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Abstract: Of concern in the paper is a theoretical investigation of boundary layer flow of a 

biomagnetic fluid and heat transfer on a stretching/shrinking sheet in the presence of a magnetic 

dipole. The problem has been treated mathematically by using Lie group transformation. The 

governing nonlinear partial differential equations are thereby reduced to a system of coupled 

nonlinear ordinary differential equations subject to associated boundary conditions. The resulting 

equations subject to boundary conditions are solved numerically by using bvp4c function available in 

MATLAB software. The plots for variations of velocity, temperature, skin friction and heat transfer 

rate have been drawn and adequate discussion has been made. The study reveals that the problem 

considered admits of dual solutions in particular ranges of values of the suction parameter and 

nonlinear stretching/shrinking parameter. A stability analysis has also been carried out and presented 

in the paper. This enables one to determine which solution is stable that can be realized physically, 

and which is not. The results of the present study have been compared with those reported by 

previous investigators to ascertain the validity/reliability of the computational results.  
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Nomenclature 

),( yx : Cartesian coordinates; ),( vu : velocity components in the x  and y  direction; ),(  : 

dimensionless coordinates; H : magnetic field intensity; Pr: Prandtl number; B  : magnetic 

induction; 0B ,saturation magnetic induction; M : fluid magnetization; sM : saturation 

magnetization; T : fluid temperature; cT : fluid temperature far away from sheet; wT : temperature 

of the sheet;  : dimensionless temperature;  : density of fluid; µ: dynamic viscosity;  :         

kinematic viscosity; 0 : magnetic permeability; pc : specific heat constant pressure; k :       

thermal conductivity; a : viscous dissipation parameter;  : dimensionless temperature parameter; 

nM : magnetohydrodynamic parameter;  : ferromagnetic interaction parameter;  , dimensionless 

distance; m : temperature exponent parameter;  λ: stretching parameter. 

1. Introduction  

Studies on biomagnetic fluid flow and heat transfer under the influence of external magnetic 

fields have been receiving growing attention of researchers owing to their important applications in 

bioengineering and clinical sciences. Observations derived from related investigation are useful in 

the design and development of magnetic devices for cell separation, reduction of blood flow during 

surgery, targeted transport of drugs through the use of magnetic particles as drug carriers, magnetic 

resonance imaging (MRI) of specific parts of the human body, electromagnetic hyperthermia in 

cancer treatment etc., as mentioned in earlier communications (see [1–3]). 

Base on the principles of Ferrohydrodynamics (FHD), a biomagnetic fluid model was developed [4]. 

This was further extended [5] by combining the principles of Magnetohydrodynamics with those of 

FHD and applied his model to analyze the flow of blood under the influence of a magnetic field. In [6] 

the authors studied the flow of a heated ferrofluid over a linearly stretching sheet under the action of 

a magnetic field generated due to the presence of a magnetic dipole. Laminar two-dimensional flow 

of an incompressible biofluid over a stretching sheet was studied numerically [7]. The effect of heat 

transfer on the flow behaviour was also studied by these authors. Flows of biomagnetic viscoelastic 

fluids in different situations were investigated theoretically [2,3]. These studies reveal that the 

presence of external magnetic field bears the potential of influencing the flow behaviour of 

biomagnetic viscoelastic fluids quite appreciably. The mathematical analysed of biomagnetic fluid 

with stretching sheet [8]. Their model developed by the principles of ferrohydrodynamic and 

magnetohydrodynamic. In [9] authors presented the biomagnetic fluid over a stretching cylinder. 

Their problem is formulated by a BFD model which incorporates both principles of 

FerroHydroDynamics (FHD) and MagnetoHydroDynamics (MHD). In [10] authors discussed the 

mathematical modelling of the ferro-nanofluid flow with nanoparticles and microorganisms.  In [11] 

authors discussed the theoretical study on the swimming of migratory gyrotactic microorganisms in a 

non-Newtonian blood flow based nanofluid via an anisotropically narrowing artery. In [12] authors 
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also analyzed the heat transfer properties and the applications of the blood clot model with variable 

viscosity. In [13] authors also reported the peristaltic blood flow of Sisko fluid with magnetic 

nanoparticle and they considered Titanium magneto-nanoparticles.  

Existence of dual solutions has been reported in various studies by different researchers. Some 

of them have presented stability analysis also. Mukhopadhyay [14] while dealing with a problem of 

heat transfer in a moving fluid over a moving flat surface observed the existence of dual solutions. 

Vajravelu et al. [15] while studying the unsteady flow and heat transfer over a shrinking sheet, with 

consideration of thermal radiation and viscous dissipation reported the existence of dual solutions for 

the flow field. In [16] authors observed dual solutions for an unsteady problem of flow past an 

inclined sheet. In [17] authors found the existence of dual solutions during MHD stagnation point 

flow over a stretching/shrinking sheet. It was reported [18] that dual solutions exist for boundary 

layer flow and heat transfer over an exponentially stretching/shrinking sheet. In [19] also discussed 

the existence of dual solutions for MHD stagnation point flow over a shrinking surface with partial 

slip. The multiple solutions of magnetohydrodynamic fluid flow and heat transfer of non-Newtonian 

fluid past a permeable nonlinear shrinking sheet involving convective boundary condition were 

studied by [20]. Stability analysis has presented in several studies (see [21–23]).  

Use of Lie group transformation method has been found to be very effective in finding the 

solutions of highly nonlinear differential equations. It helps determine the invariants and similarity 

solutions for partial differential equations (see [24,25]). Several researchers (see [26–30]) have used 

Lie group analysis method for dealing with various problems of fluid flow and heat transfer. 

Several problems of flow and heat transfer on sheets/channels under the action of external 

magnetic/electric fields that have applications to physiological fluid dynamics have been treated 

mathematically among others by Misra and his collaborators [31-36]. The flow and heat transfer of 

MHD blood as a third-grade non-Newtonian fluid conveying gold nanoparticles in the porous area of 

hollow vessel analyzed [37]. They considered the viscosity of nanofluid is considered a function of 

temperature. The numerical solutions of the MHD flow through a porous medium over a stretching 

sheet were studied [38]. The flow of a power law liquid by a stretchable surface subject to Joule 

heating, convective boundary conditions, Activation energy and viscous dissipation effects is 

examined [39]. In [40] authors analyzed the magnetohydrodynamic and thermal radiation on the 

unsteady flow of a Newtonian liquid through stagnation point due to a linear sheet with mass 

transpiration. The mixed convection heat transfer combined with thermal radiation of a viscoelastic 

liquid circulation driven by a porous accelerating sheet under the inclined uniform magnetic field 

impact were studied by [41]. 

However, in none of these studies, stability analysis/existence of multiple solutions has been 

considered. More particularly, to the best of our knowledge, there has not been any attempt to 

explore the existence of multiple solutions or to discuss the stability for any theoretical analysis for 

the flows of biomagnetic fluids. With this end in view an attempt has been made in this paper to 

explore the stability and existence of dual solutions in the context of flow and heat transfer of 

biomagnetic fluids on stretching/shrinking sheets. The governing equations being highly nonlinear, 

we have made use of the Lie group transformation method. Finally, the computational results have 

been obtained with the help of bvp4c function available in Matlab software. Detailed discussion has 

been made for variations of biomagnetic fluid velocity, temperature, skin friction and heat transfer 

rate. The study reveals that there exist dual solutions in specific ranges of the vital parameters 

involved and that one of the two solutions is stable and physically realistic. The validity of the 
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numerical results presented has also been established. 

2. Proposed methodology: Problem formulation, working principle and modeling 

2.1. Problem formulation  

Let us consider the two-dimensional incompressible boundary layer flow and heat transfer of a 

biomagnetic fluid over a stretching/shrinking sheet (Figure 1), where −x axis is taken along the 

sheet and −y axis along the normal direction. We assume that stretching/shrinking has a velocity 

n

xau = , where )0(a  is a constant that signifies the stretching situation. When ,0a  we have 

the case of a shrinking sheet. It is assumed that the free stream velocity is 
n

xbxU = )( , where b is 

a positive constant. A magnetic dipole is supposed to be located below the sheet at a 

distance d which generates a magnetic field of constant strength. Also, we denote the temperature of 

the sheet by )(xTw  and the ambient temperature by )(xTc .                     

 

Figure 1. The geometry of the problem. 

Under the assumptions of boundary layer approximation, as well as assumptions for the 

magnetic field i.e. it is strong enough to attain saturation magnetization and the induced magnetic 

field is negligible, the governing equations for the problem considering both electrical conductivity 

and polarization can be written as [5, 8]  
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and the boundary conditions as 
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u  and v  being the velocity components along the −x  and −y axes, respectively. Other 

parameters   and k  represent respectively the fluid density and the thermal conductivity. pc  is 

the specific heat at constant pressure,   the fluid viscosity and 0   the magnetic permeability. 

We consider that the magnetic field strength varies linearly with temperature ,T  M  as a linear 

function of temperature ,T  given by )( TTKM c −= , K being a constant. 

The horizontal and vertical components of the magnetic field generated by a magnetic dipole located 

at a distance d below the sheet are given by (cf. [7]) 
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2.2.  Mathematical analysis 

      We now introduce the following dimensionless quantities: 
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where c is a characteristic velocity. 

Substituting (6) into Equations (1)-(3), one obtains the non-dimensional equations: 
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where the dimensionless form of the boundary conditions expressed in terms of   are obtained as  

       01,

1

2
, ==

+

−=



=




yat

n

b

v

x
ax

y

wn 



 

and →===



 yasbxU

y

n 0, 


.                                      (11) 

2.3.  Lie group transformation 

Since it is extremely difficult to solve the coupled nonlinear equations (9) and (10) subject to the 

boundary conditions (11) even numerically, we resort to the application of a novel type of similarity 

transformation, called the Lie group transformation (alternatively called the scaling group 

transformation) given by [30] 
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Here  is the group scaling parameter and i )8,...,2,1( =i are arbitrary real numbers. Now we find 
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out the values of i such that the form of (9)-(11) is invariant under the scaling group transformation 

(12). This transformation can be treated as point transformation, which transforms the coordinates 

),,,,,,,( HUvuyx    to ),,,,,,,( ******** HUvuyx  
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The transformed equations (13) and (14) are invariant under the Lie group of transformation, if the 

following relations among the transform parameters are satisfied.  
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If we insert (17) into the scaling (12), the set of transformations reduces to a one parameter group of 
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and .0* =− HH                                                                          (18) 

From Eq. (18), one can easily deduce the set of transformation in the form of the following 

characteristic equations: 
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Substitution of (20) into (9)-(11), yields the system of nonlinear ordinary differential equations given 

below  
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The associated boundary conditions are: 
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suction/injection parameter where suction defined by 0S   and 0S refers to injection. 

The important physical characteristics skin friction coefficient fxC   and the local Nusselt number 

xNu  are described as 
2
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In Eqn. (24), w  is the shear stress at wall, while wq represents the wall heat flux, defined by 
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Introducing (25) into Eqn. (24), the skin friction coefficient and local Nusselt number can be written 

in dimensionless form as 

)0(''Re
2

1
fC xfx = and )0('Re/ −=xxNu                                      (26) 

where 


xxuw

x

)(
Re = is the local Reynolds number based on the stretching velocity )(xuw . 

2.4.  Stability analysis 

        In this section, we present a stability analysis for the unsteady flow of the biomagnetic 

fluid, by considering the momentum equation in the form 
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where t  denotes the time. Here we define another set of dimensionless variables (in tune with 

equation (20)) as  
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In terms of these variables, the expression for the axial and transverse velocities read    
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Substituting (29) in equation (27) and (28), we have                                              
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The associated boundary conditions being 

        1),0(,),0(,),0( =
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and   →→→



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
as

f
0),(,0),(                                     (32)                                                                                                                                                      

To test the stability of the steady flow solution )()(  Ff = , )()( 0  =  that satisfy the 

boundary value problem (2) and (3), we write 

 ),,()(),(   geFf −+=     

),()(),( 0   Ge−+=                                                    (33) 

where γ is an unknown eigenvalue parameter and ),( g and ),( G are small as compared to 

)(F and ).(0   By substituting (33) into equation (30) and (31), we get the following linearized 
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problem: 
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subject to the boundary conditions: 
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 For ,0=  we have )()()()( 0  == andFf  we have the case of steady flow of the 

fluid characterized by equation (21), while )()( 0  gg = and )()( 0  GG =  in (34) and (35) 

characterizes the initial growth or decay of the solution (33). To test our numerical procedure, the 

following linear eigenvalue problem corresponding to the steady state problem: 
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along with the conditions: 

     0)0(,0)0(,0)0( 0

'

00 === Ggg  

 and .0)0(,0)( 0

'

0 →→→  asGg                                           (39) 

 The smallest eigenvalue   will determine the stability of the corresponding steady flow 

solution )(F  for all the parameters involved. Hence the boundary condition of 

→→  asg 0)('0  can be relaxed as suggested by Harris et al. [45] and replace by a new 
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boundary condition .1)0(''0 =g  

2.4.  Numerical scheme 

  Now we solve the set of nonlinear ordinary differential equations (21) and (22) with boundary 

conditions (23) numerically by using bvp4c function technique in MATLAB package. We 

consider 54321 ',,'',', yyyfyfyf =====  . Then the equations (7) and (8) are transformed into 

a system of first order ordinary differential equations as given below. 
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along with the initial boundary conditions: 

.0)(,1)(,1)0(,)0(,)0( 42421 ===== yyyySy                                     (41) 

Equations (40) and (41) are integrated numerically as an initial value problem to a given terminal 

point. All these simplifications are made by using bvp4c function available in MATLAB software. 

3. Results and discussion 

The nonlinear ordinary differential equations (21) and (22) with boundary conditions (23), can 

be solved numerically using the bvp4c programme in MATLAB software. In order to continue to the 

derivation of the numerical results it is necessary to allocate values to the dimensionless parameters. 

For this problem, assume that the fluid is blood with 3/1050 mkg=   and 113102.3 −−−= skgm  [1]. 

The electrical conductivity of blood is 
18.0 −= sm  [5], and the temperature of the fluid is cTc

041=  

whereas the plate temperature is cTw

037= . As it is known, for temperatures above 41oC, blood cell 

irreversible structural damages occur, and this is the reason why someone’s life is in danger if he/she 

is exposed to such high fever. This biological limit of 41oC is by definition the Curie Temperature, 

cT , of blood since the definition of Tc in general Ferrohydrodynamics is the temperature, beyond of 

which, we no longer have the magnetization effect on the fluid )0( =nM [5]. For the above values of 

temperature, the temperature number is 5.78= [8]  and the viscous dissipation number is  

14104.6 −  [8]. Generally, the specific heat under a constant pressure pc  and thermal conductivity k  
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of any fluid are temperature dependent. However, the ratio including the above quantities expressed by 

the Prandtl number can be considered constant with the temperature variation. Therefore, for the 

temperature range consider in this problem, 113109.3 −−= kJkgc p  and 1115.0 −−−= ksJmk and 

hence 25=rP [6,8]. As far as the parameters related with the magnetic field, in the present study we 

adopted the values of   to be from 0  to 10, used also in the study of [1, 6, 8]. 

In order to establish the validity and accuracy of the method, we have computed the skin friction 

coefficient for steady flow with 1,0,0,0 ==== nMS n  and compared with previous studies, as 

shown in Table 1. The computations of )0(''f  in [42, 43] were done by using the bvp4c solver and 

shooting method, respectively. Thus, the usage of these studies in validating the method used in the 

present study was suitable. It was found that the results were in good agreement. This reassured that 

the method used was accurate. 

Table 1. Comparison of skin friction coefficient ( )0(''f ) for different values of  with 

1,0,0,0 ==== nMS n . 


 

Present Naganthran et.al [42] Bhattacharyya[43] 

First 

solution 

Second 

solution 

First 

solution 

Second 

solution 

First 

solution 

Second 

solution 

-0.25 1.402239  1.402240  1.4022405  

-0.5 1.49567  1.495669  1.4956697  

-0.75 1.48929  1.489298  1.4892981  

-1.0 1.32882 0.00126 1.328816 0 1.3288169 0 

-1.15 1.08225 0.11576 1.082231 0.116702 1.0822316 0.1167023 

-1.2 0.93253 0.23286 0.932473 0.233649 0.9324728 0.2336491 

 

While carrying out numerical computation, we observe that dual solutions exist for a certain 

range of stretching/shrinking of the sheet and suction parameter. Since the dual solutions exist, we 

need to ascertain which solution is physically meaningful. With this end in view, we have performed 

stability analysis. For the sake of brevity, the details of the stability analysis are not being presented 

here. However, on the basis of the stability test, we find that one set of solutions is stable and 

physically realizable, while the other solution set is not so.  

Figures 2–7 depict the existence of dual solutions for skin friction )0(''f and wall heat transfer 

gradient )0(' for different values of the stretching/shrinking parameter and the suction parameter, 

when the value of ferromagnetic parameter and nonlinear stretching parameter changes. 
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Figure 2. Variation of skin friction coefficient        Figure 3. Variation of heat transfer rate  

with   for various values of  .                  with   for different values of  .     

The graphs presented in Figures 2 and 3 have been plotted by considering different values of the 

ferromagnetic parameter and so they clearly depict the ferromagnetic effect of the fluid. It is 

interesting to note that there exist two solution branches. The first branch represents the stable 

solution, while the second branch denotes the unstable solution for each value of    

corresponding to a given value of .  From Figure 2, we observe that unique solution exists for 

2.0−  or 3.0−  or 4.0−  when 7,5,3= respectively,  while dual solutions exist 

when 4.0395.1 −−   for ,7=  when 3.0248.1 −−   for 5=    and when 

2.0136.1 −−   for .3=  Also no solution exists when ,c  where  

395.1,248.1,136.1 −−−=c  for .7,5,3=  respectively,  c
 
being the critical value of , at 

which the two solution branches meet each other  and thus a unique solution is obtained. 

Variation of wall heat transfer rate )0(' with stretching parameter for various values of the 

ferromagnetic parameter are shown in Figure 3. From this figure, it can be seen that the solution is 

unique when c = , while dual solutions exist when 5.0 c  and no  solutions exist, when 

,c   where c
 
is the critical value of  and the value of 144.1,235.1,392.1 −−−=c  with 

specific values of .7,5,3=  From this figure we also observe that the critical value c  decreases, 

as the value of the ferromagnetic parameter increases and that of the skin friction coefficient 
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decreases. One way further observe that the effect of the ferromagnetic parameter diminishes in the 

range of   for which the solution exists. 
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Figure 4. Variation of skin friction coefficient        Figure 5. Variation of heat transfer rate with                                                                                       

With S for various values of  .                  S for various values of  .          

The variations of the skin friction coefficient )0(''f and the local Nusselt number )0('  with 

suction parameter for different values of the ferromagnetic parameter are shown in figures 4 and 5 

respectively. From these figures, it reveals that the solution is unique when cSS =  , while dual 

solution exists up to 1 SSc  and no solutions for cSS  . One way further note that as the 

ferromagnetic parameter increases, both the skin friction coefficient and the heat transfer rate at the 

wall surface decrease. 

Figures 6 and 7 depict the variation of the skin friction coefficient )0(''f  and heat transfer rate 

)0(' with the stretching/shrinking parameter  , for different values of nonlinear stretching 

parameter n . We also note that dual solution exists for a specific range of values of the nonlinear 

stretching parameter. The aforesaid observations may be summarized as follows: 

(i) For ,0 c  dual solutions exist. 

(ii) When ,c = the solution exists and is unique. 

(iii) For ,c  no solution exists. 

(iv) With an increase in n , there is a reduction in the skin friction coefficient and the heat 

transfer rate. 
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(v) As the nonlinear stretching parameter n  increases, the range of similarity solution and that 

of the existence of dual solutions are both enlarged.  
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   Figure 6. Change in skin friction coefficient for     Figure 7. Change in heat transfer rate for 

    different values of n  and  c  .               different values of n  and  c  .  

The effects of ferromagnetic parameter   on velocity and temperature distribution are shown 

in figures 8 and 9. These figures reveal that although the biomagnetic fluid velocity is enhanced as 

the ferromagnetic parameter increases for both cases (first and second solution), the fluid 

temperature is diminished, as the value of   rises. Here β is a ferromagnetic parameter and 

increment of the ferromagnetic parameter results in increment of the magnetic force. For this 

formulation this results to the increment of the resistance to the flow which is detected as velocity 

decrement and temperature increment. This signifies that the momentum boundary layer thickness 

becomes thinner with a rise in the value of the parameter  . For temperature distribution, since 

induce magnetic interaction parameter slow down the flow motion while passing the sheet which 

gives more time to the heat dissipates to the flow. This causes enhancement the temperature and 

simultaneously the thermal boundary layer thickness also gets thicker. 

Figures 10 and 11 show that the effect of nonlinear stretching parameter )(n  on the velocity and 

temperature distributions for a particular situation, when 1,1,1,1,10 ===== mMS n  . Figure 

10 indicates that the velocity of the biomagnetic fluid is significantly reduced throughout the flow 

field as n is increased, in the case of the first solution. This signifies that the momentum boundary 

layer thickness becomes thinner with a rise in the value of the parameter n .  But the result is to the 

contrary in the case of the second solution, except at points very close to the sheet. Figure 11 shows 
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that temperature reduces with increase in ,n  in the case of the first solution, while for the second 

solution, a reverse trend is observed. 
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The effect of suction parameter S on velocity and temperature distributions can be found from 

figures 12 and 13. According to the first solution (cf. Figure 12), the fluid velocity increases, as the 

suction velocity enhances, while a reverse trend is observed in the case of the second solution. This 

can be interpreted physically by saying that since during suction, the fluid in the vicinity of the wall 

is sucked away, the boundary layer thickness is reduced due to suction and thereby the fluid velocity 

is enhanced. Figure 13 demonstrates that the fluid temperature is reduced as the quantum of suction 

increases. This implies that the thermal boundary layer thickness decreases with as suction proceeds.  

This causes an increase in the rate of heat transfer. However, this is the observation from the first 

solution. A reverse trend is found to occur, if we consider the second solution. This observation 

implies that as the fluid is brought closer to the surface, the thermal boundary layer thickness 

diminishes. 
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The impact of temperature exponent )(m  on velocity and temperature distributions are 

displayed in figures 14 and 15, respectively. The dual velocity and temperature distributions are also 

presented in the same figures, alongside the first solutions. It may be noted that in the case of the first 

solution, as m  increases the velocity decreases. But a reverse trend is observed in the case of the 

second solution. The results imply that increase in the fluid index is accompanied by a reduction in 

temperature boundary layer thickness also. These are the observations, when we consider the first 

solution. But for the second solution, the observations are a bit different. Also, the temperature 

exponent )(m  parameter enhances the thermal overshoot near the sheet for the second solution. 
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Figure 14. Velocity profiles, )(' f  for different   Figure 15. Temperature profiles, )(  for 

values of m  .                                  different values of m .  

4. Concluding remarks 

The paper is devoted to a theoretical study on the flow of a biomagnetic fluid, by using Lie 

group transformation method over a stretching/shrinking sheet, under the influence of a magnetic 

field generated owing to the presence of a magnetic dipole. The governing partial differential 

equations are transformed into nonlinear ordinary differential equations and solved numerically 

using BVP4C Matlab package. The effects of dimensionless governing parameters on velocity and 

temperature profiles of the flow are discussed with the help of graphs. Numerical computations are 

carried out and discussed for skin friction coefficient and local Nusselt number. Based on the present 

study we can make the following concluding remarks: 

(i)   The dual solutions exist only in the case of a shrinking sheet. 

(ii) The stability analysis emphasizes the existence of dual solutions, out of which only one 

is stable and can be realized physically. But the second solution is not so. 

(iii) With increase in the ferromagnetic effect during the fluid flow, the velocity, temperature 

and thermal boundary layer thickness are reduced.  

(iv) The ferromagnetic parameter acts as the controlling parameter and it bears the potential 

to increase/reduce the thickness of the boundary layer. 

(v) With rise in suction rate/ skin friction the fluid temperature increases. 

(vi) With increase in nonlinear stretching, both the heat transfer rate and skin friction are 

reduced.  

(vii) In fine, we would like to make a mention that both the physical parameters S and Re of 

the problem depend on “x”, which plays the role of a scaling parameter. The present 

solution is comparable with those reported in [42] and [43]. In the solution we obtain, 

“x” is considered to be small and the magnetic field gradients are derived from the power 

series expansion in powers of x (cf. Anderson and Valnes [46]; Tzirtzilakis and Tanoudis [7]). 
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Thus although the general problem is non-similar, the solution presented here is valid 

only for small values of x.  

(viii) As an important scope for future work, one can try the general problem, where x is not 

restricted to only small values of x. However, the present work will have its importance 

in validating the results of a non-similar problem. 
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