Fourth, apart from heredity-relevant molecular cues that lead to the so-called non-genetic 

heterogeneity, other possible contributors include fluctuations in many enzymes and substrates 

involved, cell cycle effects, and random partitioning of copies at cell division as well as fluctuations 

in methylation, histone modification, or more generally, epigenetic regulation [25]. These and other 

complications, which can also affect mRNA or protein abundances, will not be explicitly considered 

in gene models of this article. 
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Figure 1. Discrepancy between Markov and non-Markov models: (A) Markov model if all 

the intermediate processes are specified; (B) non-Markov model where non-exponential 

waiting-time distribution can model unspecified intermediate processes; (C) unimodal 

protein expression in the non-Markov on-off model described by 
a

b
off on⎯⎯→⎯⎯  , 

, don on B X X⎯⎯→ +  ⎯⎯→   where parameter values are set as 1, 30, 1a b d= = =  ,

3, 0.1B = = ; (D) bimodal protein expression in the non-Markov on-off model described 

by 
( )

, ,
f d

b
off on on on B X X

 ⎯⎯⎯→ ⎯⎯→ +  ⎯⎯→⎯⎯⎯ , where some parameter values are set as 

30, 1b d= =  , 3, 0.1B = =  , and the values of two characteristic parameters in the 

Gamma waiting-time distribution are set as 1, 1k a= = . 

Given the above complexity, how gene expression is modeled is challenging. According to the 

existing literature, we can divide the proposed models of gene expression into two large classes: 

Markovian and non-Markovian, referring to Figure 1 that shows the discrepancy between a Markov 

and a non-Markov gene models. For Markov models, it is needed to make the memoryless hypothesis, 

i.e., the stochastic motion of the reactants is influenced only by the current state but not by previous 

states. This hypothesis implies that waiting times for reaction events occurring in gene expression obey 

exponential distributions [26,27], and the reaction kinetics of gene expression are thus Markovian [26–29]. 

Experimental and theoretical studies have shown that the characteristic parameters in waiting-time 

distributions can have a significant impact on gene expression levels. However, reaction events 

occurring in gene expression may happen in a non-Markov fashion. Possible reasons include: (1) the 

complex control process of transcription initiation, which would involve many kinds of regulators (e.g., 

repressors, mediators, and TFs) as well as chromatin remodeling and changes in supercoiling, can 

generate non-exponential time intervals between transcription windows [18,30–35]; (2) The synthesis 

of an mRNA in general involves multiple intermediate reaction steps that would not have been 

specified or cannot be specified due to experimental technologies, creating molecular memory between 
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individual events [18,36]; and (3) medium heterogeneity of gene expression may lead to broad waiting-

time distributions between reaction events [37], thus influencing the efficiency of reactants in 

exploring their environments [38–42]. We will mainly focus on the second case, i.e., molecular 

memory is created by multistep biochemical processes involved in gene expression. 

In most situations, biochemical reactions involved in gene expression are essentially single-

molecule events, leading to stochastic fluctuations in mRNA and further protein levels. Thus far, there 

have been two kinetic modes of stochastic transcription that have been experimentally observed in 

individual cells: one mode is the Poissonian way where mRNAs are synthesized in a probabilistic 

manner with a probability that is uniform over time [43,44], and the other mode is the bursty way 

where mRNAs are produced in a bursty fashion with burst size following a distribution [45–48]. Each 

of the two ways can result in temporal, stochastic fluctuations in mRNA and protein numbers. This 

cell-to-cell variability is often referred to as gene expression noise. 

In order to help the reader understand how stochastic gene expression is modeled and analyzed, 

we begin with Markov models and then extend them to non-Markov cases. Our analysis focuses on 

statistical quantities of protein, such as the mean protein level (or expectation), the protein noise 

defined as the ratio of the variance over the squared mean, and the Fano factor defined as the ratio of 

the variance over the mean. We will use these statistical quantities to characterize the protein noise 

even though a random variable is best characterized by its distribution. We highlight the contributions 

of noisy sources to protein levels by deriving analytical formulae for the protein noise. Additionally, 

we discus commonalities between these models as well as the possible linking between theoretical 

predictions and experimental observations. 

2. Markov models of stochastic gene expression 

As mentioned in the introduction, Markov models assume that waiting times for reaction events 

are exponentially distributed. Here we review results for Markov models of stochastic gene expression, 

which are established based on the random telegraph model [18,19,49]. The telegraph model has long 

been used as a basis for several studies focusing on analysis of probability distributions for gene 

products and their statistical quantities as well as on inference of gene expression parameters based on 

experimental observations [50–52]. It is well known that random telegraph model has a good property: 

in the limit of transcriptional bursting, the arrival of bursts is a Poisson process. We start by the 

common on-off model of gene expression and then extend it to more realistic cases including multiple 

off mechanisms and feedback regulation of various forms. 

2.1. The common on-off model 

In prokaryotic and eukaryotic cells, most genes are expressed in a bursty manner, namely 

gene product molecules are produced in short periods of high transcriptional activity (on) followed 

by long periods of inactivity (off). In order to model this expression manner, on-off models have 

been proposed [48,53–55], which assume that the gene promoter has two activity states: one off state 

where the gene is not expressed and one on state where the gene is expressed with burst size B  

following a probability distribution:  prob B i=  with 0,1,2,i = . Denote by a  and b  the mean 

switching rates from off to off states and vice versa, respectively. As done in previous works, we 
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assume that proteins are produced instantaneously after mRNAs are synthesized, so that transcription 

and translation processes can be lumped into a single reaction step. In addition, we assume that proteins 

are produced with a constant rate denoted by   (representing the mean synthesis rate) and degrade 

with another constant rate denoted by d  (representing the mean degradation rate). Without loss of 

generality, we set 1d =  throughout this paper. For clarity, we list all the reactions as follows  

, , ,
a d

b
off on on on B X X⎯⎯→ ⎯⎯→ +  ⎯⎯→⎯⎯                 (1) 

where X  represents protein. According to experimental facts [53], we will always assume that B  

follows a geometric distribution given by   ( )
1

prob 1
ii

B i B B
+

= = + , 0,1,2,i = , where B  

represents the mean burst size. Then, we can show that the protein expectation, denoted by X , is 

given by onX B = , where ( )on on on off   = +  represents the probability that the promoter is 

at the on state. Here 1on b =  and 1off a =  represent the mean times that the gene dwells at on and 

off states respectively. The protein noise, denoted by 
( )common

X , is then given by 

( ) ( )common common

X burst promoter

B

X
  = + ,                           (2) 

where ( )1burst B B = +   represents the burst noise due to the bursty expression manner, and 

( ) ( ) ( )
2common

promoter off on off on off     = + +  represents the promoter noise due to switching between on and 

off states. In Eq. (2), the first term on the right hand side represents spontaneous fluctuations (i.e., the 

internal noise) due to the birth and death of the proteins as well as due to bursty expression, whereas 

the second term represents the forced fluctuations (i.e., the promoter noise), which depends, only, on 

the two switching rates but is independent of the synthesis and degradation rates of the protein. Note 

that each of three statistical quantities B , 
on  and off  is experimentally measurable. 

We point out that Eq. (2) is a fundamental formula for the fast evaluation of the protein noise. 

One will see that if other factors or processes associated with gene expression such as a multistep 

transition from the off to on state, then term 
( )common

promoter  needs to be modified but the first term on the 

right hand side of Eq. (2) is kept unchanged.  

Note that both if 0b →  (or in the limit of small b ) and if bursting is not considered, then the 

common on-off model reduces to the gene model of constitutive expression, which is essentially 

a birth-death process. In this sense, Eq. (2) includes the result for the gene-product noise in the 

latter model. 

2.2. A gene model of promoter progress 
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The gene model analyzed in the previous section assumes that the stwiching from inactive to 

active states is a single-step process. However, biological evidence supports that the chromatin 

template determining transcription kinetics accumulates over time until the promoter becomes active, 

implying that the off-to-on transition occurs not in a single-step manner but in a multistep manner. 

Specifically, the gene activity would proceed sequentially through an on state and several off states 

(note: in these states, polymerases could be either absent from the promoter or present in a paused or 

inactive state), and then returns to the on state. As a result, all the promoter’s on and off states constitute 

a chromatin loop. The corresponding model is called the gene model of promoter progress [2,3]. 

In order to model the gene expression with promoter progress and derive analytical results, we 

still assume that proteins are produced instantaneously after mRNAs are produced and degrade in a 

linear manner. The promoter switching from the on state to the off state has been reported to occur 

essentially with a single rate-limiting step and can thus be modeled by a constant rate [36,56]. 

Therefore, we introduce the following set of reactions for conveniently writing down the chemical 

master equation (CME) that describes the time evolution of the probability distribution function for 

the protein 

( )1 1, 1, 2, , 1 , ,

, ,

k Ma ab

k k M

d

on off off off k M off on

on B X X

+⎯⎯→ ⎯⎯→ = − ⎯⎯→

⎯⎯→  ⎯⎯→
        (3) 

where b  is the mean rate of gene inactivation, 
Ma  is the rate of gene activation, 

ka  is the transition 

rate from the k  th off state to the ( )1k +  th off state with 1,2, , 1k M= −  ,    and d   are the 

synthesis and degradation rates of mRNA, respectively. Note that if 1M = , the corresponding model 

reduces to the common on-off model analyzed above. In Eq. (3), B   represents burst size that is 

assumed to follow the geometric distribution as specified above.  

Denote 1k ka =  , which represents the time that the gene dwells on the thk  off state. Then, 

1

M

off kk
 

=
=  represents the total time that the gene dwells on the inactive state (called the mean off 

time). Denote by 1on b = , which represents the mean time that the gene dwells on the on state (called 

the mean on time). The protein expectation still takes the form of onX B =  and the protein 

noise (
( )loop

X ) still takes the form of Eq. (2), but the promoter noise (
( )loop

promoter ) should be modified as 

( ) ( ) ( )

( ) ( )
1

1

1
1

1 1 1

M

on off kloop k

promoter M

on kk

  


 

=

=

+ +
= −

+ + −




 . If the total mean off time off   is fixed, then we can show 

( ) ( )
1

1 1
MM

k offk
M 

=
+  + , where the equal sign holds if and only if k off M =  for all k . In this 

case, the promoter noise reaches the lowest level. For a fixed mean protein level, the protein noise 

( )loop

X  still takes the form Eq. (2) if 
( )common

promoter  is replaced with 
( )loop

promoter , i.e., the protein noise consists 

of the term representing spontaneous fluctuations and the term representing the forced fluctuations. 
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Moreover, the protein noise in this case equals or is greater than that in the common on-off model. 

Similarly, we can analyze the cases of multiple off pathways even with crosstalk, and obtain a similar 

result for the protein noise. 

The above analysis indicates that the number ( M ) of the inactive states can enlarge the protein 

noise. Moreover, the portein noise in the multi-off model is always higher than that in the common on-

off model, implying that the protein noise is underestimated in previous studies. In addition, model (3) 

is essentially equivalent to model (1) in terms of the mean on and off times. 

2.3. A gene model with feedback of any form 

Feedback is a ubiquitous mechanism that regulates gene expression in prokaryotic and eukaryotic 

cells. Here we further introduce feedbacks to the common on-off model analyzed above. Specifically, 

we assume that the produced proteins regulate, as TFs, two switching rates between on and off states, 

as well as the protein production rate. Thus, the mean switching rates introduced above, a  and b , 

should be replaced with two functions depending on the number ( n ) of the protein molecules, denoted 

by ( )1 n  and ( )2 n , whereas the mean protein production rate should be replaced with another 

function that also depends on the number of the protein molecules, denoted by ( )3 n  . The 

corresponding gene model includes many gene models (e.g., the common on-off model analyzed above) 

in the literature as its special case. To that end, the corresponding CME at steady state takes the form 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 0 2 1 0

1 0 2 1 3 1 3 1

0

1

0,

        0,

n

i

i

n Q n n Q n Q n

n Q n n Q n g n i Q n i n Q n

Q n

=

− + + − =  

 − +  − − −

+ − =  



E I

E I

         (4) 

where E  is the step operator whereas I  is the unit operator, and we define  probig B i= =  and 

use the assumption that the protein degradation rate is the unit. In Eq. (4), ( )0Q n   and ( )1Q n  

represent the stationary probability distributions of protein when the gene is in off and on states 

respectively. Apparently, this CME is an extension of that for the above analyzed common on-off 

model since each ( )iQ n  may be any function of n . 

In principle, the total stationary distribution, ( ) ( ) ( )0 1Q n Q n Q n= + , can be exactly obtained by 

solving Eq. (4) using an analytical method that we ever developed [57], but the form is very complex. 

Here we are interested in statistical quantities of the protein, and present approximate results. For 

example, the stationary mean protein level is approximately given by 
( ) ( )

( ) ( )
3 1

1 2

0 0

0 0

B
X

 


 +
[57], 

which is apparently an extension of the expression for the mean protein in the Markovian case. 

Similarly, the steady-state protein noise, denoted by 
( )feedback

X  , is approximately given by 
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( ) ( )

( ) ( ) ( )
2

1 1 2

0 1

0 0 0 1

feedback

promoter


=
  + +

[57], which is also an extension of the expression for the promoter 

noise in the Markovian case. 

For clarity, let us consider a special case: ( )1 n a n = +  , where parameter    represents 

feedback strength, ( )2 n b =   and ( )3 n  =  . In this case, we can derive the following exact 

expressions [58,59]  

( ) ( )
( )

1 1

1 1

1 ,1 ;

, ;

feedback
F a a ba B

X
a b F a a b





+ + +
=

+ +
,                     (5a) 

for the mean protein level and  

( ) ( )( )

( )
( ) ( )

( )

1 1 1 1

2

1 1

, ; 2 ,2 ;1
1

1 1 ,1 ;

feedback

X

a b a F a a b F a a bB

X a a b F a a b

  




+ + + + + ++
= + −

+ +  + + +
 

,      (5b) 

for the protein noise intensity, where 
1

a
a


=

+
 , 

1

b
b


=

+
 , and  =   with 

1





=

+
 , and 

( )1 1 , ;F z   is a confluent hypergeometric function [60]. Note that if 0 → , Eqs. (5a) and (5b) can 

reproduce previous results, e.g., 
( )common a

X
a b


=

+
 and ( )

( )

1

1

common

X

B b

X a a b


+
= +

+ +
. 

3. Non-Markov models of stochastic gene expression 

In the above section, we have reviewed and analyzed Markov models of stochastic gene 

expression, where waiting-time distributions for reaction events are assumed to be exponential. For 

many systems of gene expression, however, this assumption is too strong to describe the realistic case. 

In fact, the waiting times in general follow non-exponential distributions or reaction kinetics is in 

general non-Markovian, with reasons mentioned as in the introduction. Here, we introduce and analyze 

several gene models of bursting expression with molecular memory, which can be divided into two 

classes: one class described in terms of queuing theory [16,36,56] and the other class described in 

terms of continuous time random walk (CTRW) theory [61–63]. 

3.1. A queuing model  

In queuing theory, queuing models can be categorized into several classes, depending on 

assumptions on the numbers of customers and servers, and the ways of customer arrival and 

departure [64]. Here, we map gene expression processes into queuing models in the queuing 

theory [16,36,56]. In this mapping, proteins are the analogs of customers in a queue, and their 

production is analogous to arrival of customers whereas their degradation to customers who leave 
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the queue after receiving service. We assume that waiting-time distribution for protein degradation is 

exponential. In addition, we assume that each protein degrades independently, implying that there are 

an infinite number of servers in the queuing model. If we let GI  represent that the waiting-time 

distribution for customer arrival is general, M  represent that the distribution for customer service 

time is exponential, and   represent that there are infinite servers in the queuing system, then our 

queuing model of gene expression belongs to the / /GI M   system in the queuing theory.  

Denote by   (representing the mean production rate) the constant rate for protein synthesis, by 

d   (representing the mean degradation rate) the constant rate for protein degradation, and by b  

(representing the mean on-to-off switching rate) the constant switching rate from active to inactive 

states of the promoter. Let ( )   represent the probability density function for waiting time from 

inactive to active states. For this queuing model, we can derive exact expressions for the steady-state 

moments for the number of customers in the system. In this subsection, we do not explicitly consider 

bursty expression. 

For the above queuing model of stochastic gene expression, it seems to us that the CME has not 

been established so far. In order to help the reader’s understanding, here we present the following 

steady-state CME without providing details of mathematical derivation (note: the CME can be derived 

using the total probability principle) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( )

1 1 1 0
0

0

0 0

1 1 1 , ,

,
, 1 1, ,

nd b Q n Q n n dQ n Q n h d

Q n
ndQ n n dQ n

    


 





+ + = − + + + +


= − + + +




        (6) 

where ( ) ( ) ( )h    =    is a hazard function [65–67], and ( ) ( )t dt


 


 =   represents the 

cumulant probability. The boundary condition is imposed by ( ) ( )0 1,0Q n bQ n= . Equation (6) can be 

solved using the characteristic line method combined with the binomial moment method that we ever 

developed [59].  

3.1.1. Statistical quantities for the protein noise 

Denote by 
( )queue

X  the protein noise. According to the noise definition and noting that the protein 

degradation rate has been set as unit, we can derive the following analytical expression for the protein 

noise from Eq. (6) 

( ) ( )

( )

11

1

queue off

X

on
X

 


 

−
= +

+
,                            (7) 

where 1on b =   and ( )0off = , and ( )s  is the Laplace transform of function ( )  , i.e., 

( ) ( )
0

ss e d   


−=  . This result is accurate in contrast to previous works that gave approximate 

expressions for the protein noise [16,36,56]. In Eq. (7), the first term on the right hand side represents 

spontaneous fluctuations resulting from the production and degradation of the protein whereas the 
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second term is only related to the promoter kinetics and can then be viewed as forced fluctuations 

originated from switching between the promoter states. Thus, the decomposition formula in Eq. (7) is 

an analog of Eq. (2), namely, the protein noise is decomposed into two parts: spontaneous fluctuations 

resulting from the birth and death of the protein and forced fluctuations originated from switching 

between on and off states of the promoter. 

Next, we consider a special case of distribution ( )   for the off-to-on switching time, i.e., 

( )   is a Gamma distribution with the form of ( )
( )

1
k

k aa
e

k

   − −=


, where k  is a shape parameter 

and will be called memory index. Note that 1k =  corresponds to the Markov case whereas 1k   to 

the non-Markov case. If k  is a positive integer, then function ( )   is an Erlang distribution. Also 

note that the mean of ( )   is 
k

a
 and the variance is 

( )
2

1k k

a

+
.  

For the above setting, the mean protein level X  is exactly given by onX = , where 
on  

is the probability that the promoter is in the on state and is exactly given by on

a k

a k b
 =

+
. This 

indicates that molecular memory characterized by memory index k  can reduce the mean protein level. 

In addition, the promoter noise, denoted by 
( )queue

promoter , is given by 
( ) ( )

( )

1

1

queue off

promoter

on

 


 

−
=

+
. If memory 

index 1k = , then we can show that 
( )queue

promoter  reduces to ( )common off off

promoter

on off on off

 


   
=

+ +
. If 1k  , we can 

prove that function ( )
( )

( )

1

1

off

on

I
 


 

−


+
 with off

k

a
 =  and ( )1 1

1

k
a

a


 
= − 

+ 
 is a monotonically 

increasing function of index k . Thus, ( ) ( )
( )

( )
1

1

common

promoter

b
k

a a b
   = =

+ +
 , indicating that the 

promoter noise in the queuing model is stronger than that in the common on-off model. This 

monotonicity implies that molecular memory always amplifies the protein noise if the protein mean 

is fixed. 

3.1.2. Bounds for the number of promoter states 

The experimental observations [18,33,54] have indicated that the waiting time for promoter 

switching from inactive to active states in general follows an non-exponential distribution, but the 

specific form of this distribution is in general unknown since it depends, in general, on the number of 

promoter activity states, possibly changing from gene to gene. On the other hand, the current single-
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cell measurement technologies make it possible to count the number of transcripts in different cells. 

An interesting yet unsolved question is the estimation on the number of promoter internal states. In 

order to address this question, we will analyze the Fano factor of protein rather than its noise intensity 

as done above, focusing on deriving bounds on the number of promoter internal states based on 

experimentally accessible measurements.  

For analysis convenience, we only consider a special case: the number of inactive states is fixed 

at a positive integer ( k ). In this case, the distribution for the off-to-on switching time, denoted by 

( )   , can be modeled as a phase-type distribution of order k   [68]. Note that for a fixed mean 

switching time, the noise for the phase-type distribution of order k  is the minimum if the distribution 

is set as ( )
( )

1
k

k aa
e

k

   − −=


 (i.e., an Erlang distribution with shape parameter k  [68,69]), where 

parameter a   represents the rate for a single-step reaction whereas parameter k   represents the 

number of reaction steps. This setting will allow us to derive bounds on the Fano factor for protein 

with details being as follows.  

Note that for the ( )   set above, we can show that the exact expression for the Fano-factor, 

denoted by ( )FF k  , is given by ( ) ( ) ( )
2

01 1 1FF k B k= + + ,  , where 0   represents the 

probability that the promoter is in an off state and is a fixed number if the protein expectation is fixed. 

This expression indicates that the Fano factor of protein is a monotonically decreasing function of k , 

and reaches the maximum at 1k = . Therefore, we have inequality ( ) ( ) ( )1FF FF k FF   . Notice 

that ( ) ( )2 1 1FF FF = +  holds. Thus, both the lower and upper bounds can be specified in terms of 

( )1FF , that is, ( )( ) ( ) ( )1 1 2 1FF FF k FF+    . Furthermore, if we make the transform of 

( ) 2

01 1theor FF B  = −     , which can be rewritten as ( )2 1theor k = + , then we have 1 2theor  , 

which is independent of memory index k . 

The significance of the above analysis is as follows. Consider an experimental analog of the FF  

defined above, which has the experimental Fano factor exper . In order to set upper and lower bounds 

on the number of promoter states, it is needed to determine the largest value of integer k  such that 

exper theor  . Note that the Erlang distribution of order k  has the lowest variance among all phase-

type distributions of order k . Also note that theor  is a monotonically decreasing function of k . The 

combination of both implies that the promoter must have at least 1k +  off states if exper theor   is 

satisfied. Thus, measurements of the Fano factor for protein can be used in setting bounds on the 

minimum number of promoter states. 
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3.2. A CTRW model  

As is well known, CTRWs can be further divided into two classes [62]: active CTRWs where 

waiting times need to be reset; passive CTRWs where waiting times are not reinitialized. The above 

analyzed queuing model of gene expression belongs to the latter class. From the viewpoint of stochastic 

simulation, however, it is more convenient to use active CTRWs to describe stochastic processes 

including gene expression. In particular, physicians frequently use the active CTRW framework to 

analyze and simulate stochastic processes [61–63]. Here we consider a stochastic gene expression 

model in the sense of active CTRWs.  

Let ( )1 ;t n  and ( )2 ;t n  be intrinsic-event waiting-time distributions from off to on states and 

vice versa respectively, ( )3 ;t n   and ( )4 ;t n   be intrinsic-event waiting-time distributions for 

protein synthesis and degradation respectively, where n  represents the number of protein molecules. 

Note that self-regulation exists if ( )1 ;t n  depends on n  and there is no feedback otherwise. The 

similar case holds for ( )2 ;t n  . If ( )3 ;t n   depends on n  , this implies post-transcriptional or 

posttranslational regulation. Assume that proteins are generated in bursts with burst size ( B ) following 

the geometric distribution described above. To that end, we have finished the setting of our gene model. 

For convenience, we denote by 
iR  (1 4i  ) four reactions from off to on states and vice versa, 

synthesis and degradation of protein, respectively. 

3.2.1. Effective transition rates 

Since ( );i t n  ( 1,2,3,4i = ) may be general distributions, which may lead to molecular memory, 

each of 4 reactions 
iR   ( 1 4i   ) has a memory function denoted by ( );iM t n   [62,73,74]. 

Interestingly, we can prove that for arbitrary waiting-time distributions ( );k t n   for reaction kR  

(1 4k  ), the limit ( )
0

lim ;i
s

M s n
→

 (1 4i  ) always exists [70]. If this limit is denoted by ( )i n , 

then we have [70] 

( )
( ) ( )

( )

+

0 0

+ 4

10 0

; 1 ;

1 ;

t

i j

j i

i t

jj

t n t n dt dt

n

t n dt dt

 









=

  −
  

 =
  −
  

 

 
,                     (8) 

where ( );k t n   is a modification of ( );k t n   due to the consideration of on and off states. 

Specifically, ( ) ( ); ;k kt n t n =   ( 1, 4k =  ) and ( ); 0k t n =   ( 2,3k =  ) when we calculate ( )1 n  
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according to ( ) ( )1 1
0

lim ;
s

n M s n
→

 =  ; ( )1 ; 0t n =  , ( ) ( ); ;k kt n t n =   ( 2,3,4k =  ) when we 

calculate ( )2 n   or ( )3 n   according to ( ) ( )
0

lim ;k k
s

n M s n
→

 =  ( 2,3i =  ); and ( ) ( ); ;i it n t n =   

(1 4i  ) when we calculate ( )2 n  according to ( ) ( )4 4
0

lim ;
s

n M s n
→

 = .  

Function ( )i n   is called the effective transition rate for the ith   reaction [70,71], where 

1 4i   . Note that if ( );i t n   is an exponential distribution of the form ( ) ( ) ( )
; i n t

i it n n e


 
−

=  , 

where ( )i n   should be understood as the reaction propensity function for 
iR  , we can show 

( ) ( )i in n =  . This indicates that effective transition rates are extensions of reaction propensity 

function s. If all waiting-time distributions are exponential, which corresponds to the Markov reaction 

case, the model reduces to the common CME for the on-off model with feedback and bursting in the 

sense of Laplace transform. We point out that the introduction of effective transition rates will be a key 

for analyzing non-Markov behavior. In addition, we emphasize that our gene model includes almost 

the on-off models of gene expression in the existing literature as its special cases. 

The promoter switching from the on state to the off state has been reported to occur essentially 

with a single rate-limiting step and can thus be modeled by a constant rate [39]. Therefore, ( )2 ;t n  

can be assumed to be an exponential distribution, i.e., ( )2 ; btt n be −= , where b  represents the mean 

switching rate from on to off states. Assume that proteins degrade in a linear manner with a constant 

rate denoted by d   (implying that the waiting-time distribution for degradation takes the form 

( )4 ; ntt n ne −=  due to the assumption of 1d = ).  

In order to show the explicit effect of molecular memory, we consider the following two special 

cases. 

Case 1: ( ) ( )1 1 1

1 1;
k k att n a k t e − − =    , ( )2 ; btt n be −=   and ( )3 ; tt n e   −=  , where positive 

constants a , b  and   represent an average switching rates from off to on and vice versa, and an 

average transcriptional or translational rate, respectively. Note that 1 1k =  corresponds to the Markov 

reaction case whereas 1 1k   to the non-Markov reaction case. Therefore, 1k  is also called memory 

index. According to Eq. (8), we can show ( ) ( ) 11 1

1

kk k
n na a n a  = + −

 
  with ( ) ( )1 1 10 0 k =  , 

( )2 n b = , ( )3 n  = , and ( )4 n n = . Therefore, the effect of molecular memory is equivalent to 

the introduction of a negative feedback if 1 1I  . 



5317 

 

Mathematical Biosciences and Engineering  Volume 17, Issue 5, 5304–5325. 

Case 2: ( )1 ; att n ae −=  , ( )  

2 ;  b tt n b e −=  , and ( ) ( )3 3 1

3 3;
k k tt n k t e   − − =    , where 

3k   is 

also called a memory index. Note that 
3 1k    corresponds to the non-Markov case and 

3 1k =  

corresponds to the Markov case. In this case, we can show ( )
( )

3

3 3
3

k

k k

b n
n

b n


 

+
 =

+ + −
, ( )1 n a = , 

( )2 n b =  , and ( )4 n n =  . Moreover, the effect of molecular memory is equivalent to the 

introduction of a negative posttranscriptional or posttranslational regulation if 
3 1k  . 

Similarly, we can analyze the combination of the above two cases. In a word, effective transition 

rates not only explicitly decode the effect of molecular memory but also can give us useful information 

on the underlying system. In particular, the use of effective transition rates can transform a non-Markov 

issue into a Markov one [70]. Therefore, we can use the results in section 2.3 to directly give results 

for the non-Markov gene model. 

3.2.2. Statistical quantities for the protein noise 

Based on Eq. (4) above, we can first show that the stationary mean protein level X   is 

approximately given by 
( ) ( )

( ) ( )
1 3

1 2

0 0

0 0
X B

 


 +
, which is apparently an extension of the expression 

for the mean protein in the Markov case. Then, we can show that the noise intensity for the protein at 

steady state, denoted by 
( )CTRW

X , still takes the form of Eq. (2) if the expression of 
( )on off

promoter
−

 is replaced 

with ( ) ( )

( ) ( ) ( )
2

1 1 2

0 1

0 0 0 1

CTRW

promoter


=
  + +

 , which is also an extension of the expression for the 

promoter noise in the Markov case.  

In order to analytically show the effects of global delay and molecular memory, we consider the 

above two special cases.  

For Case 1, the mean level and the noise intensity for the protein are approximated as 

1

a
X B

a bk




+
 and ( )

( )

2

1

1

1

1

CTRW

X

B kb

X a a b k


+
 +

+ +
, respectively. We observe that a larger value 

of memory index 1k  leads to a lower mean protein level but to the stronger protein noise (including 

the stronger promoter noise) if the mean protein level is fixed. 
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For Case 2, the mean level and the noise intensity for the protein can be approximated as 

( )

3

3 3

k

k k

a a
X B

a b a



 


+ + −
 and ( ) 1 1

1

CTRW

X

B b

X a a b


+
 +

+ +
, respectively. Apparently, X  is 

a monotonically decreasing function of memory index 
3k . 

The above analysis indicates that molecular memory is an unneglectable factor affecting the gene 

expression level and noise. 

4. Conclusion and discussion  

Although gene expression is complex biochemical process, the noise in mRNA or protein can be 

decomposed into two parts: spontaneous fluctuations resulting from the birth and death of the protein 

and the forced fluctuations originated from switching between the promoter states, as shown in Eq. (2). 

This formula is universal in form, suitable to various gene-expression models established based on the 

central dogma in Biology, which can be categorized into two classes: Markov and non-Markov models. 

But specific processes may fine-tune the level of the protein noise.  

4.1. On upstream and downstream dynamics of gene expression  

The models analyzed in this paper were simplified, namely they only considered downstream 

dynamics and neglected upstream dynamics. However, chromatin regulators play a major role in 

establishing and maintaining gene expression states. For these regulators, silencing and reactivation 

occur in all-or-none events, enabling the regulators to modulate the fraction of cells silenced rather 

than the amount of gene expression. The regulators operate over different time scales and generate 

distinct types of epigenetic memory, through their individual transition rates. Relevant dynamics can 

be described by a three-state model involving stochastic transitions between active, reversibly silent, 

and irreversibly silent states [25].  

All-or-none stochastic switching of gene expression states can occur at two levels: chromatin-

mediated switching and transcriptional bursting. Active and silent chromatin states may transition to 

each other. However, even within an active chromatin state, promoters in general switch 

stochastically between transcriptionally active and inactive states (this phenomenon is called 

transcriptional bursting [72]). In ref. [25], the authors discussed the connection between these two 

modes of gene regulation. They also analyzed the dynamic regimes that lead to either graded or 

fractional all-or-none responses at the protein level. Interestingly, they found that chromatin-mediated 

switching generally produces bimodal protein distributions similar to those observed experimentally, 

but can also produce graded protein level distributions in some parameter regimes.  

The two levels of gene regulation can be combined in a single model (Figure 2) [72]. In this model, 

a gene can switch between active and silent chromatin states. In the silent chromatin state, the promoter 

is always in an off state, so the mRNA level is zero. By contrast, the active chromatin state is 

permissive, allowing the promoter to switch between periods of active transcription, which produce 

bursts of multiple mRNA molecules, and periods of inactivity [4,73,74].  
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Figure 2. (A) Schematic diagram for a chromatin model; (B) Schematic diagram for a gene 

model considering chromatin regulation. 

In general, transitions in chromatin state and transcriptional bursting are associated with different 

timescales. At the transcription level, switching between on and off promoter states has been attributed 

to short-lived interactions of TFs and core machinery with the promoter, occurring usually on the 

timescale of seconds to minutes [72]. By contrast, at the chromatin level, switching between active and 

silent chromatin states occur usually on the timescale of hours to days, an order of magnitude much 

slower than the timescales involved in transcriptional bursting.  

The timescales of switching can determine the noise in protein levels at the population level. 

When switching timescales are fast in contrast to mRNA and protein half-lives, which is typically the 

case for transcription factor regulation, the level of protein expressed from the gene reaches a stationary 

unimodal distribution [75]. The mean value of this distribution depends, in a graded manner, on the 

occupancy of the TF at the promoter [76,77]. When switching timescales are slow relative to mRNA 

and protein half-lives, as is generally the case for chromatin-mediated regulation, one expects bimodal 

protein distributions. The relative ratio of the two peaks in this bimodal distribution depends not only 

on the occupancy of the chromatin remodeling at the promoter, but also on the time it has been recruited 

there. 
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4.2. On division of noisy sources  

Previous studies have used different classifications to clarify different sources of gene expression 

noise. Here, we focus on the distinction between intrinsic and extrinsic noise by considering four 

aspects: The statistical nature of fluctuations, correlations between different proteins in a single cell, 

how central a process is to gene expression, and experimental strategies for measuring noise:  

(I) Terms ‘intrinsic’ and ‘extrinsic’ have no specific meaning except that they mean ‘inside’ and 

‘outside’ respectively. In fact, the classification of intrinsic and extrinsic noise depends on the 

definition of system versus environment and is therefore relative. For example, if proteins are taken as 

system, the first term in Eq. (2) is intrinsic and the promoter noise is extrinsic [53,78]. Some 

studies [16,31] define the two terms on the right hand side of Eq. (2) as the intrinsic noise to 

distinguish them from the extrinsic noise in the overall state of the cell. However, spontaneous 

fluctuations in the protein level are largely different from the noise that originates in enslavement 

by the promoter, but the latter noisy sources are not fundamentally different, e.g., ribosome-

mediated noise also enslaves proteins. If we consider the statistical nature of fluctuations only, there 

is thus no reason to label the two componential noise terms in Eq. (2) as intrinsic. 

(II) Protein noise can be classified based on correlations between different types of proteins. Some 

noisy sources are shared by multiple genes in a single cell whereas others are exclusive to a particular 

gene or a small set of genes. The most specific componential noise comes from having low protein 

numbers, originating in the random births and deaths of individual molecules. additionally, there are 

many other specific sources of gene expression noise, which include: (a) spontaneous mRNA 

fluctuations are quite specific although some transcripts encode several different proteins; (b) in 

contrast, operator fluctuations are less specific and typically affect all genes in an operon; and (c) many 

DNA and RNA binding proteins act as repressors and activators, some of which are specific to a 

particular gene and others would regulate large classes of genes. This can form complicated correlation 

structures. For example, two genes may be regulated by the same repressor, but their mRNAs may be 

degraded by different RNases. A few central factors, e.g., ribosomes, core polymerases, tRNAs, and 

amino acids, are shared universally. However, different proteins are still affected differently by such 

fluctuations because they have different sequences and lifetimes.  

From this perspective, the two terms in Eq. (2) or its other forms could all be intrinsic. However, 

it should be emphasized that such a classification can be made in many different ways. The mRNA 

term would be more intrinsic than the promoter term since the former is directly related to translation, 

but the latter is not necessarily more intrinsic than fluctuations in regulator concentrations. 

(III) From a biological viewpoint, sources of gene expression noise could be categorized 

according to how central the corresponding component is to gene expression. But classifying 

fluctuations in promoter activity as intrinsic and fluctuations in ribosomes as extrinsic would not 

separate the central parts of gene expression from more peripheral cell processes. The opposite 

classification seems more appropriate, e.g., ribosomes are inherent to gene expression whereas 

spontaneous changes in promoter activity can indirectly reflect regulation. 

(IV) The classification of noisy sources can be tailor-made to the experimental methods available. 

A good strategy for separating noisy sources would be based on correlations between the expressions 

of two physically separate but identically regulated fluorescent reporter genes [74,79]. If the two 

proteins are kinetically independent, e.g., if the underlying mechanisms are linear, then the normalized 

covariance between them is equal to the sum of all the common noise terms [14]. Fluctuations in 
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ribosomes, polymerases, RNases, etc., together end up in the ‘extrinsic’ covariance category while the 

two componential noise terms in Eq. (2) or its other forms are ‘intrinsic’ because each green fluorescent 

protein has its own operators and transcripts. The appeal of this approach is not only that some noisy 

sources are separated from others but also that the separation to some extent relates to specificity (see 

subsection 4.2.2 above). The only risk for this separation is that the terms are over-explained, 

comprehending biological or physical meaning where none is intended: The ‘intrinsic noise’ only 

partially relates to specificity, as demonstrated by experiments where most extrinsic noise comes from 

a repressor that is specific to that particular gene [74]. Realizing that the distinction is largely a side 

effect of the experimental set-up can in turn open the doors for other applications. If the two reporters 

were placed under the same operator, then operator fluctuations would become shared between the 

corresponding two genes, thus moving from the intrinsic to the extrinsic category. But if the reporters 

were encoded on the same transcript, the mRNA term would become extrinsic. In addition, if the 

reporters were regulated by different repressors, repressor fluctuations would move from the extrinsic 

to the intrinsic category. The dual reporter strategy does not separate fluctuations in target proteins 

based on a priori physical or biological principles. It is much more general and useful than that. 

4.3. On experimental measures of gene expression noise  

There are many ways to quantify gene expression noise, e.g., autocorrelation analysis is an 

analytically tractable way since autocorrelations conveniently summarize both the magnitude and the 

frequency of fluctuations. However, most models of stochastic gene expression have focused on 

stationary averages and variances so far. 

The above analytical results for the protein noise are formulated in terms of the ratio of the 

variance over squared average, which allows for the fast evaluation and a clear separation of different 

noise sources as long as the corresponding gene models are weakly nonlinear. Another common 

measure is the Fano factor, which is defined as the ratio of the variance over the expectation and has a 

good property: it equals one for Poisson distributions. The Fano factor can work well only for 

univariate discrete random processes where the variance is proportional to the average with a 

proportional constant that reflects the overall nature of the process. For a multivariate random process, 

however, the Poisson distribution holds no special position and using the Fano factor would be 

misleading. To illustrate this with a more extreme example than the bursts in Eq. (4), we assume that 

fluctuations in the protein abundance come, partly, from fluctuations in ribonuclease or protease 

concentrations. The ratio of the variance over the squared average would then contain an extra term 

that is more or less independent of transcription or translation rates. Multiplying by the average to 

obtain the Fano factor would thus force the measure to depend on anything that impacts the average.  

The results given by Eq. (5a,5b) or obtained by Eq. (8) suggest that no measures work well for 

all types of fluctuations: the componential noise due to non-exponential waiting-time distribution 

cannot be separated from the promoter noise; spontaneous fluctuations depend on the number of 

molecules whereas forced fluctuations do not. In spite of this, the ratio of the variance over the squared 

mean is still a suitable basis for various possible experimental interpretations. This is because (a) the 

average number of proteins per cell is too high to contribute substantial spontaneous fluctuations in 

most experimental studies so far; (b) by plotting the ratio of the variance over the squared average as 

a function of the inverse average, any univariate scaling behavior can easily be identified without 

introducing scaling problems for any extrinsic source of noise; and (c) the relevance of fluctuations 
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depends, typically, on the size of the underlying system. The variance (i.e., a second-order moment) 

must be normalized by the squared average. 
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