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Abstract: It is eminent that the epidemiological patterns of dengue are threatening for both the global
economy and human health. The experts in the field are always in search to have better mathematician
models in order to understand the transmission dynamics of epidemics models and to suggest possible
control or the minimization of the infection from the community. In this research, we construct a new
fractional-order system for dengue infection with carrier and partially immune classes to visualize the
intricate dynamics of dengue. By using the basics of fractional theory, we determine the fundamental
results of the proposed fractional-order dengue model. We obtain the basic reproduction number R0 by
next generation method and present the results based on it. The stability results are established for the
infection-free state of the system. Moreover, sensitivity of R0 is analyzed through partial rank correla-
tion coefficient(PRCC) method to show the importance of different parameters in R0. The influence of
different input factors is shown on the output of basic reproduction number R0 numerically. Our result
showed that the threshold parameter R0 can be decreased by increasing vaccination and treatment in the
system. Finally, we illustrate the solution of the suggested dengue system through a numerical scheme
to notice the influence of the fractional-order ϑ on the system. We observed that the fractional-order
dynamics can explain the complex system of dengue infection more precisely and accurately rather
than the integer-order dynamics. In addition, we noticed that the index of memory and biting rate of
vector can play a significant part in the prevention of the infection.
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1. Introduction

Dengue fever is a viral disease produced by a pathogenic agent and is spread through female Aedes
aegypti mosquitoes. Specific temperature areas of the world are affected by dengue infection and

are almost spread to 128 countries which brings much more losses in public health and economy
[1]. The symptoms include, muscle pain, nausea, red eyes, high fever, joints pain, pain behind eyes,
lower back pain, vomiting, severe fatigue and weakness, and mild bleeding etc. The carrier vector
becomes infected when they bit an infected host and transmit four different serotypes of dengue to the
host through their bites. Rare cases of vertical transmission in dengue infection are reported [2, 3].
Due to the increased prominence of dengue viral infection in the past few decades, much effort has
been made recently to develop a dengue vaccine. Yet, there is no fully effective vaccine although the
partially effective vaccine is accessible in several states of the world [4, 5]. Reduction of vector bites
and environmental domain for vectors are other adopted control policies for dengue infection.

Epidemiological models are of great significance to gain insight into the comprehensive dynamics
of infectious disease and to provide better control policies. To be more specific, analysis of these
models predicts critical factors that play a central part in the prevention and spread of infection [6, 7].
A number of the dynamical models have been established and approved to visualize the transmission
of dengue infection [8, 9, 10, 11]. The basic model of dengue infection was introduced by Lourdes
Esteva and analyzed the stability of the model with variable human population [8, 9]. Stability results
for the equilibria of dengue infection model were established by in [10, 11]. The role of vaccination
on the transmission dynamics of dengue is examined in [12, 13]. In dengue infection, asymptomatic
carriers are frequently reported in [14, 15] and are critical in the sense to increase the level of infection
in endemic and non-endemic areas of the world.

It is eminent that vector-borne disease posses information about its previous stages and associative
learning mechanism, to be more specific memory has a prominent role in the transmission dynamics of
vector-borne disease. The memory in the host population associated to the individual awareness which
reduces the contact rate between vector and hosts, while the mosquitoes use their prior experience
about the human’s location, blood selection, color, and the smell of humans sweat [16, 17]. These
types of phenomena can easily be captured by a fractional-order system in mathematical modeling of
infectious diseases.

Fractional order system posses information about its previous and present stages to provide more
realistic information about the dynamics of viral infections. Therefore, the dynamical behavior of epi-
demic diseases can be conceptualized and explore more accurately through non-integer order deriva-
tives. A number of fractional-order models are introduced in the literature and successfully showed
their positive role in different areas of physics, engineering, mathematics, and biology. For instant, a
Maxwell model in fractional derivative is studied in [18]. Dengue dynamics in fractional derivative is
considered in [19]. Application of fractional calculus to subdiffusion-reaction process is explored in
[20]. An SIR model in fractional derivative is considered in [21]. The wave equation in a delay type
fractional derivative is considered [22]. Recently, researchers proved that the fractional-order model
can effectively handle the crossover behavior and complexity of communicable diseases, and offers a
preferable fit for real data of the infection [23, 24]. These properties make fractional-order systems
more efficient than integer-order systems. For more related research on fractional order derivative and
their applications to science and engineering problems, the authors investigated many practical prob-
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lems. For example, the author in [25] studied the fractional derivative and its applications to epidemic
models. The corona virus model with lockdown is discussed through a mathematical model in [26].
The CoVID-19 and its impact on HIV and their future observation has been investigated in [27]. The
corona virus model with fractional derivative is studied in [28], where the fractional operator is con-
sidered the Atangana-Baleanu type. The authors in [29] studded a corona virus model with nonlocal
operator and using a power computational method. The M-fractional derivative and its applications
to differential equations is discussed in [30]. An engineering problem with a new numerical results is
studied in [31]. A fractional Schrodinger-Hirota equation and its optical solution is analyzed in [32].
The computer virus model in fractional derivative is considered in [33]. A review article that describing
the harmonic wavelets and its fractal extension is studied in [34]. The solution of heat and diffusion
equation with new technology is considered in [35]. A vector-host model with saturated treatment
function and its optimal control analysis is discussed in [36]. The solution of Telegraph equation in
new fractional operators is considered in [37]. The boundary value problems in fractional derivatives
are studied in [38]. A fractional SEIR type model with treatment is studied in [39] while he dynamics
of HIV with different transmission rates are analyzed in [40]. Therefore, motivated by these extraor-
dinary properties, we analyze the dynamical behavior of dengue infection in the framework of the
fractional-order derivative.

The article is structured as: In the second section, we put forward a brief summary of the basic
concepts of fractional calculus. In the third section, we construct a fractional-order model for dengue
infection with new assumptions, in addition, we proved basic results for our proposed fractional-order
model. We established stability results for the steady-state in section four and carried out sensitivity
analysis through the PRCC technique to point out the importance of input parameter on the output
of R0. We have shown the influence of different input factors on the basic reproduction number R0,
numerically. The fractional-order system is inspected numerically to observe the influence of ϑ on the
dynamics of dengue in Section 5. In the last section of the article, ending remarks and conclusion of
the overall analysis is presented.

2. Basics of fractional calculus

Here, we will present a brief summary of the Caputo fractional derivative for further analysis of the
dengue model. Caputo fractional derivative has the benefit of dealing with initial value problems and
involves integration which posses information about the previous state of the system.

Definition 2.1. Let g : R+ → R , then the fractional integral of g is given by

Iϑt (g(t)) =
1

Γ(ϑ)

∫ t

0
(t − y)ϑ−1g(y)dy. (2.1)

where ϑ indicates the order of fractional integral and Gamma function is indicated by Γ.

Definition 2.2. The fractional derivative of order ϑ for a given function g in the Caputo form is given
by

C
a Dϑ

t (g(t)) = In−ϑDng(t) =
1

Γ(n − ϑ)

∫ t

a
(t − y)n−ϑ−1gn(y)dy, (2.2)
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where n − 1 < ϑ < n, n ∈ N.
Let η1, η2 be two positive numbers, then the Mittag-Leffler function is given by

Eη1,η2(s) =

k=∞∑
k=0

sk

Γ(η1k + η2)
. (2.3)

Let C
0 Dϑ

t be the Caputo fractional derivative (CFD) of order ϑ, then its laplace transform is define by

L[C
0 Dϑ

t g(t)] = uϑG(u) −
n−1∑
k=0

gk(0)uϑ−k−1, (2.4)

further, for the function tη2−1Eη1,η2(±ωtϑ), the laplace transform is given by

L[tη2−1Eη1,η2(±ωtϑ)] =
uη1−η2

uη1 ± ω
. (2.5)

The following equation hold true by Mittage-Leffler function given in [41]:

Eη1,η2(s) = s.Eη1,η1+η2(s) +
1

Γ(η2)
.

Lemma 2.1. [42]. Consider a function g : R+ × R5 → R5, which fulfills the conditions:

• The function g(t,Y(t)) is Lebesgue measurable in R+ with respect to t;
• The function g(t,Y(t)) is continuous on R5 with respect to Y(t) ;
• The function ∂g(t,Y(t))

∂Y is continuous on R5 with respect to Y(t);
• and ‖g(t,Y(t))‖ ≤ ℵ + ~‖Y‖,∀t ∈ R+,Y ∈ R5, where ℵ, ~ are positive constants.

Then the fractional order system
C
a Dϑ

t Y(t) = g(t,Y(t)),
Y(0) = Y0,

(2.6)

where 0 < ϑ ≤ 1, has a unique solution.

Lemma 2.2. [43]. Let a function g(t) ∈ C(r, s] such that C
r Dϑ

t g(t) ∈ C[r, s] for ϑ ∈ (0, 1], then we have

g(t) = g(r) +
1

Γ(ϑ)

C

r
Dϑ

t g(ε)(t − r)ϑ, r < ε < t,∀t ∈ (r, s].

Remark 1. Let a function g ∈ C(r, s], such that C
r Dϑ

t g(t) ∈ C[r, s] for ϑ ∈ (0, 1]. Then by Lemma (2.2)
if C

r Dϑ
t g(t) ≤ 0, ∀ t ∈ (r, s), then g(t) is non-increasing function for all t ∈ [r, s], and if C

r Dϑ
t g(t) ≥ 0, ∀

t ∈ (r, s), then g(t) is non-decreasing function for all t ∈ [r, s].

3. Formulation of the model

In construction of the model, we represent the mosquitoes and humans population by Nv and Nh.
The total mosquitoes size is divided into susceptible (S v) and infected (Iv) compartments, while the
total humans size is divided into susceptible (S h), infected (Ih), carrier (IhA), partially immune (P ), and
recovered ( Rh) compartments.
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We indicate the natural birth (or death) rate of mosquito and human by µv and µh, respectively,
and assumed that the disease-induced death rate to be negligible. Furthermore, we assumed that a
fraction υ of susceptible hosts goes to partially immune class after implementation of vaccination and
τ indicates treatment of infected host. The symptomatic fraction of infected class from susceptible and
partially immune classes are indicated by ψ and ω, respectively. the parameter ρ denotes the fraction
of treated humans which join the partially immune class P while remanning enter to recovered class
Rh. Parameter γh is used for recovery of symptomatic and asymptomatic humans while φ denotes the
fraction of recovered humans which join the partially immune class P. The terms ( bβ1

Nh
Iv) and ( bβ2

Nh
Iv)

indicate the infection rate per susceptible host and partially immune host, respectively, while (bβ3
Nh

Ih)
denotes the infection rate of per susceptible vector. In these terms b accounts the bitting rate, β1 and
β2 are the rates at which infected vectors transmit disease to susceptible and partially immune humans
respectively, whereas β3 represents the disease transmission rate from infected human to susceptible
vector. The dynamics of dengue infection is given by



dS h
dt = µhNh −

β1b
Nh

S hIv − υS h − µhS h,
dIh
dt = ψβ1b

Nh
S hIv + ωβ2b

Nh
PIv − (µh + τ + γh)Ih,

dIhA
dt = (1 − ψ)β1b

Nh
S hIv + (1 − ω)β2b

Nh
PIv − (µh + γh)IhA,

dP
dt = υS h + ρτIh + φγh(Ih + IhA) − β2b

Nh
PIv − µhP,

dRh
dt = (1 − ρ)τIh + (1 − φ)γh(Ih + IhA) − µhRh,

dS v
dt = µvNv −

β3b
Nh

S v(Ih + IhA) − µvS v,
dIv
dt =

β3b
Nh

S v(Ih + IhA) − µvIv,

(3.1)

with the following initial condition

S h(0) ≥ 0, Ih(0) ≥ 0, IhA(0) ≥ 0, P(0) ≥ 0,Rh(0) ≥ 0, S v(0) ≥ 0, Iv(0) ≥ 0.

We denote the total human population size by Nh, and vector by Nv so that, Nh = S h + Ih + IhA + P + Rh

and Nv = S v + Iv. As the system (3.1) is independent of the state-variable Rh, thus, the proposed model
(3.1) of dengue infection can be re-written in the following form without Rh:



dS h
dt = µhNh −

β1b
Nh

S hIv − υS h − µhS h,
dIh
dt = ψβ1b

Nh
S hIv + ωβ2b

Nh
PIv − (µh + τ + γh)Ih,

dIhA
dt = (1 − ψ)β1b

Nh
S hIv + (1 − ω)β2b

Nh
PIv − (µh + γh)IhA,

dP
dt = υS h + ρτIh + φγh(Ih + IhA) − β2b

Nh
PIv − µhP,

dS v
dt = µvNv −

β3b
Nh

S v(Ih + IhA) − µvS v,
dIv
dt =

β3b
Nh

S v(Ih + IhA) − µvIv,

(3.2)

further, assume that

x1 =
S h

Nh
, x2 =

Ih

Nh
, x3 =

IhA

Nh
, x4 =

P
Nh
, x5 =

Iv

Nv
and x6 =

S v

Nv
,
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then, we have x1 + x2 + x3 + x4 = 1 and x5 + x6 = 1. After replacing x6 = 1 − x5 in the last equation of
normalized system we obtained the following five dimensional reduced dengue model:

dx1
dt = µh −

bβ1Nv
Nh

x1x5 − υx1 − µhx1,
dx2
dt = ψbβ1Nv

Nh
x1x5 + ω bβ2Nv

Nh
x4x5 − (µh + τ + γh)x2,

dx3
dt = (1 − ψ) bβ1Nv

Nh
x1x5 + (1 − ω) bβ2Nv

Nh
x4x5 − (µh + γh)x3,

dx4
dt = υx1 + ρτx2 + φγh(x2 + x3) − bβ2Nv

Nh
x4x5 − µhx4,

dx5
dt = bβ3(1 − x5)(x2 + x3) − µvx5.

(3.3)

As fractional-order models describe the non-local behavior of biological systems and posses heredi-
tary property, moreover, it provides information about its past and present state for the future, therefore,
we represent the dynamical system (3.3) of dengue infection in the framework of fractional order Ca-
puto’s derivative to conceptualize the transmission of dengue fever in a more accurate way. Thus, the
system consist of fractional derivatives is presented by

C
0 Dϑ

t x1 = µϑh − bϑax1x5 − υ
ϑx1 − µ

ϑ
h x1,

C
0 Dϑ

t x2 = ψbϑax1x5 + ωbϑcx4x5 − (µϑh + τϑ + γϑh )x2,
C
0 Dϑ

t x3 = (1 − ψ)bϑax1x5 + (1 − ω)bϑcx4x5 − (µϑh + γϑh )x3,
C
0 Dϑ

t x4 = υϑx1 + ρτϑx2 + φγϑh (x2 + x3) − bϑcx4x5 − µ
ϑ
h x4,

C
0 Dϑ

t x5 = bϑe(1 − x5)(x2 + x3) − µϑv x5,

(3.4)

where C
0 Dϑ

t indicates Caputo’s fractional derivative of order ϑ, the order ϑ indicates the index of mem-
ory in the system. In addition, the values

a =
β1Nv

Nh
, c =

β2Nv

Nh
, and e = β3.

In Caputo’s sense, the derivative of constant is equal to zero which is another advantage to make the
system more reliable and flexible for analysis. Next, we will analyze the biologically feasible region
of the fractional-order dengue model (3.4).

Theorem 3.1. The proposed fractional-order dengue infection system of equations (3.4) has a unique
solution.

Proof. For the required result, we first prove that the fractional system (3.4) has a unique solution for
all initial conditions in R5. Clearly, the first three conditions of Lemma (2.1) are hold by the vector
function g of the system (3.4). Next, to prove the last condition of Lemma (2.1), we rewrite system
(3.4) as

C
0 Dϑ

t x(t) = ℵ + A1x(t) + A2x1(t)x(t) + A3x2(t)x(t) + A4x3(t)x(t) + A5x4(t)x(t) + A6x5(t)x(t),

where

ℵ =


µϑh
0
0
0
0


, A1 =


−(µϑh + υϑ) 0 0 0 0

0 −(µϑh + τϑ + γϑh ) 0 0 0
0 0 −(µϑh + γϑh ) 0 0
υϑ ρτϑ + φγϑh φγϑh −µϑh 0
0 bϑe bϑe 0 −µϑv


,
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A2 =


0 0 0 0 0
0 0 0 0 ψbϑa
0 0 0 0 (1 − ψ)bϑa
0 0 0 0 0
0 0 0 0 0


, A3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −bϑe


, A4 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −bϑe


,

A5 =


0 0 0 0 0
0 0 0 0 ωbϑc
0 0 0 0 (1 − ω)bϑc
0 0 0 0 0
0 0 0 0 0


, A6 =


−bϑa 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 −bϑc 0
0 0 0 0 0


.

Symbolize the above

g(t, x(t)) = ℵ + A1x(t) + A2x1(t)x(t) + A3x2(t)x(t) + A4x3(t)x(t) + A5x4(t)x(t) + A6x5(t)x(t),

and taking norm, we get

‖g(t, x(t))‖

= ‖ℵ + A1x(t) + A2x1(t)x(t) + A3x2(t)x(t) + A4x3(t)x(t) + A5x4(t)x(t) + A6x5(t)x(t)‖

≤ ‖ℵ‖ + ‖A1‖‖x(t)‖ + ‖A2‖‖x1(t)‖‖x(t)‖ + ‖A3‖‖x2(t)‖‖x(t)‖ + ‖A4‖‖x3(t)‖‖x(t)‖

+‖A5‖‖x4(t)‖‖x(t)‖ + ‖A6‖‖x5(t)‖‖x(t)‖

≤ ‖ℵ‖ + ‖A1‖‖x(t)‖ + ‖A2‖‖x(t)‖ + ‖A3‖‖x(t)‖ + ‖A4‖‖x(t)‖ + ‖A5‖‖x(t)‖ + ‖A6‖‖x(t)‖

= ‖ℵ‖ +

(
‖A1‖ + ‖A2‖ + ‖A3‖ + ‖A4‖ + ‖A5‖ + ‖A6‖

)
‖x(t)‖

= ℵ + ~‖x(t)‖.

Hence, the requirements of Lemma (2.1) are fulfilled, therefore the system of equations (3.4) has a
unique solution. �

Theorem 3.2. The closed set Ω = {(x1, x2, x3, x4, x5) ∈ R5
+ : 0 ≤ x1 + x2 + x3 + x4 ≤ M1, 0 ≤ x5 ≤ M2}

is a positive invariant set for the proposed fractional order system (3.4).

Proof. To prove that the system of equations (3.4) has a non-negative solution, the system of equations
(3.4) implies 

C
0 Dϑ

t x1 |x1=0 = µϑh > 0,
C
0 Dϑ

t x2 |x2=0 = ψbϑax1x5 + ωbϑcx4x5 ≥ 0,
C
0 Dϑ

t x3 |x3=0 = (1 − ψ)bϑax1x5 + (1 − ω)bϑcx4x5 ≥ 0,
C
0 Dϑ

t x4 |x4=0 = υϑx1 + ρτϑx2 + φγϑh (x2 + x3) ≥ 0,
C
0 Dϑ

t x5 |x5=0 = bϑe(x2 + x3) ≥ 0.

(3.5)
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Thus, the fractional system (3.4) has non-negative solutions. In the end, from the first four equations
of the fractional system (3.4), we obtain

C
0 Dϑ

t (x1 + x2 + x3 + x4) ≤ µϑh − µ
ϑ
h x1 − ((1 − ρ)τϑ + (1 − φ)γϑh + µϑh)x2 − ((1 − φ)γϑh + µϑh)x3 − µ

ϑ
h x4,

≤ µϑh −W(x1 + x2 + x3 + x4) (3.6)

whereW = min(µϑh , ((1 − ρ)τϑ + (1 − φ)γϑh + µϑh), ((1 − φ)γϑh + µϑh), µϑh). Solving the above inequality,
we obtain(

x1(t) + x2(t) + x3(t) + x4(t)
)
≤

(
x1(0) + x2(0) + x3(0) + x4(0) −

µϑh
W

)
Eϑ(−Wtϑ) +

µϑh
W

,

so by the asymptotic behavior of Mittag-Leffler function [44], we obtain(
x1(t) + x2(t) + x3(t) + x4(t)

)
≤
µϑh
W
� M1,

taking the same steps for the last equation of system (3.4), we get x5(t) ≤ M2, where M2 = bϑeM1
bϑeM1+µϑv

.
Hence, the closed set Ω is a positive invariant region for the fractional-order dengue model (3.4). �

4. Reproduction number and stability analysis

The biological meaningful equilibria of fractional system (3.4) are DFE and EE, depending on in-
fected classes in both the populations. To obtain the infection-free equilibrium, we set the fractional
derivative C

0 Dϑ
t x1,

C
0 Dϑ

t x2,
C
0 Dϑ

t x3,
C
0 Dϑ

t x4, and C
0 Dϑ

t x5 to zero of the fractional system (3.4) without infec-
tion, and get

E0(x0
1, x

0
2, x

0
3, x

0
4, x

0
5) =

(
µϑh

µϑh + υϑ
, 0, 0,

υϑ

µϑh + υϑ
, 0

)
.

The detailed concept of the basic reproduction number is presented in [45], and is normally denoted
by R0, and is calculated as

F =


ψbϑax1x5 + ωbϑcx4x5

(1 − ψ)bϑax1x5 + (1 − ω)bϑcx4x5

bϑe(1 − x5)(x2 + x3)

 and V =


(µϑh + τϑ + γϑh )x2

(µϑh + γϑh )x3

µϑv x5

 ,
this is because of three infected comportment in the system, i.e., m = 3, which provides

F =


0 0 ψbϑax0

1 + ωbϑcx0
4

0 0 (1 − ψ)bϑax0
1 + (1 − ω)bϑcx0

4
bϑe bϑe 0

 and V =


(µϑh + τϑ + γϑh ) 0 0

0 (µϑh + γϑh ) 0
0 0 µϑv

 ,
which gives

FV−1 =


0 0 ψbϑax0

1+ωbϑcx0
4

µϑv

0 0 (1−ψ)bϑax0
1+(1−ω)bϑcx0

4
µϑv

bϑe
(µϑh +τϑ+γϑh )

bϑe
(µϑh +γϑh )

0

 .
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The R0 of the fractional-order dengue model (3.4) is obtained by using the next generation matrix
as

ρ(FV−1) =

√
bϑe

µϑv (µϑh + υϑ)

[ (1 − ψ)bϑaµϑh + (1 − ω)bϑcυϑ

µϑh + γϑh
+
ψbϑaµϑh + ωbϑcυϑ

µϑh + γϑh + τϑ

]
,

⇒ R0 =

√
bϑe

µϑv (µϑh + υϑ)

[ (1 − ψ)bϑaµϑh + (1 − ω)bϑcυϑ

µϑh + γϑh
+
ψbϑaµϑh + ωbϑcυϑ

µϑh + γϑh + τϑ

]
.

Assume a fractional-order linear homogenous system of the following form

C
0 Dϑ

t y(t) = By(t),
y(0) = y0,

(4.1)

where B ∈ Mm×m(R) and 0 < ϑ ≤ 1. The following theorems are on the stability of linear homogenous
system (4.1).

Theorem 4.1. [46]. The origin of the fractional dynamical system (4.1) is asymptotically stable ⇔|
arg(λi) |> ϑπ

2 is fulfilled for all eigenvalues λi of matrix B.

Theorem 4.2. [47]. The steady state of fractional system (2.6) is locally asymptotically stable (LAS)
if | arg(λi) |> ϑπ

2 for all eigenvalues λi’s of g(y) at steady state, otherwise unstable.

In order to prove the LAS of infection-free steady state E0 it is sufficient to confirm that all of the
eigenvalues of the matrix of dynamics given by J(E0) lie outside the closed angular sector as shown in
[46]. We state the following theorem for the desired result.

Theorem 4.3. The DFE of the fractional-order system (3.4) is LAS if R0 < 1 and | arg(λi) |> ϑπ
2 for

all eigenvalues λi’s of the Jacobian matrix J(E0) at steady state, otherwise it is unstable.

Proof. To obtain the demanded result for the fractional system (3.4), we take the Jacobian matrix of
the system at infection-free equilibrium as

J(E0) =


−(υϑ + µϑh) 0 0 0 −bϑax0

1
0 −(µϑh + γϑh + τϑ) 0 0 ψbϑax0

1 + ωbϑcx0
4

0 0 −(µϑh + γϑh ) 0 (1 − ψ)bϑax0
1 + (1 − ω)bϑcx0

4
υϑ ρτϑ + φγϑh φγϑh −µϑh −bϑcx0

4
0 bϑe bϑe 0 −µϑv


.

The characteristic equation in term of Λ of the above matrix JE0 which is given below:

(λ + µϑh)(λ + (µϑh + υϑ))(λ3 + a1λ
2 + a2λ + a3) = 0, (4.2)

where the associated coefficients are as follow:

a1 = (µϑh + γϑh + τϑ) + (µϑh + γϑh ) + µϑv ,

a2 = (µϑh + γϑh + τϑ)(µϑh + γϑh ) + (µϑh + γϑh + τϑ)µϑv + (µϑh + γϑh )µϑv − bϑeB − bϑeA,
a3 = (µϑh + γϑh + τϑ)(µϑh + γϑh )µϑv [1 − R2

0],

, where A = ψbϑax0
1 +ωbϑcx0

4 and B = (1−ψ)bϑax0
1 + (1−ω)bϑcx0

4. From (4.2) it is clear the argument
of the first two eigenvalues λ = −µϑh and λ = −(µϑh + υϑ) satisfy the necessary condition given (i.e.,
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| arg(λi) |> ϑπ
2 for all ϑ ∈ (0, 1)). Furthermore, if R0 < 1, then all ai > 0, for i = 1, 2, 3, and it is easy

to show that a1a2 − a3 > 0 Thus, following [46], the arguments of all eigenvalues satisfy the necessary
Matignon condition. Consequently, the infection-free steady-state is LAS . �

Theorem 4.4. The infection-free steady state of the fractional-order system (3.4) is GAS without vac-
cination, if R0 < 1.

Proof. Let υ = 0, and (x1, x2, x3, x4, x5) be the solution of system (3.4) with suitable initial conditions
(x1(0), x2(0), x3(0), x4(0), x5(0)) in Ω. Here, it is clear that the fractional system has only one equilib-
rium E0 on the boundary of Ω. Therefore, to achieve the target, it is enough to prove that the solution
(x1, x2, x3, x4, x5) tends to the infection-free equilibrium as time tends to infinity. Since xi ≤ x0

i , for
i = 1, 4, then the system implies that

C
0 Dϑ

t x2 ≤ ψbϑax0
1x5 + ωbϑcx0

4x5 − (µϑh + τϑ + γϑh )x2,

C
0 Dϑ

t x3 ≤ (1 − ψ)bϑax0
1x5 + (1 − ω)bϑcx0

4x5 − (µϑh + γϑh )x3,

C
0 Dϑ

t x5 ≤ bϑe(x2 + x3) − µϑv x5.

Taking the auxiliary system
C
0 Dϑ

t y1 = ψbϑax0
1y3 + ωbϑcx0

4y3 − (µϑh + τϑ + γϑh )y1,

C
0 Dϑ

t y2 = (1 − ψ)bϑax0
1y3 + (1 − ω)bϑcx0

4y3 − (µϑh + γϑh )y2,

C
0 Dϑ

t y3 = bϑe(y1 + y2) − µϑv y3,

this further implies
C
0 Dϑ

t Y = (F − V)Y

the coefficient matrix of the above fractional system is F − V , and if R0 = ρ(FV−1) < 1, then the
eigenvalues of F − V lies in the left half plane. Consequently, each positive solution of the fractional
system (4.3) fulfills lim

t→∞
y1 = 0, lim

t→∞
y2 = 0 and lim

t→∞
y3 = 0 by Theorem 4.1. By the comparison theory

of fractional differential equations [48], we have lim
t→∞

x2 = 0, lim
t→∞

x3 = 0 and lim
t→∞

x5 = 0. Then from
system (3.4), we have

C
0 Dϑ

t x1 = µϑh − µ
ϑ
h x1,

C
0 Dϑ

t x4 = 0 − µϑh x4,

this can be further converted into
C
0 Dϑ

t X = Λ − BX,

having the solution
X(t) = tϑEϑ,ϑ+1(−Btϑ)Λ + Eϑ,1(−Btϑ)X0,

taking the asymptotic behavior of Mittag-Leffler function [44] as

Eϑ,1(−ωtϑ) ≈t→∞
tϑ

ωΓ(1 − ϑ)
; 0 < ϑ < 1 and ω > 0,
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also the real parts of eigenvalues of −B are negative, so it can be observed that X(t)→ X0 as t tends to
infinity. Hence, the infection-free steady-state of the system (3.4) is GAS without vaccination.

Next, we will demonstrate the persistence of infection in the fractional-order system. It describes
the level of endemicity of infection in the system. Biologically speaking, the infection persists in the
system if the level of infected fraction stays at a higher level for t large enough.

Theorem 4.5. In the fractional-order system (3.4), the dengue infection is uniformly persistent at ϑ = 1
if R0 > 1.

�

Proof. The threshold parameter R0 is of high significance, which measures the level of infection in the
system. If R0 less than one then the asymptomatic stability of infection-free equilibrium(E0) prevent
the system from the persistent of the infection. If R0 greater than one then the sufficiently close solution
of fractional system (3.4) to E0 moves away from it due to its instability in the interior of Ω by Theorem
(4.3). For uniform persistence of our system (3.4) at ϑ = 1, we will prove that it fulfills the criteria of
Theorem 4.3 in [49] for R0 > 1. Select X = R5 and E = Ω. Here, the maximal invariant set on the
boundary of Ω is the set {E0} and is isolated. So, the criteria of Theorem 4.3 in [49] satisfies for the
system. Thus, the system (3.4) is uniformly persistent if E0 is unstable for R0 > 1. �

4.1. Sensitivity analysis and numerical results

In the section, we present the global sensitivity analysis in order to determine those model param-
eters which are most influential on the disease dynamics. The main goal of this analysis is to detect
and measure the influence of input parameters on the output of the system. To be more specific, it is
used to know how the input parameters and initial values contribute to the output of a system. Mostly,
when there is a little uncertainty in initial conditions and input parameters partial derivative of output
functions are computed with respect to the input factors around the base values. This method is named
as the local sensitivity analysis and relies on the variations of parameters close to the base values. This
technique is not most suitable for epidemiological models due to the uncertainty in the input of the
system. Therefore, global sensitivity analysis is preferred to perform this analysis and to provide more
accurate results.

Here, we used the PRCC method [50] for sensitivity analysis to point out the input parameters that
highly influence the results of R0. It is an effective method and can successfully measure the monotonic,
nonlinear relationship between input and output values of the system. PRCC analysis provides PRCC
and p values for each factor involve therein, with which we can measure the contribution of each factor.
More specifically, the input factors with sizeable PRCC and negligible p-values are considered to be
highly effective factors in the system. In our analysis, we investigate all the parameter presented in
Table 1 to know their contribution to the outcomes of R0 and listed all the associated PRCC and p-
values provided by the PRCC significance test. Figure 1 and Table 1 demonstrate that the parameter b
is highly influential with PRCC value 0.7022. After that, the parameter β1, and ϑ are highly influential
with PRCC values 0.6427, and -0.5112, respectively. Sensitivity analysis illustrated that b, β1, and ϑ
are critical parameters in R0, which can remarkably influence the infection. Therefore by controlling
these factors can greatly decrease and prevent the level of new dengue cases in the community.

Next, we illustrate the influence of vaccination and treatment in on the threshold R0 of the proposed
system 2 (a). We noted that vaccination and treatment decrease the threshold parameter, moreover,
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Figure 1. Sensitivity test for input factors of R0 and PRCC outcomes for R0.

Table 1. Sensitivity results of R0 with PRCC and corresponding p values.
Parameter Interpretation PRCC values p values
ϑ index of memory or fractional order -0.5112 0.0000
µh recruitment rate of humans host 0.1095 0.0023
υ vaccinated fraction of susceptible host + 0.3133 0.0000
ψ fraction of incidence rate from S h to Ih + 0.1804 0.0010
β1 transmission probability from vectors to susceptible host + 0.6427 0.0000
β2 transmission probability from vectors to partially immune host + 0.5094 0.0000
τ treatment fraction of infected host individuals -0.2110 0.0000
γh recovery rate of host individuals -0.3361 0.0000
β3 transmission probability from infected hosts to susceptible vectors +0.2320 0.0000
µv recruitment rate of mosquitoes vector -0.3197 0.0000
ω fraction of incidence rate from P to Ih + 0.3596 0.0000
b bitting rate of vectors +0.7022 0.0000

we observed that vaccination reduces the susceptibility of host individuals in the system while the
treatment reduces the infectivity of host individuals. In Figure 2 (b), we showed the influence of β3 and
γh on the basic reproduction number R0 of the proposed system of dengue fever.

5. Numerical scheme for fractional model

We present in this section the solution of the model (3.4) by using the algorithm presented in [51].
To have a numerical scheme, we write the model (3.4) in the following form: CDϑ

t g(t) = G
(
t, g(t)

)
,

g(0) = g0, 0 < T < ∞,
(5.1)

where g = (x1, x2, x3, x4, x5) ∈ R+
5, G

(
t, g(t)

)
is used for a continuous real valued vector function,

which additionally satisfies the Lipschitz condition and g0 stands for initial state vector. Taking Caputo
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Figure 2. Illustration of basic reproduction number R0 (a) with the variation of vaccination
υ and treatment τ, (b) and with the variation of β3 and γh.

integral on both sides of (5.1) we get

g(t) = g0 +
1

Γ(ϑ)

∫ t

0
(t − λ)ϑ−1G

(
λ, g(λ)

)
dλ. (5.2)

In order to formulate an iterative scheme, we consider a uniform grid on [0,T ] with h = T−0
m is the

step size and m ∈ N. Thus, the equation (5.2) gets the structure as follows after make use of the Euler
method [52] 

gn+1 = g0 + hϑ
Γ(ϑ+1)

∑n
j=0((n − j + 1)ϑ − (n − j)ϑ)G

(
t j, g(t j)

)
,

n = 0, 1, 2, · · · ,m.
(5.3)

Thus, utilizing the above scheme (5.3), we deduced the following iterative formulae for the corre-
sponding classes of the model (3.4)

x1n+1 = x10 +
hϑ

Γ(ϑ + 1)

n∑
j=0

(
(n − j + 1)ϑ − (n − j)ϑ

)(
µϑh − bϑax1 j x5 j − υ

ϑx1 j − µ
ϑ
h x1 j

)
,

x2n+1 = x20 +
hϑ

Γ(ϑ + 1)

n∑
j=0

(
(n − j + 1)ϑ − (n − j)ϑ

)(
ψbϑax1 j x5 j + ωbϑcx4 j x5 j − (µϑh + τϑ + γϑh )x2 j

)
,

x3n+1 = x30 +
hϑ

Γ(ϑ + 1)

n∑
j=0

(
(n − j + 1)ϑ − (n − j)ϑ

)(
(1 − ψ)bϑax1 j x5 j + (1 − ω)bϑcx4 j x5 j − (µϑh + γϑh )x3 j

)
,

x4n+1 = x40 +
hϑ

Γ(ϑ + 1)

n∑
j=0

(
(n − j + 1)ϑ − (n − j)ϑ

)(
υϑx1 j + ρτϑx2 j + φγϑh (x2 j + x3 j) − bϑcx4 j x5 j − µ

ϑ
h x4 j

)
,

x5n+1 = x50 +
hϑ

Γ(ϑ + 1)

n∑
j=0

(
(n − j + 1)ϑ − (n − j)ϑ

)(
bϑe(1 − x5 j)(x2 j + x3 j) − µ

ϑ
v x5 j

)
. (5.4)
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Table 2. Interpretation of input parameters with values used in numerical simulations.
Parameter Interpretation Values Reference
µv natural mortality and recruitment rate of vector 0.032300 & 0.029410 [53, 54]
β1 transmission probability from vectors to susceptible host 0.75 [10]
β2 transmission probability from vectors to partially immune host 0.375 Assumed
ϑ index of memory or fractional order variable Assumed
b bitting rate of vectors 0.50 [10]
τ treatment fraction of infected host 0.40 Assumed
υ vaccinated fraction of susceptible host 0.20 Assumed
β3 transmission probability from infected humans to mosquitoes 0.75 [10]
ψ fraction of incidence rate from S h to Ih 0.48 Assumed
γh recovery rate of host individuals 0.3288330 [53, 54]
ω fraction of incidence rate from P to Ih 0.54 Assumed
µh natural mortality and recruitment rate of humans 0.004500 & 0.000046 [53, 54]
ρ fraction of treated humans enter to P class 0.6 Assumed
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Figure 3. Illustration of the path moment of (a) Infected host Ih, (b) Carrier
host(Asymptomatic) IhA, (c) Partially immune P and (d) Infected host Iv individuals with
different values of fractional-order ϑ, i.e., ϑ = 0.6, 0.8, 1.0.
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Figure 4. Illustration of the path moment of (a) Infected host Ih, (b) Carrier
host(Asymptomatic) IhA, (c) Partially immune P and (d) Infected vector Iv individuals with
different vaccination rates υ, i.e., υ = 0.2, 0.4, 0.6.

We used the above approximation for the solution of our fractional system. In Figure (3), we
demonstrate the dynamics of infected host (Ih), asymptomatic host (IhA), partially immune (P) host and
infected vector (Iv) with the variation of fractional-order ϑ. We noticed that the variation of fractional-
order ϑ has a great influence on the infection level of dengue in both the population. In other words, it
can highly reduce the level of dengue fever in the community. In Figure (4) and Figure (5) , we repre-
sent the dynamics of dengue fever with the variation of vaccination and treatment. In these simulations,
we observed that vaccination and treatment decrease susceptibility and infectivity of the host popula-
tion, and have a slight influence on the level of infection. We demonstrated the effect of biting rate b
of the mosquitoes on the dynamics of dengue and observed that the peak of infection can be greatly
decreased by decreasing the biting rate b in Figure (6). The mosquitoes biting and its generation further
can be decreased by spraying or wasting the standing water around home or inside the home, which has
great influence on population of mosquitoes that end up biting humans. Using bed-nets, avoid to visit
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areas prone to mosquitoes, using mosquito repellent, covering legs and arms by wearing long-sleeves
and long pants are useful to prevent himself from the biting of mosquitoes. These scenarios predict
that the infection can be controlled and prevented by decreasing the index of memory and biting rate
of vectors in the community.
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Figure 5. Illustration of the path moment of (a) Infected host Ih, (b) Carrier
host(Asymptomatic) IhA, (c) Partially immune P and (d) Infected vector Iv individuals with
different treatment rates τ, i.e., τ = 0.4, 0.6, 0.8.
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Figure 6. Illustration of the path moment of (a) Infected host Ih, (b) Carrier
host(Asymptomatic) IhA, (c) Partially immune P and (d) Infected vector Iv individuals with
variation of biting rate of mosquitoes b, i.e., b = 0.4, 0.6, 0.8.

6. Conclusion

In this article, we constructed a new epidemic model for the transmission of dengue infection with
non-integer derivative. Basic results of the suggested fractional system are investigated through an-
alytic skills. The basic reproduction number of the system is calculated through the next-generation
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method, indicated by R0. We established stability results of infection-free steady-state of the system.
Sensitivity analysis of R0 is carried out in order to know the contribution of input factors in the re-
sults of R0 and observed that b, µv, and β3 are the most critical parameters that highly contribute in the
control and subsequent spread of dengue infection. We showed that the dengue infection is uniformly
persistent in the system for R0 > 1. We obtained feasible results for the dynamics of dengue infection
with the variation of memory index ϑ and suggested that the index of memory has a dominant influence
on the system. We concluded that the fractional-order model can explore more accurately the dengue
epidemic disease transmission model rather than the integer-order derivative models. The numerical
results for the suggested parameter can be considered useful for the possible eliminations of dengue
infection in the community. We suggest that fractional-order(index of memory) ϑ and biting rate b can
remarkably control and greatly decrease the level of disease in the society.
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