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Abstract: At the beginning of 2020, the novel coronavirus disease (COVID-19) became an outbreak 

in China. On January 23, China raised its national public health response to the highest level. As part 

of the emergency response, a series of public social distancing interventions were implemented to 

reduce the transmission rate of COVID-19. In this article, we explored the feasibility of using mobile 

terminal positioning data to study the impact of some nonpharmaceutical public health interventions 

implemented by China. First, this article introduced a hybrid method for measuring the number of 

people in public places based on anonymized mobile terminal positioning data. Additionally, the 

difference-in-difference (DID) model was used to estimate the effect of the interventions on reducing 

public gatherings in different provinces and during different stages. The data-driven experimental 

results showed that the interventions that China implemented reduced the number of people in public 

places by approximately 60% between January 24 and February 28. Among the 31 provinces in the 

Chinese mainland, some provinces, such as Tianjin and Chongqing, were more affected by the 

interventions, while other provinces, such as Gansu, were less affected. In terms of the stages, the 

phase with the greatest intervention effect was from February 3 to 14, during which the number of 

daily confirmed cases in China showed a turning point. In conclusion, the interventions significantly 

reduced public gatherings, and the effects of interventions varied with provinces and time. 

Keywords: COVID-19; effect evaluation; public gatherings; mobile terminals positioning data; 

difference-in-difference model 
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1. Introduction 

In early 2020, the novel coronavirus disease (COVID-19) became an outbreak in China [1]. Due 

to its sudden infection rate and the lack of specific drugs, the World Health Organization (WHO) 

announced COVID-19 was a public health emergency of international concern on January 30, 2020. 

Social distancing is a key nonpharmacologic control measure to reduce the transmission rate of 

infectious diseases; therefore, various preventive measures were implemented in response to the 

outbreak of this human-to-human transmission disease by the Chinese government. Some control 

measures were suggested to be effective. Several studies showed that the lockdown of Wuhan as well 

as the entire Hubei Province led to significant changes in the spread of COVID-19 cases [2,3], and 

travel and flight restrictions also mitigated the spread of COVID-19 in cities across China and even 

around the world [4,5]. However, in addition to population mobility between cities and countries, 

reducing population gathering inside cities also played an important role. Modeling results from 

Chinazzi et al. indicated that sustained 90% travel restrictions to and from the Chinese mainland only 

modestly affected the trajectory of the epidemic unless combined with a 50% or higher reduction of 

transmission in the community [6]. Pan et al. found that some nonpharmaceutical public health 

interventions, including cordon sanitaire, traffic restrictions, social distancing, and home quarantine, 

were temporally associated with improved control of the COVID-19 outbreak in Wuhan, China [7]. 

A study from Yang and colleagues showed that the prevention of family clustering transmission and 

preventive measures in public areas were crucial for the successful prevention of COVID-19 in 

Shenzhen, China [8]. Similar conclusions were also reached in an Italian study [9]. 

It is difficult to measure the flow and gathering of people in cities quickly and accurately by 

traditional methods, but mobility data, especially mobile terminals positioning data, can help solve 

this problem to a certain extent. Due to their large sample size and real-time features, mobility data 

are helpful for COVID-19 response research. These data can help refine interventions by providing 

nearly real-time information about changes in human movement [10]. Moreover, the mobility data 

may provide helpful insights to local governments and health authorities. A previous study used 

anonymized location data from mobile devices to understand the timing and potential impact of 

social distancing policies [11]. However, this study did not report the detailed data processing   

method and lacked a control group to prove the validity of the results. 

In this work, we explored the feasibility of using mobile terminals positioning data to study the 

impact of some nonpharmaceutical public health interventions implemented by China. The following 

is a brief introduction of the interventions that the Chinese government took in public places before 

March during the COVID-19 epidemic. 

On January 23, 2020, China raised its national public health response to the highest state to 

suppress the spread of COVID-19. As part of the response, a series of public policies were 

implemented to reduce public gatherings. Several important strategies are as follows. 

 Strategy 1: Starting from the Spring Festival, restaurants, movie theaters, shopping malls 

and some other facilities were gradually closed in many cities. 

 Strategy 2: The Spring Festival holiday was nationally extended by 3 days to February 2. 

 Strategy 3: On the basis of Strategy 2, more than 20 provinces postponed the resumption of work 

by 7 days to February 10 and encouraged companies to allow employees to work from home. 

 Strategy 4: After February 10, the conditions for offline resumption continued to be strictly 

limited. 
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 Strategy 5: In the second half of February, when the epidemic was partly under control, the 

policy of ―precision resumption and production by division and grading‖ started to be 

implemented. 

The aim of this article is to evaluate the impact of interventions implemented by China, 

especially the above five strategies, on the number of people in public places by provinces and stages 

during the COVID-19 epidemic, with the hope of providing some insights about optimizing control 

strategies and contributing useful data to related research. 

2. Materials and method 

2.1. Experimental datasets introduction 

To avoid leaking private information, we did not use any underlying data of mobile terminals 

throughout this study. Instead, we only used the number of mobile terminals with specific points of 

interest (POIs) as statistical results to measure the number of people in public places. The process of 

experimental dataset acquisition was divided into the following five steps: 

The first step was POI sampling. With reference to the rankings from some famous websites in 

China such as Amap (www.amap.com) and Jobui (www.jobui.com), we first obtained a list of 

well-known enterprises, office buildings, and shopping malls in 31 provinces in the Chinese 

mainland, where enterprises and office buildings represent workplaces and shopping malls represent 

consumption places. Then, the judgment sampling method was adopted to sample 775 important 

workplaces and 279 famous consumption places from the above list. 

The second step was determining the time periods. Firstly, 10 days Chinese Spring Festival in 

2020 were selected, because this festival always makes huge impact on public gathering, which 

means the same festival in 2019 should be selected as the control group. Secondly, 15 business days 

before the festival and 20 business days after the festival were included, because we were only 

authorized to use the data during these periods. Then, the same strategy was used to select the 

corresponding 45 days in 2019. 

The third step was fence mapping of the sample POIs. The sample POIs were transformed into 

geographic ranges. To take into account the trade-off among accuracy, efficiency and timeliness, we 

designed the following two strategies: 

 Manual strategy. The main processes included (1) searching and confirming the geographic 

location of the POI using online maps; (2) manually delineating the fence range based on 

the POI coverage of the map; (3) converting the fence range into 8-bit GeoHash codes; and 

(4) mapping the 8-bit GeoHash codes to the monitoring grid. This method required manual 

operations and was time-consuming but the results were relatively accurate, because we can 

draw irregular graphics to cover the geographic range of POIs with different shapes. 

 Automatic strategy. The main process was divided into (1) automatically mapping the 

detailed text address of the POI according to the POI name; (2) determining the POI center 

point coordinates based on the text address; (3) setting the radius of the POI radiation range; 

and (4) using the circle drawn by the coordinates of the POI center point and its radiation 

radius as the POI fence range, which was further converted into a monitoring grid. 

The fourth step was mobile terminal data acquisition. Once the monitoring grids were drawn, 

the mobile terminal data in these grids could be collected rapidly. In general, the time from 
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determining the fence to acquiring data took less than 12 hours, which meant the time lag was low. In 

addition, to minimize errors, we only calculated the number of mobile terminals that remained longer 

than 2 hours in the monitoring grid area. 

The fifth step was data cleaning. First, samples with missing values were removed, leaving 736 

workplace samples and 248 consumption place samples. Then, the number of mobile terminals of all 

the provinces was summed daily. 

Following these steps, we obtained two datasets that recorded the numbers of mobile terminal 

devices in workplaces and consumption places separately. It should be noted that we could not 

directly browse the original data during the whole process, and all of the data were anonymized. In 

addition, the extracted results were aggregated and did not include any private information. The 

format of the experimental datasets is shown in Table 1. In this article, the number of mobile 

terminals devices in the sample was used as a proxy measure for the number of people in public 

places, denoted as Num.Ppl. In addition, the number of daily confirmed cases (newly reported) of 

COVID-19 from the National Health Commission of China was used in the discussion section. 

Table 1. Data format of the number of mobile terminal devices. 

ID Date Anhui Province …… Zhejiang Province All 

1 2019-01-16 Num.Ppl …… Num.Ppl Num.Ppl 

…… …… …… …… …… …… 

90 2020-02-28 Num.Ppl …… Num.Ppl Num.Ppl 

2.2. Data preprocessing 

As mentioned above, in order to control the spread of COVID-19, the Chinese government has 

adopted different strategies during different phases to prevent people from gathering in public places. 

We labeled the data according to the date duration of some important strategies (shown in Table 2), 

based on which some new variables were added to the datasets. 

 Year. When Date belonged to 2019, Year = 0. This indicated that the data in 2019 were used 

as the control group, which was not affected by the intervention. When Date belonged to 

2020, Year = 1. This indicated that the data in 2020 were used as the treatment group. 

 Intervention. Because the nationwide interventions in public places started during the 

Chinese Spring Festival, 15 business days before the festival were marked as Invention = 0. 

This indicated that interventions had not been implemented, and the other part of Date was 

marked as Invention = 1. 

 Phase. Because interventions were implemented in stages, we added the variable Phase to 

subdivide the time period. First, the Chinese Spring Festival and the extended Chinese 

Spring Festival were labeled Phase = 1 and Phase = 2, respectively, which indicated the 

first 2 stages after the intervention. Then, we evenly divided the 20 business days after the 

extended Chinese Spring Festival into 4 groups, which were correspondingly labeled 

Phase = 3 to Phase = 6. In addition, the 15 business days before the Chinese Spring 

Festival were evenly divided into 3 groups, which were correspondingly labeled 

Phase = −2 to Phase = 0, and these 3 groups were used to test the model hypothesis. Finally, 

we converted Phase to the dummy variables Phasej, where j corresponded to the value of 

Phase. For example, Phase−2 = 1 if Phase = −2; otherwise, Phase−2= 0. 
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Table 2. Coding table for new variables. 

Intervention Phase Year Remarks 

Year = 0 (2019) Year = 1 (2020)  

0 −2 Jan. 16–18, Jan. 21–22 Jan. 6–10 Before intervention 

−1 Jan. 23–25, Jan. 28–29 Jan. 13–17 

0 Jan. 30–31, Feb. 1–3 Jan. 19–23 

1 1 Feb. 4–10 Jan. 24–30 Strategy 1 

2 Feb. 11–13 Jan. 31, Feb. 1–2 Strategy 1&2 

3 Feb. 14–15 18–20 Feb. 3–7 Strategy 1&3 

4 Feb. 21–22, Feb. 25–27 Feb. 10–14 Strategy 1&4 

5 Feb. 28, Mar. 1, Mar. 4–6 Feb. 17–21 Strategy 1&5 

6 Mar. 7–8, Mar. 11–13 Feb. 24–28 

 

Then, the data were scaled by Eq (1). Num.Ppl.Scal. denotes the scaled number of people in 

public places, and it is easy to determine that Eq (2) holds. The scaled data are shown in Figure 1. 

. .
. . .

( . . | 0, 1)

Num Ppl
Num Ppl Scal

E Num Ppl Intervention Year


 
               (1) 

( . . . | 0, 1) 1E Num Ppl Scal Intervention Year                       (2) 

 

Figure 1. Num.Ppl.Scal. in workplaces and consumption places. 
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2.3. Model 

The purpose of this work is to evaluate the impact of the interventions taken by the Chinese 

government on the number of people in public places, and the data used here are quasi-experimental, 

so the difference-in-difference (DID) model is adequate. The DID model is widely used in policy 

evaluation because it can control the systematic differences between treatment and control groups 

and can also isolate the different changes in the outcomes over time between samples that are and are 

not affected by the policy [12]. In essence, this is a regression model in which dummy variables and 

interactive terms are used, which is easily understood from the regression equation below, so it will 

not be discussed in detail here. 

Equation (3) is used to evaluate the overall effect of all the interventions from January 24 to 

February 28, 2020. According to the DID model, the interaction term coefficient 3 denotes the 

amount of change due to the influence of the intervention. Because of Eq (1), 3 here denotes the 

proportion of the changed number of people in public places affected by the intervention. 

0 1 2 3. . .Num Ppl Scal Intervention Year Intervention Year                    (3) 

The DID model is based on the parallel trend hypothesis, which means that if there is no 

intervention, then no systematic differences can be found between the treatment and control groups 

over time. We use Eq (4) to test the parallel trend hypothesis. If the interaction term coefficient of 

each phase does not become significant until interventions were implemented, then the data conform 

to the parallel trend hypothesis. 

8 17

0 2 9 11

1 10

. . . ( ) ( )i i j j

i j

Num Ppl Scal Phase Year Phase Year     

 

                  (4) 

Based on Eq (4), Eq (5) removes Phase−1 and Phase0 so that Invention = 0 becomes the 

reference group of the dummy variables Phase1  to Phase6. Therefore, similar to Eq (3), the 

interaction term coefficients 8 to 13 denote the proportion of the changed number of people in 

public places affected by the intervention in different phases. 

6 13

0 7 7

1 8

. . . ( ) ( )i i j j

i j

Num Ppl Scal Phase Year Phase Year    

 

                  (5) 

The parameters in the above 3 equations are estimated using the least square method, in which a 

robust standard error is used [13,14]. 

3. Results 

3.1. Overall intervention effect 

First, we used Eq (3) to separately evaluate the impact of the intervention adopted by the 

Chinese government on the number of people in workplaces and consumption places. 

Table 3 shows that the series of control strategies effectively reduced the number of people in 

public places during the observation period. The coefficients of the interactive terms in the two 

models are −0.606 and −0.614 (both at 99% confidence level), respectively, which means that due to 

the intervention, the numbers of people in these two types of public places dropped by approximately 
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60%. Both models are significant at the 99% confidence level, and their adjusted R
2 
values

 
are 0.578 

and 0.907, respectively. 

Table 3. Experimental results of the overall intervention effect. 

 Workplaces Consumption places 

Intervention −0.079 −0.124 *** 

 (0.086) (0.034) 

Year 0.019 −0.051* 

 (0.082) (0.031) 

Intervention Year −0.606 *** −0.614 *** 

 (0.108) (0.044) 

(Intercept) 0.981 *** 1.051 *** 

 (0.058) (0.015) 

N 90 90 

F 74.05 947.5 

Adj.R
2
 0.578 0.907 

Note: Values in parentheses denote standard errors. ***, **, and * denote that the coefficient is 

statistically significant at the 99%, 95%, and 90% confidence levels, respectively. 

The data used above passed the parallel trend test. At the 95% confidence level, the coefficients 

of the interactive terms are not significant before the intervention but immediately become 

significant after the control strategies were used. This result indicates that there are no systematic 

differences between the treatment and control groups before the intervention. In addition, it can be 

found from Figure 2 that the effects of the interventions change with time, so the effects of different 

strategies need to be evaluated separately. 

 

Figure 2. Result of the parallel trend test. 
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3.2. Effect of the intervention by province 

Then, we used Eq (3) and the data by province to evaluate the impact of the intervention on the 

31 provinces of the Chinese mainland. The aggregated results are as follows, and the detailed results 

are shown in the Supplementary section. 

Table 4 shows that the impact of the intervention on workplaces in different provinces is quite 

different. First, all the coefficients of the interactive terms in Table 4 are greater than −0.8, while the 

coefficients in four provinces, including Zhejiang and Tianjin, are less than −0.7. Second, there are 9 

provinces with a coefficient between −0.7 and −0.6, in which Hubei (the province most affected by 

COVID-19 in China) and Tibet (the province least affected by COVID-19 in China) are included. In 

addition, the coefficients of more than half of the provinces are distributed between −0.6 and −0.4. 

Gansu is least affected by the intervention, with a coefficient larger than −0.4. 

Table 4. Aggregated results of the intervention effect on workplaces by province. 

Coef. interval  Number Provinces 

[−0.8, 0.7) 4 Zhejiang, Tianjin, Shanghai, Chongqing 

[−0.7, −0.6) 9 Guangdong, Tibet, Hubei, Henan, Xinjiang, Sichuan, 

Beijing, Hunan, Jiangsu 

[−0.6, −0.5) 10 Fujian, Anhui, Hebei, Guangxi, Jiangxi, Guizhou, 

Shandong, Shaanxi, Heilongjiang, Liaoning 

[−0.5, −0.4) 7 Shanxi, Qinghai, Yunnan, Jilin, Inner Mongolia, 

Hainan, Ningxia 

[−0.4, −0.3) 1 Gansu 

Note: Coef. interval denotes the interval to which the coefficient of the interactive term in the model belongs. 

 

As shown in Table 5, the intervention effect on consumption places also varies with provinces, 

while the distribution is slightly different from that in Table 4. First, the consumption places in 6 

provinces, including Hebei and Jiangxi, are the most affected by the intervention, and their 

coefficients of interactive terms are between −0.8 and −0.7. Second, the coefficients of 

approximately half of the provinces (including Hubei) are between −0.7 and −0.5. In addition, the 

coefficients of 10 provinces are more than −0.5, among which Tibet, Liaoning and Shanxi are the 

least affected by the intervention. 

Table 5. Aggregated results of the intervention effect on consumption places by province. 

Coef. interval Number Province 

[−0.8, 0.7) 6 Hebei, Jiangxi, Tianjin, Henan, Chongqing, Jiangsu 

[−0.7, −0.6) 7 Xinjiang, Zhejiang, Hunan, Fujian, Guangdong, Shaanxi, Shandong 

[−0.6, −0.5) 8 Hubei, Ningxia, Hainan, Anhui, Heilongjiang, Beijing, Shanghai, 

Jilin 

[−0.5, −0.4) 7 Inner Mongolia, Qinghai, Sichuan, Guangxi, Yunnan, Guizhou, 

Gansu 

[−0.4, −0.3) 3 Tibet, Liaoning, Shanxi 

Note: Coef. interval denotes the interval to which the coefficient of the interactive term in the model belongs. 
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3.3. Effect of the intervention by phase 

Equation (5) was used to evaluate the effects of the interventions in different stages, and the 

results are shown in Table 6 and Table 7. The intervention effect varies with phase. 

For workplaces, Table 6 shows that the effect in the first phase (the Chinese Spring Festival) 

after the intervention is significant at the 90% confidence level and that each stage thereafter is 

significant at the 99% confidence level, indicating that the intervention effect persists during the 

observation period. Compared with the two-stage model (see Table 3), the adjusted R
2
 of the 

multistage model jumped from 0.578 to 0.87, which means that more variability is explained. The 

coefficients of the interactive terms drop rapidly in the first three stages after the intervention, from 

−0.153 to −0.844, and then start to rise, returning to −0.619 at the end of February. 

Table 6. Results of the intervention effects on workplaces by phase. 

 Coef. Std. Error t value Pr (>|t|) 

Phase1 −0.666  0.065  −10.178  0.000  

Phase2 −0.167  0.081  −2.075  0.041  

Phase3 0.047  0.064  0.733  0.466  

Phase4 0.152  0.062  2.444  0.017  

Phase5 0.182  0.062  2.939  0.004  

Phase6 0.177  0.062  2.839  0.006  

Year 0.019  0.088  0.216  0.829  

Phase1 Year −0.153  0.090  −1.695  0.094  

Phase2 Year −0.645  0.102  −6.334  0.000  

Phase3 Year −0.844  0.089  −9.450  0.000  

Phase4 Year −0.825  0.088  −9.356  0.000  

Phase5 Year −0.744  0.088  −8.434  0.000  

Phase6 Year −0.619  0.088  −6.999  0.000  

(Intercept) 0.981  0.062  15.895  0.000  

Adj.R
2
=0.87, F-statistic: 8854 on 13 and 76 DF, p-value: <2.2e-16 

 

For consumption places, the intervention effects also persist during the observation period, with 

significance at the 99% confidence level (shown in Table 7). Compared with the two-stage model 

(see Table 3), the adjusted R
2
 of the multistage model rises from 0.907 to 0.965. Similar to the results 

regarding workplaces, in the first three stages after the intervention, the coefficients of the interactive 

terms decline gradually, from −0.345 to −0.724. However, the difference is that the intervention 

effect on consumption places did not rebound significantly after the fourth stage and remained at 

−0.678 at the end of February. 

 

 

 

 

 

 



4884 

Mathematical Biosciences and Engineering  Volume 17 Issue 5, 4875-4890. 

Table 7. Results of the intervention effects on consumption places by phase. 

 Estimate Std. Error t value Pr (>|t|) 

Phase1 −0.379  0.041  −9.138  0.000  

Phase2 −0.151  0.020  −7.524  0.000  

Phase3 −0.059  0.024  −2.442  0.017  

Phase4 −0.049  0.025  −1.954  0.054  

Phase5 −0.024  0.023  −1.037  0.303  

Phase6 0.007  0.051  0.131  0.897  

Year −0.051  0.033  −1.553  0.125  

Phase1 Year −0.345  0.052  −6.609  0.000  

Phase2 Year −0.616  0.035  −17.579  0.000  

Phase3 Year −0.724  0.037  −19.339  0.000  

Phase4 Year −0.719  0.038  −18.928  0.000  

Phase5 Year −0.708  0.037  −19.251  0.000  

Phase6 Year −0.678  0.059  −11.496  0.000  

(Intercept) 1.051  0.016  65.501  0.000  

Adj.R
2 
= 0.965 F-statistic: 921.4 on 13 and 76 DF, p-value: <2.2e-16 

4. Discussion 

In this section, we discuss the abovementioned experimental results with the number of newly 

confirmed cases in China (see Figure 3). It should be noted that the intervention effect is the 

comprehensive result of many strategies, in which the five strategies discussed below are just a more 

important part. 

 

Figure 3. Number of newly confirmed cases in China. 
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4.1. Strategy 1 

The Spring Festival is the most important traditional festival in China. On the one hand, people 

usually buy a large amount of food and daily necessities before this festival, most people do not go to 

their workplaces during the festival, and many restaurants and shops are closed, which is conducive 

to social distancing. On the other hand, some consumption places, such as famous restaurants and 

shopping malls, attract a large number of customers during this period, which is not conducive to 

epidemic prevention and control. Figure 1 shows that during the Chinese Spring Festival of 2019, the 

decrease in the number of people in consumption places was much lower than that in workplaces. 

Therefore, it is more important to control the flow of people in consumption places in this phase. 

During the Chinese Spring Festival of 2020, restaurants, movie theaters, shopping malls and 

other consumption places in many cities in China were closed because of public interventions, 

reducing the number of people in these places by approximately two-thirds, which was conducive to 

social distancing. After this festival, if there was no intervention, the number of people in 

consumption places would quickly return to the preholiday level (as shown in Figure 1(b)). To 

continue to suppress public gatherings, restrictions on consumption places were not lifted 

immediately after this festival; therefore, the intervention effect quickly dropped to approximately 

−0.7 and remained stable at this level to the end of February (as shown in Table 7). Because most 

people do not work during the Chinese Spring Festival, the number of people in workplaces, 

compared with that in consumption places, was less affected during this phase. 

4.2. Strategy 2 

Under normal circumstances, the Chinese Spring Festival holiday of 2020 would have ended on 

January 30, which was the seventh day after the lockdown of Wuhan. As shown in Figure 1, if there 

was no intervention, the number of people in public places would quickly return to approximately 80% 

of the preholiday level in the first 3 days after the Spring Festival. Because COVID-19 was still 

spreading rapidly and the number of newly confirmed cases remained at a high level before this 

phase, public interventions were still necessary. 

In the early morning of January 27, China announced a nationwide extension of the Spring 

Festival by 3 days to February 2. During these three days, the intervention effect on the numbers of 

people in workplaces and consumption places were −0.645 and −0.616, respectively, which indicates 

that the interventions effectively prevented people from gathering in public places. 

4.3. Strategy 3 

As shown in Figure 3, at the end of January, the number of newly confirmed cases in China was 

still rising. Considering that the incubation period of COVID-19 may be more than 10 days [15], 

China was still in the critical stage of epidemic prevention and control in early February. A key issue 

at that time was how to strike a balance between restoring production and epidemic control. Against 

this background, China did not continue to extend the holiday nationwide but took different 

measures in different provinces in accordance with the characteristics of different provinces. More 

than 20 provinces, such as Shanghai and Zhejiang, postponed the resumption of business until 

February 10. Although some other provinces, including Beijing, allowed enterprises to resume 
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production, they strictly restricted the working conditions. For example, enterprises had to provide 

employees with adequate protective equipment and limit the minimum distance between employees. 

At the same time, enterprises were encouraged to allow employees to work from home. 

Due to the severe restrictions on the conditions for resumption of work, between February 3 

and 7, the number of people in workplaces only increased slightly (see Figure 1(a)). At the same time, 

the effect of interventions did not decrease but rather increased. As shown in Table 6, the intervention 

effect on the number of people in workplaces in Phase3 was −0.844, which was the lowest value 

among all the phases. From a retrospective perspective, if the extreme value of February 12 is not 

taken into account, as Figure 3 shows, China’s newly confirmed cases would also have had an 

inflection point at this stage. 

4.4. Strategy 4 

Although newly confirmed cases in China began to decline on February 4, the government still 

imposed very strict restrictions on the conditions for resumption of business in the days after 

February 10. For example, some cities required that people from other cities had to be isolated for 14 

days before returning to work, everyone was required wear a mask in public places, and offices 

needed to be sufficiently spacious, ventilated, and clean. 

In Phase4, because many people were still in isolation and many companies’ workplaces and 

protective equipment could not meet the policy requirements, only some employees of some 

companies had returned to their workplaces, and a large number of employees were working from 

home. As shown in Table 6, even if all the provinces had ended their holidays, the intervention effect 

on the number of people in workplaces remained above 0.8 in Phase4, which shows that the 

restriction on the conditions for the resumption of public gatherings may play an effective role. 

4.5. Strategy 5 

With the continuation of the downward trend in newly confirmed cases, China began to 

gradually promote ―precision resumption and production by division and grading‖. ―By division and 

grading‖ meant that places outside Hubei and Beijing were divided into three categories of low-risk 

areas, medium-risk areas and high-risk areas based on the severity of the epidemic. For low-risk 

areas, local governments were not allowed to set conditions for enterprises to resume production and 

open businesses, the order of production strove for full restoration, and the local governments were 

required to help enterprises resume production. For medium-risk areas, the local governments guided 

enterprises to strictly implement requirements, such as disinfection, ventilation and temperature 

measurement, and helped them resume production as soon as possible. Affected by these policies, the 

impact of interventions on the number of people in workplaces began to weaken rapidly in Phase5, 

from −0.825 to −0.619, within two weeks. 

4.6. Provincial differences 

Although all the sample provinces adopted a series of measures to limit public gatherings, the 

results of Section 3.2 show that the intervention effects in different provinces were quite different.  

First, provinces such as Zhejiang, Chongqing, and Henan, which are closer to Hubei and had a higher 
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risk of virus transmission than other provinces, demonstrated better policy intervention effects.  

Second, some provinces, such as Xinjiang and Tibet, which had a relatively small number of 

confirmed cases, also took strict measures to limit public gatherings. In addition, Hubei Province was 

not the most affected by the intervention. This may be because many companies in Hubei worked 

overtime to provide epidemic prevention and control services, and at the same time, there were a 

large number of people stranded in or assisting Hubei, which meant more consumption places were 

needed to provide services for them. 

5. Conclusion 

At different stages of the spread of COVID-19, China has taken corresponding measures to 

reduce public gatherings. In this work, based on mobile terminal data, we used the DID model to 

measure the impact of various strategies used by China. From a retrospective viewpoint, these 

strategies reduced the number of people in public places by approximately 60% between January 24 

and February 28. At the same time, these measures fitted well with the needs of COVID-19 

prevention and control during the different stages and in different provinces. 

Although this article is a retrospective study, the data and methods used here can play a role in 

the process of epidemic prevention and control. The mobile terminal data acquisition method used in 

this paper can be used to quickly and accurately ascertain the number of people in public places, 

which is useful to formulate prevention and control strategies. Moreover, the method we used can 

dynamically assess the effectiveness of public interventions and help to optimize those prevention 

and control strategies. 

There are some limitations in this work. First, the intervention effect may be overestimated 

because personal willingness is not considered in the model, although personal willingness is also 

affected by public policy. Second, because the samples used are well-known enterprises and 

shopping malls, the results may not reflect the intervention effect in rural areas. In addition, although 

mobile terminal data can approximately measure the number of people, there may be some errors. 

In this work, we did not use these data to further quantify the relationship between interventions 

and COVID-19 transmission. However, the research here can provide more data for professionals, 

and a retrospective analysis of China’s interventions can also provide some reference for the 

treatment of similar situations. Next, we will further study how to use big data to better optimize 

epidemic prevention and control strategies. 
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Supplementary 

Table 8. The detailed results of intervention effect on workplaces by province. 

 Coefficient of the interactive term Model 

Province Estimate Std.Error tvalue Pr(>|t|) Pr(>|t|) Adj.R2 

Zhejiang −0.761 0.123 −6.184 0.000 0.000 0.579 

Tianjin −0.736 0.127 −5.797 0.000 0.000 0.600 

Shanghai −0.718 0.106 −6.772 0.000 0.000 0.635 

Chongqing −0.717 0.110 −6.542 0.000 0.000 0.677 

Guangdong −0.670 0.147 −4.551 0.000 0.000 0.454 

Tibet −0.667 0.160 −4.156 0.000 0.000 0.468 

Hubei −0.660 0.088 −7.535 0.000 0.000 0.747 

Henan −0.651 0.107 −6.074 0.000 0.000 0.631 

Xinjiang −0.651 0.065 −10.019 0.000 0.000 0.795 

Sichuan −0.647 0.093 −6.958 0.000 0.000 0.673 

Beijing −0.646 0.108 −6.011 0.000 0.000 0.468 

Hunan −0.644 0.132 −4.879 0.000 0.000 0.506 

Jiangsu −0.600 0.111 −5.414 0.000 0.000 0.532 

Fujian −0.595 0.109 −5.471 0.000 0.000 0.565 

Anhui −0.586 0.103 −5.707 0.000 0.000 0.523 

Hebei −0.572 0.109 −5.223 0.000 0.000 0.559 

Guangxi −0.570 0.101 −5.629 0.000 0.000 0.662 

Jiangxi −0.567 0.105 −5.385 0.000 0.000 0.616 

Guizhou −0.542 0.100 −5.395 0.000 0.000 0.635 

Shandong −0.519 0.096 −5.435 0.000 0.000 0.591 

Shaanxi −0.515 0.121 −4.274 0.000 0.000 0.484 

Heilongjiang −0.509 0.071 −7.153 0.000 0.000 0.677 

Liaoning −0.506 0.090 −5.643 0.000 0.000 0.623 

Shanxi −0.497 0.085 −5.880 0.000 0.000 0.711 

Qinghai −0.489 0.091 −5.349 0.000 0.000 0.651 

Yunnan −0.471 0.100 −4.688 0.000 0.000 0.590 

Jilin −0.471 0.112 −4.192 0.000 0.000 0.461 

Inner Mongolia −0.468 0.093 −5.055 0.000 0.000 0.553 

Hainan −0.446 0.091 −4.887 0.000 0.000 0.547 

Ningxia −0.408 0.069 −5.935 0.000 0.000 0.583 

Gansu −0.387 0.098 −3.942 0.000 0.000 0.589 
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Table 9. The detailed results of intervention effect on consumption places by province. 

 Coefficient of interactive term Model 

Province Estimate Std.Error tvalue Pr(>|t|) Pr(>|t|) Adj.R2 

Hebei −0.769 0.076 −10.167 0.000 0.000 0.747 

Jiangxi −0.763 0.040 −18.881 0.000 0.000 0.911 

Tianjin −0.761 0.051 −14.976 0.000 0.000 0.920 

Henan −0.758 0.039 −19.196 0.000 0.000 0.948 

Chongqing −0.752 0.074 −10.142 0.000 0.000 0.856 

Jiangsu −0.709 0.056 −12.651 0.000 0.000 0.881 

Xinjiang −0.689 0.043 −15.866 0.000 0.000 0.882 

Zhejiang −0.688 0.050 −13.819 0.000 0.000 0.915 

Hunan −0.681 0.083 −8.158 0.000 0.000 0.746 

Fujian −0.655 0.100 −6.572 0.000 0.000 0.747 

Guangdong −0.647 0.064 −10.166 0.000 0.000 0.822 

Shaanxi −0.630 0.057 −11.041 0.000 0.000 0.861 

Shandong −0.602 0.056 −10.668 0.000 0.000 0.801 

Hubei −0.588 0.043 −13.798 0.000 0.000 0.932 

Ningxia −0.572 0.055 −10.370 0.000 0.000 0.880 

Hainan −0.571 0.074 −7.761 0.000 0.000 0.765 

Anhui −0.564 0.062 −9.155 0.000 0.000 0.760 

Heilongjiang −0.549 0.036 −15.344 0.000 0.000 0.935 

Beijing −0.548 0.034 −16.000 0.000 0.000 0.924 

Shanghai −0.528 0.070 −7.597 0.000 0.000 0.794 

Jilin −0.515 0.043 −11.972 0.000 0.000 0.896 

Inner Mongolia −0.498 0.045 −10.973 0.000 0.000 0.869 

Qinghai −0.487 0.111 −4.406 0.000 0.000 0.734 

Sichuan −0.484 0.031 −15.698 0.000 0.000 0.951 

Guangxi −0.478 0.075 −6.332 0.000 0.000 0.717 

Yunnan −0.446 0.036 −12.258 0.000 0.000 0.883 

Guizhou −0.433 0.058 −7.481 0.000 0.000 0.803 

Gansu −0.431 0.025 −16.964 0.000 0.000 0.942 

Tibet −0.356 0.037 −9.719 0.000 0.000 0.893 

Liaoning −0.341 0.038 −8.863 0.000 0.000 0.762 

Shanxi −0.317 0.061 −5.194 0.000 0.000 0.835 
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