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Abstract: In this paper we investigate cluster collective behaviors aroused by epidemic spread in a
patchy population via feedback pinning control strategy. We construct a class of complex network
system combined with states feedback behavior synchronization network systems and epidemic spread
constant population systems with patch dispersal. In which the dispersal effect among patches are
included in the susceptible systems, as well as considering the contact willing function for each
patch, determined by the disease’s information and individuals’ behaviors, as the added cofactor before
bilinear incidence. On the one hand, we derive conditions about the global asymptotical stability of
disease-free equilibrium, and the existence of positive equilibrium. On the other hand, we design
states feedback controllers related with the patch disease information to achieve cluster behaviors
synchronization. By using the Lyapunov stability analysis method, the global asymptotical stability
of the positive equilibrium is discussed, and meanwhile, the criteria for cluster collective behaviors are
obtained. Numerical simulations are performed to support our theoretical results.

Keywords: behavior cluster synchronization; patch dispersal; epidemic spread; feedback pinning
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1. Introduction

Synchronization [1–5] and propagation [6–10], as the typical interesting and important dynamical
behaviors in complex networks [11–20], arouse a hot study in various fields in recent decades. When
a disease is discovered and diffused from the affected area, the information about and appraisal of an
epidemic is also transmitted along the connective networks. In other words, if there exists relationship
between two individuals, one person can get the message from another, so that the message about
disease can diffuse along with the relationship networks. While, the transmission of epidemic is
through the contact network among individuals. Furthermore, many outstanding works are taken
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which have looked at epidemic spread as an important aspect of transmission behavior in complex
networks from the mathematical biology field.

A thought is taken it for granted that synchronization and propagation almost disappear
simultaneously in a complex network, but many examples and phenomena show that situations are
opposite in fact. Especially when a kind of epidemic disease transmission, the masses’ behavior
always reach to consensus and tackle diseases, which can be claimed to achieve the synchronous
behaviors for nodes in the complex network. As a matter of fact, we always see or do the same things
such as washing hands with soap frequently, doing exercise to enhance our health and avoiding to go
to the crowded place and so on, to refrain from infected and to combat the disease when we get the
information about epidemic diseases. This kind of consistent behaviors in a complex network is so
called behavior synchronization aroused by the epidemic spreading. In recent years, there are many
excellent works concerned about such kind of synchronization induced by contagious
diseases [21–25], while in which synchronization and spreading of epidemic disease are discussed in
combination from the aspect of numeric. Therefore, it is so interesting about the interaction among
synchronization and epidemic spread in complex networks that we will also go on discussing the
behavior synchronization induced by propagation of disease in this work.

From the view of mathematical biology, several interesting models have been analyzed
qualitatively on dynamical synchronization aroused by epidemic spread. The adaptive mechanism
between dynamical synchronization and epidemic behavior as well as the interplay between collective
behavior and spreading dynamics were discussed respectively, where the effect about individuals’
awareness was introduced in epidemic models in the later one [26, 27]. And then mutually restrictive
conditions among dynamical synchronization and epidemic transmission were derived from sternly
theoretical methods. Follow on, with the assistance of the quenched mean-field theory, behavioral
synchronization induced by epidemic spread was addressed under the constructed mathematical
models without delay, with a coupling delay and with double delay [28]. And Sun et al. [29] taken an
exploration and simulation of epidemic spread and its control in multiplex networks, and found that
the epidemic control strategy from the perspective of behavioral control is extremely relevant for
epidemic control.

While those works are all about complete synchronization patterns induced by epidemic spread,
the cluster collective behavior in complex networks are more general. And there are many successful
efforts on the cluster synchronization in complex networks, such as [30, 31] and references therein.
However, few works paid attention to grouped collective behaviors induced by disease propagation in
a complex networks with community structure. The collective behaviors induced by epidemic spread
are firstly considered under community structure of complex networks, and obtained corresponding
results [32]. So universal and significant as the cluster collective behaviors are that we will consider
the grouped collective behaviors aroused by epidemic transmission in our work. On the other hand,
because of distinct survival conditions and food resources distributed in space, there are aggregation
of individuals in different areas and then forming patches [33, 34]. And it is common phenomenon
that individuals can take dispersal or migration in the patch environment, thus in our discussion there
will also consider the effect of dispersal among patches in the epidemic model, and further consider
the grouped collective behaviors induced by patchy epidemic spread. Different from other cluster
characteristic collective behaviors, the cluster numbers are corresponding to the number of patches in
our consideration, and the information about diseases in each patch will be utilized to design the
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behavioral state feedback pinning controllers in the behavior dynamical systems which familiar with
the control strategy [35].

Inspired by the above discussions, the cluster collective behaviors in behavioral synchronization
systems aroused by epidemic spread under patchy population will be studied in our work. In the
problem we considered, the epidemic models with input rates and remove rates under patchy dispersal
environment different from the above mentioned, are constructed in view of the quantity of
population, while the total population is guaranteed as a constant. In which we assume that the
dispersal only appear among the susceptible in patches. Then we consider the relation network of
individuals under this constant population, and assume that the relationship is inheritable, even though
there are input and remove rates in epidemic models, which means the fixed relation network. In other
words, the new input one will fill the lost relation position in the relation network. It should be noticed
that the spatial structures of individuals are not concerned, just concerning the relation. And then,
dividing the relation network into several subgroup same as the number of patches, named as
behavioral pattern relation group induced by patches. Called the individual belongs to the group k if it
lies in the kth behavioral pattern relation group. On the basis of above, the main purpose of our work
is to achieve behavioral consistence in each group under the transmission of disease by using so called
behavior feedback controlling strategy related with the information about diseases and the whole
behaviors for all individuals.

The main contribution of this work are listed as follows. First, we construct the coupling system
about patch epidemic disease-behavior synchronization models based on population, in which the
effect of dispersal only appears in the susceptible while the infected are limited to migration. And a
function of contact willing related with information about disease in each patch and whole behavior
state is added before the incidence as a kind of cofactor. Then, we design the disease relative feedback
pinning controllers by using the diseases’ information for each patch and the states of behavior in
each group. In other words, a part of nodes in each group are needed to control. Finally, we obtain
conditions about global asymptotical stability for disease-free equilibrium by using Lyapunov
stability analysis method, and prove the existence of positive equilibrium, and derive the
corresponding criteria. On the other hand, we verify the global asymptotical stability of the positive
equilibrium for epidemic systems by Lyapunov function, and meanwhile, obtain the criteria that
achieve the cluster behavioral synchronization, related with the cluster relation network structures and
patch characteristic.

The rest of this paper is organized as follows. The mathematical models and necessary
preliminaries are shown in Section 2. In Section 3, the global stability of disease-free equilibrium and
the existence of positive equilibrium are analyzed in the patch epidemic-behavior synchronization
systems, and the global stability of positive equilibrium as well as the cluster behavioral
synchronization under the designed feedback pinning control strategy are discussed. The numerical
simulation is performed in Section 4 to demonstrate effectiveness of the theoretical results. Finally,
the conclusion is presented in Section 5.

Notations: Trough out this paper, R+ is the set of nonnegative real numbers, Rn represents n
dimensional Euclidean space, and Rn×m denotes the set of n × m dimensional real matrix. A matrix P
is claimed as positive (negative) if P > 0 (< 0). And the unit matrix is denoted as Em×m with m × m
dimension.
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2. Models and preliminaries

2.1. Mathematical models

As shown in Figure 1, the mutual influence between patch epidemic and individual behaviors
includes two processes, such as, the one is the transmission of information about epidemic diseases,
and the behavioral contact among individuals. In which the message about patch epidemic disease
will be transferred along with the relation network of the individuals, meanwhile the information
about patch disease will be used to design the state feedback controllers for individuals’ behavior
pattern. The relation network mentioned here is a kind of network about information exchange among
individuals, and there exist also reinforcement of transmission, such as more frequent exchange. On
the other hand, the spreading for epidemic diseases occurs by the full probability contact network,
where considering the bilinear incidence, while the behavior pattern will be as one part for a kind of
cofactor function to affect the actual infected population. In this framework, the mutual interaction
coupling systems can be formed. It should be noticed that we model the patchy epidemic spreading
based on the number about total population of the susceptible and the infected in each patch, and it is
taken into consideration that the uniform contact or identical probability contact among the
susceptible and the infected. Thus, the concrete topological construction about the contact network
leading to disease transmission is not reflected in the population patch epidemic model.

Patch epidemic Individual behavior

Information about disease

Relation network

Behavior pattern

Contact network

(I,e)u

(I,e)

Figure 1. The diagrammatic map about the mutual effect between patch epidemic and
individual behaviors.

In this paper, we consider the fixed topology structure of the relation network A = (ai j). Because the
input and remove are considered in the epidemic model (shown below in the system (2.1)), we assume
that the new individuals fill up the leaves one’s relation site and remain the origin relation unchange.
Even though dispersal is also considered in the epidemic model, we assume that the relation network
among individuals is unchanged with the time going, and the subgroups of relationship are divided from
the patch disease information not the individuals’ numbers in each patch, which means that the numbers
for the subgroup of relationship are same as the patch numbers. In the same subgroup of relationship,
there will be a enhancer coefficient that reinforces the relationship in the same subgroup. We name
these groups consisting of the individuals in such relationship subgroup as behavior pattern relation
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group induced by the corresponding information of patch diseases. Which can be understandable that
some individuals in different places that are feedback by one patch so called that they belong the same
behavior pattern relation group induced by the information of patch diseases. In each behavior pattern
group induced by patch diseases, we will take the patch disease information to design the feedback
control tactic to achieve a desired behavior consistence. Maybe these feedbacks are added to a part of
individuals in the behavior pattern group.

We now construct the following m patch epidemic models with dispersal Ṡ k(t) = µS 0
k − µS k(t) − φk(x(t), Ik(t))bkIk(t)S k(t) +

m∑
l=1

bklS l(t) −
m∑

l=1

blkS k(t),

İk(t) = φk(x(t), Ik(t))bkS k(t)Ik(t) − µIk(t), k = 1, · · · ,m.

(2.1)

Where S k(t) and Ik(t) represent the susceptible and infective population in kth patch at t, respectively.
And the total population N(t) =

∑m
k=1(S k(t) + Ik(t)). In the epidemic models, we assume that the

dispersals of the susceptible population are balance, which means that the dispersal matrix B = (bkl)
satisfies

∑m
k=1

∑m
l=1 bklS l(t) =

∑m
k=1

∑m
l=1 blkS k(t), where bkl is the rate of dispersal with bkl ≥ 0, and

B = (bkl) is assumed to be irreducible. µS 0
k is the constant input in the kth patch, µ is the natural death

rate, and the diseased death is not considered in this model. And suppose that
∑m

k=1 S 0
k = N(t). In

addition, φk(x(t), Ik(t)) represents the contact willing function that is relative with the behavior states
and information about patch diseases, which reflects the case that the more similar between individuals’
behavior pattern, the more willing to contact with each other, or the more severe the disease, the less
likely they are to be exposed. And the actual expression will be defined later.

Discuss the models (2.1), and with the assumption
∑m

k=1 S 0
k = N(t) assistance, we find that

Ṅ(t) =

m∑
k=1

(Ṡ k(t) + İk(t))

=

m∑
k=1

(
µS 0

k − µS k(t) − µIk(t) +

m∑
l=1

bklS l(t) −
m∑

l=1

blkS k(t)
)

= µ
( m∑

k=1

S 0
k −

m∑
k=1

(S k(t) + Ik(t))
)

= 0. (2.2)

Therefore, the population N(t) is a constant, denoting as N, i.e., N(t) ≡ N.
Based on the above finding, we introduce the individuals’(or nodes’) behaviors, and then construct

the coupling systems about cluster individual behavior network systems and patch epidemic models
with dispersal under constant population, as following

ẋi(t) = fk(xi(t)) +

N∑
j=1

ci jai jx j(t) + ui(t), i ∈ K,

Ṡ k(t) = µS 0
k − µS k(t) − φk(x(t), Ik(t))bkIk(t)S k(t) +

m∑
l=1

bklS l(t) −
m∑

l=1

blkS k(t),

İk(t) = φk(x(t), Ik(t))bkS k(t)Ik(t) − µIk(t), k = 1, 2, · · · ,m.

(2.3)
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In which, corresponding to the number of patches there also be divided into m behavior pattern groups
induced by the information of patch diseases under the relation network. Let K represents the kth
behavior pattern group induced by kth patch epidemic, and K = {rk−1 + 1, · · · , rk} is the nodes set of
individuals in kth behavior pattern group. In the system (2.3), xi(t) ∈ Rn represents the ith individual’s
behavior state vector, fk(xi(t)) : R+ × Rn → Rn denotes the local behavior dynamics in the kth group.
If the node i and j exist relationship then ai j > 0, otherwise ai j = 0. ci j denotes the intra-group
enhancement factor, which means that ci j = ck > 0 if ī = j̄, where ī is the group that i belongs,
otherwise ci j = 1 when ī , j̄. ui(t) is the state feedback controllers related with information about
patch diseases which will be designed later.

And from the models (2.3), one can know that local behavior of nodes in the whole network are
non-identical and each subgroup has distinct behavioral target pattern. What’s more, the division
for nodes relies on their relationship network, do not on their actual spatial position, which means
that if individuals in distinct places are impacted from the same patch’s disease information, we will
classify them as the same relationship subgroup. Therefore, in models (2.3), the first one equation
represents the node i’s dynamical behavior process in k’s relationship subgroup K that aroused by the
k’s patch disease. Then when the patch disease spreading, the behavioral control ui(t) for each node i
in corresponding subgroup will be activated to make node’s behavior pattern trend the desired state.

So far, we define the expression of contact willing function φk(x(t), Ik(t)) as

φk(x(t), Ik(t)) = αk

(
1 −

Ik(t)
N2

(x(t) − y(t))T (x(t) − y(t))
1 + (x(t) − y(t))T (x(t) − y(t))

)
,

where the αk ∈ (0, 1) is the consciousness strength in the kth patch. Let x(t) = (xT
1 (t), · · · , xT

N(t))T and
y(t) = (yT

1 (t), · · · , yT
m(t))T , and denote the behavioral error for each node as ei(t) = xi(t) − yk(t), then

there are e(t) = (eT
1 (t), · · · , eT

N(t))T , in which yk(t) ∈ Rn is the target in each subgroup. For writing
convenient, rewriting the φk(x(t), Ik(t)) as φk(t), i.e., there are

φk(t) = αk

(
1 −

Ik(t)
N2

eT (t)e(t)
1 + eT (t)e(t)

)
.

The system (2.3) is a kind of compound models mixes with the behavioral equation for individuals’
states and patch epidemic spread equations. xi(t), i ∈ K represents the individual’s state vector at t for
the node belongs to the kth behavior pattern relation group, which reflects the individual’s actions such
as washing hands, wearing a mask and having a rest, etc.. fk(·) is the local dynamics for the group k
that shows the summation of distinct behaviors for the individuals in the subgroup, in other words, the
nodes are not identical. And fk(·) for each k is active, dynamic, as well as complex. S k(·) and Ik(·) are
the population of the susceptible and the infective, and bilinear incidence is adopted here. The contact
willing function φk for each patch, determined by patch information and total behavior state error, is
introduced as a factor to affect the incidence. φk is affected by the behavior equations, in which the
more less the behavior error is, the more willing to contact with others. The controllers in the behavior
equation of system (2.3), ui, are added to the single node and will use the patch epidemic information
and single node’s behavior errors, which means that only when epidemic transmission the controllers
can work to synchronize behaviors. What’s more, the controllers are even pinning that only a part of
nodes need to be controlled. It is meaningful to design the controllers ui in this way. Notice a fact
that two processes occur, the one is the transmission of information about patch disease along with the
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relation network A, which will influence individuals’ behavior pattern by external controllers. Another
is the epidemic spread through the contact network adopting the bilinear incidence affected by behavior
related cofactor, which will impact the epidemic spread from contact willing function. Therefore, in
models we realize the coupling between behavior equations and patch epidemic spread equations by
the external controllers ui, as well as the φk.

2.2. Preliminaries

Definition 1. It is said a network contains N nodes achieve cluster synchronization if the network
consists of N is divided into m subgroups, such as i ∈ K = {rk−1 + 1, · · · , rk}, k = 1, · · · ,m, for any i
and j belong to the same cluster, there are limt→∞ ||xi(t) − x j(t)|| = 0.

Remark 1. Usually, we do not compute the errors between any two nodes xi(t) and x j(t) directly. In
order to achieve cluster synchronization, it is only needed to obtain limt→∞ ||xi(t) − yk(t)|| = 0, for
i ∈ K under the given synchronization target yk(t) for each cluster. And in this work, we want to use
the patchy disease information Ik(t) to design nodes’ controllers in each subgroup to achieve cluster
behavior synchronization. Which means only when disease spreading controllers can be activated to
work.

Definition 2. A matrix L is claimed to belong the A1, denoted as L ∈ A1, if A satisfies

1. li j ≥ 0, j , i, lii = −
∑N

j=1, j,i li j,

2. L is irreducible.

If the L ∈ A1 and L is symmetric, it is said L belongs to A2, denoted as L ∈ A2. Furthermore, for
any matrix L ∈ Rn×m, if satisfies the row-sum zero, it can be called that Ln×m belongs to A3, denoted as
Ln×m ∈ A3.

Definition 3. A continuous function [36] f (x(t)) : [0,∞] × Rn → Rn is said to be QUAD class of
function, denoted as f ∈ QUAD(P,∆, η), if there exist positive definite diagonal matrix
P = diag{p1, · · · , pn} and the diagonal matrix ∆ = {δ1, · · · , δn}, and a positive constant η such that for
f there holds

(x(t) − y(t))T P[ f (x(t)) − f (y(t)) − ∆(x(t) − y(t))] ≤ −η(x(t) − y(t))T (x(t) − y(t)),

for any x(t), y(t) ∈ Rn.

Which also implies that there exists positive constant ξ and a positive diagnose matrix
P = diag{p1, p2, · · · , pn} such that

(x(t) − y(t))T P[ f (x(t)) − f (y(t))] ≤ ξ(x(t) − y(t))T (x(t) − y(t)).

Remark 2. It can be easily verified that almost chaotic systems satisfied the QUAD class of function,
for instant, the famous Lorenz system, the Chua’s circuit, Rössler system, Chen system, and so on.

Lemma 1. For any vectors x, y ∈ Rn, there exists a positive constant θ, such that

xT y ≤
1
2

(θxT x +
1
θ

yT y).

The relation between the above inequalities is actually derived from the Cauchy inequality for the
vector. Under the positive constant θ, using the Cauchy inequality can easy to obtain above result [37].
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3. Main results

In this section, we will consider the boundedness and nonnegativity of the m patches epidemic
models in the system (2.1). Obviously, the boundedness of the system (2.1) has been verified from the
discussion in Eq (2.2).

For the nonnegativity of system (2.1), which means that for any given initial values
S k(0) ≥ 0, Ik(0) ≥ 0, there will hold S k(t) ≥ 0, Ik(t) ≥ 0, for all k = 1, 2, · · · ,m, and t ≥ 0.

Assume that for any initial values S k(0) > 0, there exists k and t1, such that

{
S j(t) > 0, t ∈ [0, t1), j = 1, 2, · · · ,m,
S k(t1) = 0, t = t1.

In other aspect,

Ṡ k(t) = µS 0
k − µS k(t) − φk(t)bkIk(t)S k(t) +

m∑
l=1

bklS l(t) −
m∑

l=1

blkS k(t)

> −µS k(t) − φk(t)bkIk(t)S k(t) −
m∑

l=1

blkS k(t).

Therefore, when t ∈ [0, t1), we get the S k(t) satisfies that

S k(t) > S k(0)e−
∫ t

0 (µ+φk(s)bk Ik(s)+
∑m

l=1 blk)ds,

then, when t → t1, we obtain

S k(t1) > S k(0)e−
∫ t1

0 (µ+φk(s)bk Ik(s)+
∑m

l=1 blk)ds.

But from the assumption S k(t1) = 0, there is contradiction. Therefore, for any initial values S k(0) > 0,
there are S k(t) > 0 for k = 1, 2, · · · ,m, t ≥ 0. Combined with the continuity of solution to initial value,
when S k(0) ≥ 0, there always hold S k(t) ≥ 0 for any t ≥ 0 and k = 1, 2, · · · ,m.

For the Ik(t), we get Ik(t) = Ik(0)e
∫ t

0 (φk(s)bkS k(s)−µ)ds. When the initial values Ik(0) ≥ 0, there exists that
Ik(t) ≥ 0 for all t ≥ 0, k = 1, 2, · · · ,m.

Remark 3. It should be noticed that it is just a kind of qualitative analysis way to discuss the
nonnegativity of solutions for the epidemic system, and the concrete solutions expression for the
system can not be derived in this process. It is merely a method to analyze character of sign for
solutions that we want to know.
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3.1. The disease-free equilibrium of patch epidemic systems

We now analyze the disease-free equilibrium of the system (2.1). We first introduce some notations.
Let S (t) = (S 1(t), S 2(t), · · · , S m(t))T ∈ Rm, b = (µS 0

1, µS 0
2, · · · , µS 0

m) ∈ Rm, and

B =



µ +
∑

l,1 bl1 −b12 · · · −b1m

−b21 µ +
∑

l,2 bl2 · · · −b2m

...
...

. . .
...

−bm1 −bm2 · · · µ +
∑

l,m blm


= (b̄kl)m×m.

Under the situation of the disease-free equilibrium, we discuss the equation

µS 0
k − µS k(t) +

m∑
l=1

bklS l(t) −
m∑

l=1

blkS k(t) = 0, k = 1, 2, · · · ,m. (3.1)

Therefore, we obtain the compact form,

b − BS (t) = 0. (3.2)

Then the problem about the solution for Eq (3.1) can be transformed into the solution for matrix
Eq (3.2). Which means that we want to obtain the matrix equation’s solution such that S (t) > 0 for
Eq (3.2). In other words, the current aim is to get the positive solution for the system of inhomogeneous
linear Eq (3.2).

For the Eq (3.2), assume

(H1) S 0
k >
∑m

l=1,l,k b̄kl
S 0

l
b̄ll
, k = 1, 2, · · · ,m.

Then there exists positive solution for Eq (3.2).
The following is simple proof about the existence of positive solution for Eq (3.2).

Proof. At first, let BD = diag{µ +
∑

l,1 bl1, µ +
∑

l,2 bl2, · · · , µ +
∑

l,m blm}, since bkl ≥ 0, then µ +∑
l,k blk > 0, k = 1, 2, · · · ,m, therefore, BD > 0 and BD is invertible as well as B−1

D ≥ 0, where
B−1

D = diag
{

1
µ+

∑
l,1 bl1

, 1
µ+

∑
l,2 bl2

, · · · , 1
µ+

∑
l,m blm

}
.

Let D = E − BB−1
D , then B = (E − D)BD. From the (H1), we obtain that C ≡ (E − D)b > 0. And

according to b > 0,D ≥ 0, we get ρ(D) < 1, where ρ(D) represents the spectral radius of D [38].
By the Perron-Frobenius theorem there exists a vector v ≥ 0, such that DT v = ρ(D)v. Thus, there is
0 = vTρ(D)−vT D = vT (Eρ(D)−D) < vT (E−D).Combining with b > 0,we have vT (E−D)b = vTC > 0.
On the other hand, vT (E − D)b = (1 − ρ(D))vT b, which implies 1 − ρ(D) > 0.

To sum up, we can claim that E − D is invertible, and then with the representation of B, B is also
invertible. Therefore, for the Eq (3.2), there are

S = B−1b = B−1
D (E − D)−1b = B−1

D ((E − D)−1)2C > 0.

Which means there exist positive solution for the Eq (3.2) when (H1) hold. �
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Then, denote by E0 = (S̄ 0
1, 0, S̄

0
2, 0, · · · , S̄

0
m, 0) the disease-free equilibrium, we have

µ
S 0

k

S̄ 0
k
− µ +

m∑
l=1

bkl
S̄ 0

l

S̄ 0
k
−

m∑
l=1

blk = 0, k = 1, 2, · · · ,m. (3.3)

Therefore, we obtain the following results for the disease-free equilibrium
E0 = (S̄ 0

1, 0, S̄
0
2, 0, · · · , S̄

0
m, 0).

Theorem 1. Assumption that B = (bkl)m×m is irreducible and (H1) hold.

1. When R̄0
k =

S̄ 0
kαkbk

µ
≤ 1, k = 1, 2, · · · ,m, then the disease-free equilibrium E0 is globally

asymptotically stable.

2. When R0
k =

S̄ 0
kαk(1− 1

N )bk

µ
> 1, k = 1, 2, · · · ,m, then the disease-free equilibrium E0 is unstable,

and if there are R̃0
k =

S 0
kαkbk

µ+
∑

l,k blk
> 1, k = 1, 2, · · · ,m, then there exist positive equilibrium E∗ =

(S ∗1, I
∗
2, S

∗
2, I
∗
2, · · · , S

∗
m, I

∗
m).

Proof. Firstly, denote the Lyapunov candidate function

L1(t) =

m∑
k=1

vkIk(t) +

m∑
k=1

vk

(
S k(t) − S̄ 0

k − S̄ 0
k ln

S k(t)
S̄ 0

k

)
, (3.4)

where vk is the kth cofactor of the kth diagonal entry for the Laplacian matrix of B̃ = (b̃kl)m×m, and
b̃kl = bklS̄ 0

l . Due to the B = (bkl)m×m is irreducible, so as the B̃, then vk > 0, k = 1, 2, · · · ,m.
Then, take the derivative of L1(t) along the system (2.1), and according to the equation that disease-

free equilibrium E0 satisfies as shown in Eq (3.3), we obtain

L̇1(t) =

m∑
k=1

vk İk(t) +

m∑
k=1

vk

(
Ṡ k(t) −

S̄ 0
k

S k(t)
Ṡ k(t)

)
=

m∑
k=1

vkφk(t)bkIk(t)S k(t) − µ
m∑

k=1

vkIk(t) +

m∑
k=1

vk

(
S k(t) − S̄ 0

k

)[
µ

S 0
k

S k(t)

− µ − φk(t)bkIk(t) +

m∑
l=1

bkl
S l(t)
S k(t)

−

m∑
l=1

blk

]
=

m∑
k=1

vkφk(t)bkIk(t)S k(t) − µ
m∑

k=1

vkIk(t) +

m∑
k=1

vk

(
S k(t) − S̄ 0

k

)[
µ

S 0
k

S k(t)

− µ
S 0

k

S̄ 0
k
− φk(t)bkIk(t) +

m∑
l=1

bkl

( S l(t)
S k(t)

−
S̄ 0

l

S̄ 0
k

)]
=

m∑
k=1

vkφk(t)bkIk(t)S k(t) − µ
m∑

k=1

vkIk(t) +

m∑
k=1

µvk

(
2S 0

k −
S 0

kS k(t)
S̄ 0

k
−

S̄ 0
kS 0

k

S k(t)

)
−

m∑
k=1

vk

(
S k(t) − S̄ 0

k

)
φk(t)bkIk(t) +

m∑
k=1

vk

m∑
l=1

bklS̄ 0
l

(S l(t)
S̄ 0

l
−

S k(t)
S̄ 0

k
−

S̄ 0
kS l(t)

S k(t)S̄ 0
l

+ 1
)
. (3.5)
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From the fact that

2 −
S k(t)
S̄ 0

k
−

S̄ 0
k

S k(t)
≤ 0,

and the equality holds if and only if S k(t) = S̄ 0
k , then there is

m∑
k=1

µvk

(
2S 0

k −
S 0

kS k(t)
S̄ 0

k
−

S̄ 0
kS 0

k

S k(t)

)
=

m∑
k=1

µvkS 0
k

(
2 −

S k(t)
S̄ 0

k
−

S̄ 0
k

S k(t)

)
≤ 0.

Let b̃kl = bklS̄ 0
l , then B̃ = (b̃kl)m×m. And then denote that

Fkl(S l(t), S̄ 0
l , S k(t), S̄ 0

k) =
S l(t)
S̄ 0

l
−

S k(t)
S̄ 0

k
−

S̄ 0
kS l(t)

S k(t)S̄ 0
l

+ 1.

Therefore, from Eq (3.5) we obtain that

L̇1(t) ≤ −
m∑

k=1

vk

(
µ − S̄ 0

kφk(t)bk

)
Ik(t) +

m∑
k=1

vk

m∑
l=1

b̃klFkl(S l(t), S̄ 0
l , S k(t), S̄ 0

k).

On the other hand, there is 1 − x + ln x ≤ 0 and the equal hold if and only if x = 1. Which means
that 1 − x ≤ − ln x holds. Then

1 −
S̄ 0

kS l(t)
S k(t)S̄ 0

l
≤ − ln

S̄ 0
kS l(t)

S k(t)S̄ 0
l

= ln
S k(t)
S̄ 0

k
− ln

S l(t)
S̄ 0

l
.

Then

Fkl(S l(t), S̄ 0
l , S k(t), S̄ 0

k) ≤
(
−

S k(t)
S̄ 0

k
+ ln

S k(t)
S̄ 0

k

)
−

(
−

S l(t)
S̄ 0

l
+ ln

S l(t)
S̄ 0

l

)
, Fk(S k(t), S̄ 0

k) − Fl(S l(t), S̄ 0
l ),

where Fk(S k(t), S̄ 0
k) = −S k(t)

S̄ 0
k

+ ln S k(t)
S̄ 0

k
.

Then we have∑
k,l

Fkl(S l(t), S̄ 0
l , S k(t), S̄ 0

k) ≤
∑

k,l

[
Fk(S k(t), S̄ 0

k) − Fl(S l(t), S̄ 0
l )
]

= 0.

Therefore, there exists the following result according to [39]

m∑
k=1

vk

m∑
l=1

b̃klFkl(S l(t), S̄ 0
l , S k(t), S̄ 0

k) ≤ 0.

To sum up, we have L̇1(t) ≤ −
∑m

k=1 vk

(
µ − S̄ 0

kφk(t)bk

)
Ik(t).

In addition, Ik(t) ≥ 0 for each k that has been verified, as well as the fact that

αk

(
1 −

1
N

)
≤ φk(t) = αk

(
1 −

Ik(t)
N2

eT (t)e(t)
1 + eT (t)e(t)

)
≤ αk.
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Let

R̄0
k =

S̄ 0
kαkbk

µ
, k = 1, 2, · · · ,m,

then when R̄0
k ≤ 1, we get µ − S̄ 0

kαkbk ≥ 0. On the other hands, µ − S̄ 0
kφk(t)bk ≥ µ − S̄ 0

kαkbk. Thus
when R̄0

k ≤ 1, there is L̇1(t) ≤ 0. And L̇1(t) = 0 if and only if Ik(t) = 0, S k(t) = S̄ 0
k . Which means that

the disease-free equilibrium E0 is the single point compact invariant set for the L̇1(t) = 0. Therefore
by the LaSalle’s Invariant Principle, we can claim that the disease-free equilibrium E0 is globally
asymptotically stable.

From the other aspect, let

R0
k =

S̄ 0
kαk

(
1 − 1

N

)
bk

µ
, k = 1, 2, · · · ,m.

Then when R0
k > 1, we have −µ+ S̄ 0

kαk

(
1− 1

N

)
bk > 0, which implies that −µ+ S̄ 0

kφk(t)bk > 0. It means

that L̇1(t) > 0, and the disease-free equilibrium E0 is unstable in the neighborhood of E0. Combined
with the boundedness of the system, there exists positive equilibrium.

From the system (2.1), we can easily obtain the nonzero solution, denote the nonzero solution as
E∗ =

(
S ∗1, I

∗
1, S

∗
2, I
∗
2, · · · , S

∗
m, I

∗
m

)
that holds

 µS 0
k − µS ∗k − αkbkI∗k S ∗k +

m∑
l=1,l,k

bklS ∗l −
m∑

l=1,l,k

blkS ∗k = 0,

αkbkS ∗kI∗k − µI∗k = 0, k = 1, 2, · · · ,m,

(3.6)

where φk(t)|I∗k = αk due to the equilibrium state. In which the S ∗k and I∗k equal to
S ∗k =

µ

αkbk
,

I∗k = S 0
k −

µ

αkbk
+

m∑
l=1,l,k

bkl
1
αlbl
−

m∑
l=1,l,k

blk
1

αkbk
, k = 1, 2, · · · ,m.

Denote

R̃0
k =

S 0
kαkbk

µ +
∑

l=1,l,k blk
, k = 1, 2, · · · ,m.

Then when R̃0
k > 1, e.g., S 0

k −
µ

αkbk
−
∑m

l=1,l,k blk
1

αkbk
> 0. On the other hand,

I∗k > S 0
k −

µ

αkbk
−

m∑
l=1,l,k

blk
1

αkbk
.

Therefore, R̃0
k > 1 implies that there exists the positive solution for the system (2.1). The proof of the

theorem is then completed. �
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3.2. The stability of positive equilibrium and behavior system’s behavioral pattern synchronization

In this subsection, we will analyze the behavior pattern cluster synchronization induced by the patch
disease under the case of positive equilibrium existence for epidemic systems, implying the epidemic
disease spreading, and address the stability of positive equilibrium at the same time. For this purpose,
we assume the relationship network is fixed, even though there are input and removing as well as
the dispersal among patches, as for the input and death, the new individuals will fill up the removed
one’s relation site and remain the origin relationship unchanged. Assume there are m patches, and
we divide the relation network into m behavior pattern relation groups induced by the patch disease
information and let K = {rk−1 + 1, · · · , rk}, k = 1, 2, · · · ,m represents the kth group with rk − rk−1

numbers that individuals belong to, where r0 = 0, rm = N. Specially, the individuals’ numbers in the
kth behavioral pattern relation groups do not need to be same with kth patch’s population. Under
this situation, we just focus on the behavior pattern of individuals, not the spatial position, that is to
say the individuals from different places can have the same behavior pattern, so that we divide them
into the same behavior pattern group. Corresponding to this division, when we divide the relationship
network the individuals are also divided in fact and then utilize the patches disease information to
design the feedback controllers for individuals in corresponding behavior pattern group, while this
feedback control would be added to a part of the individuals in each group, named pinning.

Next, we divide the relationship network. Let

li j = −ai j, lii = −

N∑
j=1, j,i

li j,

then we have the matrix L as the relationship network A’s Laplacian matrix L = (li j)N×N

Blocking L according to the behavioral pattern relation groups, obtain

L =


L11 L12 · · · L1m

L21 L22 · · · L2m
...

...
. . .

...

Lm1 Lm2 · · · Lmm

 .

Additionally, combined with the intra-group enhancement factor, we have

L =


L11 L12 · · · L1m

L21 L22 · · · L2m
...

...
. . .

...

Lm1 Lm2 · · · Lmm

 = (l̄i j)m×m,

where Lkk = ckLkk, k = 1, 2, · · · ,m, and Lkqk = Lkqk , k = 1, 2, · · · ,m, qk = N− (rk− rk−1). And the matrix
block Lkk belongs to A1 and Lkqk belongs to A3 for each k.

Now, we use the patch disease information to design the feedback controllers ui(t) in the
system (2.3) for individuals in each behavior pattern group to achieve behavior pattern grouped
synchronization. And the controllers may add to apart of individuals in each behavior pattern group.
We design the ui(t), i ∈ K, k = 1, 2, · · · ,m as following

ui(t) =

{
− cīdiIk(t)ei(t), i = rk−1 + 1, · · · , rk−1 + l,

0, i = rk−1 + l + 1, · · · , rk,
(3.7)
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where cī is the intra-group enhancement factor in the group that i belongs, and di represents the control
strength with di > 0 for i = rk−1 + 1, · · · , rk−1 + l, otherwise di = 0. ei(t) has been denoted in the
expression about φk(t) in subsection 2.1 called the behavior pattern grouped synchronization error for
each individual i in the group k, and yk(t) is the behavior pattern target in the kth behavior pattern group
that satisfies the uncoupled system

ẏk(t) = fk(yk(t)), k = 1, 2, · · · ,m. (3.8)

Then the whole error denotes as e(t) = (eT
1 (t), eT

2 (t), · · · , eT
N(t))T , and eT (t)e(t) =

∑m
k=1

∑
i∈K eT

i (t)ei(t).
According to the behavior pattern error’s definition, we get the patch epidemic-behavior error systems
corresponding to the systems (2.3)

ėi(t) = fk(xi(t)) − fk(yk(t)) −
N∑

j=1

l̄i je j(t) + ui(t),

Ṡ k(t) = µS 0
k − µS k(t) − φk(t)bkIk(t)S k(t) +

m∑
l=1

bklS l(t) −
m∑

l=1

blkS k(t),

İk(t) = φk(t)bkIk(t)S k(t) − µIk(t),

φk(t) = αk

(
1 −

Ik(t)
N2

eT (t)e(t)
1 + eT (t)e(t)

)
, i ∈ K, k = 1, 2, · · · ,m,

(3.9)

in which, from the Lkk ∈ A1 and Lkqk ∈ A3, there are

N∑
j=1

ci jli jx j(t) =
∑
j∈K

ckli j(x j(t) − yk(t) +
∑
j<K

li j(x j(t) − yk(t))

=

N∑
j=1

ci jli je j(t) =

N∑
j=1

l̄i je j(t).

Then the problem about the stability of positive equilibrium for epidemic systems and the behavior
pattern synchronization of the system (2.3) is transferred to the issue about the positive equilibrium
stability and the zeros stability for the error system (3.9).

Therefore, we denote the patch epidemic-behavior cluster synchronization manifold D for patch
epidemic-behavior cluster synchronization error network system (3.9) as shown

D =
{

(S 1(t), I1(t), · · · , S m(t), Im(t), e1(t), · · · , eN(t)) | S k(t) = S ∗k, Ik(t) = I∗k ,

ei(t) = 0, i ∈ K, k = 1, · · · ,m.
}
.

Then, we obtain the following result.

Theorem 2. Assume that the B = (bkl)m×m is irreducible and the positive equilibrium exists for the
epidemic system in (3.9). And assume that the fk ∈ QUAD for each k. If there exists constant θ > 0,
such that(

−ηk

λmax(P)
+ δ(k) +

m − 1
2θ

+
m
N

ĉkαkbk

λmin(P)

)
Erk−rk−1 − Lkk +

θ

2
Lkqk L

T
kqk
− Dk(I∗k − ε) < 0, k = 1, · · · ,m,

(3.10)
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where ĉk represents the kth cofactor of the kth diagonal entry for the Laplacian matrix of
B̂ = (b̂kl)m×m, b̂kl = bklS ∗l , δ(k) = max j{δ

(k)
j } about ∆k = diag{δ(k)

1 , · · · , δ
(k)
n }, and

Dk = diag{ckdrk−1+1, · · · , ckdrk−1+l, 0, · · · , 0}. Then the patch epidemic-behavior cluster synchronization
manifold D is globally asymptotically stable. In other words, patch epidemic-behavior
synchronization network system (2.3) achieve behavior pattern cluster synchronization induced by the
patch disease spreading, as well as the positive equilibrium E∗ for epidemic systems is unique and
globally asymptotically stable.

Proof. Denote the Lyapunov function as

V(t) = V1(t) + V2(t), (3.11)

where

V1(t) =
1
2

m∑
k=1

∑
i∈K

eT
i (t)Pei(t), (3.12)

V2(t) =
1

N2

m∑
k=1

ĉk

(
V (k)

1 (S k(t)) + V (k)
2 (Ik(t))

)
, (3.13)

in which

V (k)
1 (S k(t)) = S k(t) − S ∗k − S ∗k ln

S k(t)
S ∗k

,

V (k)
2 (Ik(t)) = Ik(t) − I∗k − I∗k ln

Ik(t)
I∗k

.

Firstly, take the derivative of V1(t) along the behavior error equation, and obtain

V̇1(t) =

m∑
k=1

∑
i∈K

eT
i (t)Pėi(t)

=

m∑
k=1

∑
i∈K

eT
i (t)P

[
fk(xi(t)) − fk(yk(t))

]
−

m∑
k=1

∑
i∈K

N∑
j=1

eT
i (t)Pl̄i je j(t) −

m∑
k=1

∑
i∈K

eT
i (t)PcīdiIk(t)ei(t).

(3.14)

Next, handling three terms in the above equation.
From the QUAD class of function, we get

m∑
k=1

∑
i∈K

eT
i (t)P

[
fk(xi(t)) − fk(yk(t))

]
≤

m∑
k=1

∑
i∈K

(−ηk)eT
i (t)ei(t) +

m∑
k=1

∑
i∈K

eT
i (t)P∆kei(t)

≤

m∑
k=1

∑
i∈K

−ηk

λmax(P)
eT

i (t)Pei(t) +

m∑
k=1

∑
i∈K

eT
i (t)P∆kei(t)
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≤

m∑
k=1

n∑
j=1

p j(ẽ
(k)
j (t))T

(
−ηk

λmax(P)
+ δ(k)

)
ẽ(k)

j (t), (3.15)

where ∆k = diag{δ(k)
1 , · · · , δ

(k)
n }, δ

(k) = max j{δ
(k)
j },

ẽ(k)
j (t) =

(
erk−1+1, j(t), erk−1+2, j(t), · · · , erk , j(t)

)T
∈ Rrk−rk−1 ,

ẽ(q)
j (t) =

(
e1, j(t), · · · , erk−1, j(t), erk+1, j(t), · · · , eN, j(t)

)T
∈ RN−(rk−rk−1),

that also be used in later analysis.
For the second term, we have

−

m∑
k=1

∑
i∈K

N∑
j=1

eT
i (t)Pl̄i je j(t)

=

m∑
k=1

[
−
∑
i∈K

∑
j∈K

eT
i (t)Pl̄i je j(t) −

∑
i∈K

∑
j<K

eT
i (t)Pl̄i je j(t)

]
=

m∑
k=1

n∑
l=1

pl

[∑
i∈K

∑
j∈K

eil l̄i je jl −
∑
i∈K

∑
j<K

eil l̄i je jl

]
=

m∑
k=1

n∑
l=1

pl

[
− (ẽ(k)

l (t))T Lkkẽ
(k)
l (t) − (ẽ(k)

l (t))T Lkqk ẽ
(q)
l (t)

]
. (3.16)

According to Lemma 1, we get

−(ẽ(k)
l (t))T Lkqk ẽ

(q)
l (t) ≤

θ

2
(ẽ(k)

l (t))T Lkqk L
T
kqk

ẽ(k)
l (t) +

1
2θ

(ẽ(q)
l (t))T ẽ(q)

l (t). (3.17)

On the other hand,

m∑
k=1

(ẽ(q)
l (t))T ẽ(q)

l (t) =

m∑
k=1

[ m∑
k=1

(ẽ(k)
l (t))T ẽ(k)

l (t) − (ẽ(k)
l (t))T ẽ(k)

l (t)
]

= (m − 1)
m∑

k=1

(ẽ(k)
l (t))T ẽ(k)

l (t). (3.18)

Therefore, substitute the Eqs (3.17) and (3.18) into Eq (3.16), we obtain

−

m∑
k=1

∑
i∈K

N∑
j=1

eT
i (t)Pl̄i je j(t) ≤

m∑
k=1

n∑
j=1

p j(ẽ
(k)
j (t))T

(
− Lkk +

θ

2
Lkqk L

T
kqk

+
m − 1

2θ
Erk−rk−1

)
ẽ(k)

j (t), (3.19)

where Erk−rk−1 is identity matrix with dimension rk − rk−1.

From the assumption that there exists positive equilibrium for epidemic systems, then there holds
limitation

lim
t→∞
|Ik(t) − I∗k | = 0,
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which means that for any ε > 0 there is t0 > 0, when t > t0 there holds

−ε < Ik(t) − I∗k < ε,

e.g.,

I∗k − ε < Ik(t) < I∗k + ε.

So there are

−

m∑
k=1

∑
i∈K

eT
i (t)PcīdiIk(t)ei(t) ≤ −

m∑
k=1

∑
i∈K

eT
i (t)Pcīdi(I∗k − ε)ei(t)

= −

m∑
k=1

n∑
j=1

p j(ẽ
(k)
j (t))T Dk(I∗k − ε)ẽ(k)

j (t), (3.20)

where

Dk =



ckdrk−1+1
. . .

ckdrk−1+l

0
. . .

0


, k = 1, 2, · · · ,m.

In conclusion, substitute the Eqs (3.15), (3.19) and (3.20) into the Eq (3.14), we obtain

V̇1(t) ≤
m∑

k=1

n∑
j=1

p j(ẽ
(k)
j (t))T

[(
−ηk

λmax(P)
+ δ(k) +

m − 1
2θ

)
Erk−rk−1 − Lkk +

θ

2
Lkqk L

T
kqk
− Dk(I∗k − ε)

]
ẽ(k)

j (t).

(3.21)

Then taking the derivative of the V (k)
1 (S k(t)) and V (k)

2 (Ik(t)) along with the epidemic model in
system (2.3), respectively, and according to Eq (3.6) that positive equilibrium satisfies, we obtain

V̇ (k)
1 (S k(t)) =

(
1 −

S ∗k
S k(t)

)[
µS 0

k − µS k(t) − φk(t)bkIk(t)S k(t) +

m∑
l=1

bklS l(t) −
m∑

l=1

blkS k(t)
]

=
(

S k(t) − S ∗k
)[
µ
( S 0

k

S k(t)
−

S 0
k

S ∗k

)
− φk(t)bkIk(t) + αkbkI∗k +

m∑
l=1

bkl

( S l(t)
S k(t)

−
S ∗l
S ∗k

)]
= µS 0

k

(
2 −

S k(t)
S ∗k
−

S ∗k
S k(t)

)
− αkbk(Ik(t) − I∗k )(S k(t) − S ∗k)

+ αk
Ik(t)
N2

eT (t)e(t)
1 + eT (t)e(t)

bkIk(t)(S k(t) − S ∗k) +

m∑
l=1

bkl

(
S l(t) −

S k(t)S ∗l
S ∗k

−
S ∗kS l(t)
S k(t)

+ S ∗l
)
,

(3.22)
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V̇ (k)
2 (Ik(t)) =

(
1 −

I∗k
Ik(t)

)[
φk(t)bkIk(t)S k(t) − µIk(t)

]
=
(

Ik(t) − I∗k
)[
αkbk(S k(t) − S ∗k) − αk

Ik(t)
N2

eT (t)e(t)
1 + eT (t)e(t)

bkS k(t)
]

= αkbk(Ik(t) − I∗k )(S k(t) − S ∗k) − αk
Ik(t)
N2

eT (t)e(t)
1 + eT (t)e(t)

bkS k(t)(Ik(t) − I∗k ). (3.23)

In addition, there exist the fact that

2 −
S k(t)
S ∗k
−

S ∗k
S k(t)

≤ 0,

and the equality holds if and only if S k(t) = S ∗k.
Then, from the expression of V2(t), there are

V̇2(t) =
1

N2

m∑
k=1

ĉk

[
V̇ (k)

1 (S k(t)) + V̇ (k)
2 (Ik(t))

]
≤

1
N2

m∑
k=1

ĉk

m∑
l=1

bkl

[S l(t)
S ∗l
−

S k(t)
S ∗k
−

S ∗kS l(t)
S k(t)S ∗l

+ 1
]

+
1

N2

m∑
k=1

ĉkαk
Ik(t)
N2

eT (t)e(t)
1 + eT (t)e(t)

bkS k(t)I∗k

≤
1

N2

m∑
k=1

ĉk

m∑
l=1

bkl

[S l(t)
S ∗l
−

S k(t)
S ∗k
−

S ∗kS l(t)
S k(t)S ∗l

+ 1
]

+

m∑
k=1

n∑
j=1

p j(ẽ
(k)
j (t))T m

N
ĉkαkbk

λmin(P)
ẽ(k)

j (t). (3.24)

Be similar to Theorem 1, let b̂kl = bklS ∗l , and ĉk represents the kth cofactor of the kth diagonal entry
for the Laplacian matrix of B̂ = (b̂kl)m×m.

Then denote

F̂kl(S l(t), S ∗l , S k(t), S ∗k) =
S l(t)
S ∗l
−

S k(t)
S ∗k
−

S ∗kS l(t)
S k(t)S ∗l

+ 1.

We get

F̂kl(S l(t), S ∗l , S k(t), S ∗k) ≤
(
−

S k(t)
S ∗k

+ ln
S k(t)
S ∗k

)
−

(
−

S l(t)
S ∗l

+ ln
S l(t)
S ∗l

)
, F̂k(S k(t), S ∗k) − F̂l(S l(t), S ∗l ),

where

F̂k(S k(t), S ∗k) = −
S k(t)
S ∗k

+ ln
S k(t)
S ∗k

.

On the other hand,∑
k,l

F̂kl(S l(t), S ∗l , S k(t), S ∗k) ≤
∑

k,l

[
F̂k(S k(t), S ∗k) − F̂l(S l(t), S ∗l )

]
= 0.
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Thus, according to the result in [39], one obtain

m∑
k=1

ĉk

m∑
l=1

b̂klF̂kl(S l(t), S ∗l , S k(t), S ∗k) ≤ 0.

From above, we get

V̇2(t) ≤
m∑

k=1

n∑
j=1

p j(ẽ
(k)
j (t))T m

N
ĉkαkbk

λmin(P)
ẽ(k)

j (t). (3.25)

In conclusion, combined Eqs (3.14) and (3.25) as well as the V(t)’s denote in Eq (3.11), there are

V̇(t) = V̇1(t) + V̇2(t)

≤

m∑
k=1

n∑
j=1

p j(ẽ
(k)
j (t))T

[(
−ηk

λmax(P)
+ δ(k) +

m − 1
2θ

+
m
N

ĉkαkbk

λmin(P)

)
Erk−rk−1 − Lkk

+
θ

2
Lkqk L

T
kqk
− Dk(I∗k − ε)

]
ẽ(k)

j (t).

Then, we obtain when Eq (3.10) holds, the V̇(t) < 0. Therefore, from the Lyapunov stability
theorem, there are results that when positive equilibrium exists for the epidemic-behavior
synchronization model (2.3), it is unique and globally asymptotically stable, meanwhile behavior
systems achieve the behavior pattern cluster synchronization induced by patch diseases. In other
works, under the conditions of positive equilibrium existence for epidemic systems, combined with
conditions (3.10), then the patch epidemic-behavior cluster synchronization manifold D for the patch
epidemic-behavior synchronization network is globally asymptotically stable. Then the theorem is
completed. �

To achieve the conditions (3.10) in Theorem 2, we can carry out from the following steps.

Step 1. Firstly, we obtain the largest eigenvalue of the
(
−ηk

λmax(P) +δ(k) + m−1
2θ + m

N
ĉkαkbk
λmin(P)

)
Erk−rk−1 + θ

2 Lkqk L
T
kqk
,

denote as ρk.

Step 2. Then, we also get the least eigenvalue of Lkk +Dk(I∗k−ε) when given the strength of controlling,
denote as wk, where

Dk = diag{drk−1+1, · · · , drk−1+l, 0, · · · , 0}.

Step 3. Naturally, in order to making condition (3.10) be satisfied, it is needed to select the appropriate
ck, which implies that the ck is just selected larger than ρk

wk
, i.e., ck >

ρk
wk
.

From the steps we conclude that, on the one hand, the internal group enhance factors ck are working
as an important role in synchronizing the same group individuals, in other words, behavior cluster
synchronization and stability of positive equilibrium positive can achieve needed to select the ck as
large as possible. Which means that we can strengthen subgroup connection to realize the desired
target. On the other hand, it is unrealistic to choose any large ck due to the limited resource, therefore
this procedure also provides a feasible method to select the advisable ck working among the internal
group individuals.
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Remark 4. Notice that from the QUAD class of function in the Definition 3 the conditions (3.10) can
also be represented as( ξk

λmin(P)
+

m − 1
2θ

+
m
N

ĉkαkbk

λmin(P)

)
Erk−rk−1 − Lkk +

θ

2
Lkqk L

T
kqk
− Dk(I∗k − ε) < 0, k = 1, · · · ,m,

which is convenient to compute in the numerical simulation. Furthermore, it is obvious that
conditions (3.10) are relative to the relation sub-group network’s structure, susceptible population’s
dispersal rates, and the scale of patchy epidemic diseases. In other words, in view of cluster
conditions (3.10), the behavior pattern cluster synchronization is codetermined by topological
structure of individuals’ relation network and the migration for the susceptible population as well as
the appropriate external controlling based on the epidemic disease spreading.

Remark 5. In conditions (3.10), Lkk is inner-group relation network structure containing relation
enhance factor, that is to say the relation sub-networks among nodes in the same group are weighted
networks. Thus, combined with appropriate the strength of controlling, it is easily to achieve
conditions (3.10). What’s more, from the designed control strategy shown in Eq (3.7), the external
control can work well only when epidemic disease spreading, thus, conditions (3.10) will be satisfied
when giving appropriate strong of control.

4. Numerical simulations

In this section, we give the numerical simulation to demonstrate the effectiveness of our results
obtained in the previous sections.

As for the local dynamics in the behavior system, we consider the unified system as shown in the
early work [40] and its generation [41]

ẋ1 = (25τ + 10)(x2 − x1),
ẋ2 = (28 − 35τ)x1 − x1x3 + (29τ − 1)x2,

ẋ3 = x1x2 −
8 + τ

3
x3.

From the reference [40], we know that for all τ ∈ [0, 1], the unified systems are all chaotic. And for
0 ≤ τ < 1

29 , there is the positive invariant set for the above system shown in [40],
x2

1 + x2
2 + (x3 − 28 + 35τ)2 ≤ M2,

x2
1 ≤ M2,

M =
(28 − 35τ)(8 + τ)

2
√

3(5 + 88τ)(1 − 29τ)
.

Then, 
|x1| ≤ M,

|x2| ≤ M,

|x3| ≤ M + 28 − 35τ.
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We denote that f1(x, τ) = (25τ + 10)(x2 − x1), f2(x, τ) = (28 − 35τ)x1 − x1x3 − (29τ − 1)x2, f3(x, τ) =

x1x2 −
8+τ

3 , then f (x, τ) = ( f1(x, τ), f2(x, τ), f3(x, τ))T . Let e = x − y, when p2 = p3, then there are

eT P[ f (x, τ) − f (y, τ)] = e1 p1(25τ + 10)(e2 − e1) + e2 p2[(28 − 35τ)e1 + (29τ − 1)e2

− (x1x3 − y1y3)] + e3 p3(x1x2 − y1y2 −
8 + τ

3
e3)

≤ ξ(τ)
1 e2

1 + ξ(τ)
2 e2

2 + ξ(τ)
3 e2

3,

where ξ(τ)
1 = −(25τ + 10)p1 + ε (25τ+10)p1+(M+56−70τ)p2

2 + v p2 M
2 , ξ(τ)

2 = (29τ − 1)p2 +
(25τ+10)p1+(M+56−70τ)p2

2ε ,

ξ(τ)
3 = −8+τ

3 p2 +
p2 M
2v .

In this numeric simulation, we set τ = 0, 0.01, 0.03 to get three chaotic systems as the local
dynamical behavior in the behavior dynamic systems. And from the QUAD class of function, we just
need to obtain the positive value ξk for k = 1, 2, 3. Thus, we set P = diag{0.099, 0.1, 0.1} and ε = 1,
v = 1. Then we get these values

ξ(0)
1 = 5.1923

ξ(0)
2 = 4.6454

ξ(0)
3 = 1.1792

,


ξ(0.01)

1 = 5.3821

ξ(0.01)
2 = 4.7705

ξ(0.01)
3 = 1.2975

,


ξ(0.03)

1 = 8.4266

ξ(0.03)
2 = 6.3532

ξ(0.03)
3 = 2.8666

.

Then we let ξ1 = maxk=1,2,3{ξ
(0)
k } = 5.1923, ξ2 = maxk=1,2,3{ξ

(0.01)
k } = 5.3821, ξ3 = maxk=1,2,3{ξ

(0.03)
k } =

8.4266.
Therefore, we obtain the following relationship for every local behavior dynamics when k = 1, 2, 3

corresponding to the Definition 3

(x(t) − y(t))T P[ f1(x(t)) − f1(y(t))] ≤ ξ1(x(t) − y(t))T (x(t) − y(t)),
(x(t) − y(t))T P[ f2(x(t)) − f2(y(t))] ≤ ξ2(x(t) − y(t))T (x(t) − y(t)),
(x(t) − y(t))T P[ f3(x(t)) − f3(y(t))] ≤ ξ3(x(t) − y(t))T (x(t) − y(t)),

for any x(t), y(t) ∈ Rn.

We consider 18 nodes network and each subgroup contains six nodes, and the local behavior
dynamics for each group are shown in above, then we denote the relationship network structure’s
Laplacian matrix corresponding to the relationship network is defined as

L =

 L11 L12 L13

L21 L22 L23

L31 L32 L33

 ,

where

L11 =



3 −1 −1 −1 0 0
−1 4 −1 −1 −1 0
−1 −1 5 −1 −1 −1
−1 −1 −1 5 −1 −1
0 −1 −1 −1 4 −1
0 0 −1 −1 −1 3

 , L22 =



5 −1 −1 −1 −1 −1
−1 4 −1 −1 −1 0
−1 −1 3 −1 0 0
−1 −1 −1 5 −1 −1
−1 −1 0 −1 4 −1
−1 0 0 −1 −1 3

 ,
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L33 =



5 −1 −1 −1 −1 −1
−1 4 −1 −1 −1 0
−1 −1 4 −1 −1 0
−1 −1 −1 4 0 −1
−1 −1 −1 0 4 −1
−1 0 0 −1 −1 3

 , L12 = L21 =



0 1 −1 0 0 0
1 −1 −1 1 −1 1
−1 −1 1 1 0 0
0 1 1 −1 −1 0
0 −1 0 −1 1 1
0 1 0 0 1 −2

 ,

L13 = L31 =



0 1 −1 0 0 0
1 −1 −1 1 −1 1
−1 −1 2 1 −1 0
0 1 1 −2 0 0
0 −1 −1 0 1 1
0 1 0 0 1 −2

 , L23 = L32 =



−1 1 −1 1 −1 1
1 0 −1 0 0 0
−1 −1 1 1 −1 1
1 0 1 −2 0 0
−1 0 −1 0 2 0
1 0 1 0 0 −2

 .

Then we select the intra-group enhancement factors c1 = 32, c2 = 35, c3 = 50.
Then, we select the parameters in the epidemic system, and let the natural death rate as µ = 0.5, the

awareness coefficients for each group denote as α1 = 0.2, α2 = 0.15, α3 = 0.2, and the infective rates
b1 = 0.06, b2 = 0.05, b3 = 0.06. And the dispersal matrix for the susceptible individuals denote as

B =

 0 0.01 0.04
0.05 0 0.08

0 0.01 0

 .

Select S 0
1 = 5, S 0

2 = 7, S 0
3 = 6. Then we can verify the condition (H1) holds as

S 0
1 >

3∑
j,1

b1 j
S 0

j

µ +
∑3

j,1 b j1
, S 0

2 >

3∑
j,2

b2 j
S 0

j

µ +
∑3

j,2 b j2
, S 0

3 >

3∑
j,3

b3 j
S 0

j

µ +
∑3

j,3 b j3
.

Then, the disease-free equilibrium can be derived as

E0 = (5.0518, 0, 7.9807, 0, 4.9674, 0),

so that one can get

R̄0
1 =

S̄ 0
1α1b1

µ
= 0.1212, R̄0

2 =
S̄ 0

2α2b2

µ
= 0.1197, R̄0

3 =
S̄ 0

3α3b3

µ
= 0.1192,

thus they are all less than 1, so E0 is globally asymptotically stable from the Theorem 1. When select
any 4 different initial values for the epidemic systems, then the state graphs for the epidemic system
under the different initial values are shown in Figure 2, in which we use different colors to reveal the
different state variables for susceptible and infective individuals, that is to say, the same color curves
represent the same state variable curves with different initial values. In Figure 2, the infective states
curves all trend to the zeros states and the susceptible states curve trend to positive stable states, which
means that the states of susceptible and the infective all trend to the stable one, i.e., the disease-free
equilibrium E0. Meanwhile, the behavior states are not synchronization under this time due to the
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Figure 2. Any 4 different initial values for the epidemic system under disease-free
equilibrium.

controllers unworked ultimately, and the errors between states and target are shown in Figure 3, in
which neither the intra-group behaviors nor between-group behaviors trend to synchronization, i.e.,
the corresponding errors curves toward nonzero, where the intra-group errors and the between-group

errors are defined as Ek =
√∑

i, j∈K ‖xi(t) − x j(t)‖2, k = 1, 2, 3, E12 =

√∑6
i=1

∑12
j=7 ‖xi(t) − x j(t)‖2,

E13 =

√∑6
i=1

∑18
j=13 ‖xi(t) − x j(t)‖2, E23 =

√∑12
i=7

∑18
j=13 ‖xi(t) − x j(t)‖2, respectively.

When we reset the αk, µ and bk, k = 1, 2, 3, such as α1 = 0.2, α2 = 0.1, α3 = 0.15, µ = 0.4, b1 = 0.6,
b2 = 0.8, b3 = 0.7. In this situation, the (H1) also holds. And we can compute that

R0
1 = 1.4309, R0

2 = 1.5445, R0
3 = 1.1832.

which means that R0
k > 1 for k = 1, 2, 3. Then from the Theorem 1, one can claim that the disease-free

equilibrium is unstable. Further, one obtain that R̃0
k =

S 0
kαkbk

µ+
∑

j,k b jk
> 1, k = 1, 2, 3, where

R̃0
1 = 1.3333, R̃0

2 = 1.3333, R̃0
3 = 1.2115.

Therefore, according to the Theorem 1, there are positive equilibrium, and E∗ = (S ∗1, I
∗
1, S

∗
2, I
∗
2, S

∗
3, I
∗
3) =

(3.3333, 1.756, 5, 2.9286, 3.8095, 1.1726).
Select the θ = 2, and only added controllers to first three nodes in each subgroup, and the control

strength for each group’s nodes are selected as

D1 = diag{25.1, 25.1, 25.1, 0, 0, 0},
D2 = diag{11, 11, 11, 0, 0, 0},
D3 = diag{15.2, 15.2, 15.2, 0, 0, 0},

In addition, the cofactor can also be computed as ĉ1 = 0.0083, ĉ2 = 0.0101, ĉ3 = 0.0871.
Then, according to the Remark 4, the conditions in the Theorem 2 can be verified easily, and when

k = 1, 2, 3, there are( ξ1

λmin(P)
+

1
2

+
1
6

ĉ1α1b1

λmin(P)

)
E6×6 − L11 + L12LT

12 − D1(I∗1 − ε) < 0,
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(a) (b)

(c) (d)

Figure 3. Total errors for within-group as well as the between-group under infective
individual trend to nonzero.

Figure 4. Four different initial values for the epidemic system under positive equilibrium.
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λmin(P)
+

1
2

+
1
6

ĉ1α1b1

λmin(P)

)
E6×6 − L11 + L13LT

13 − D1(I∗1 − ε) < 0,( ξ2

λmin(P)
+

1
2

+
1
6

ĉ2α2b2

λmin(P)

)
E6×6 − L22 + L21LT

21 − D2(I∗2 − ε) < 0,( ξ2

λmin(P)
+

1
2

+
1
6

ĉ2α2b2

λmin(P)

)
E6×6 − L22 + L23LT

23 − D2(I∗2 − ε) < 0,( ξ3

λmin(P)
+

1
2

+
1
6

ĉ3α3b3

λmin(P)

)
E6×6 − L33 + L31LT

31 − D3(I∗3 − ε) < 0,( ξ3

λmin(P)
+

1
2

+
1
6

ĉ3α3b3

λmin(P)

)
E6×6 − L33 + L32LT

32 − D3(I∗3 − ε) < 0.

With these parameters, the epidemic states’ curves can be shown as in Figure 4, meanwhile, the
behavior errors curves are also shown in Figure 5. In this situation, we also use 4 different initial
values for the epidemic systems as given in the case of disease-free, and as shown in Figure 4, one can
see that the susceptible states’ curves and infective states’ curves under different initial values all
trend to the same stable nonzero constant states with the time goes on, ultimately. In other words, the
positive equilibrium is globally asymptotically stable. As well as the behavior states errors in Figure 5
can achieve the desired states, which means that the behavior errors in the same subgroup achieve the
behavior synchronization, such as the first subfigure in Figure 5 with each subgroup’s behavior errors
states curve trending to zeros, ultimately, and the other three subfigures representing the errors among
different subgroup do not trend to zeros. It is to say that the nodes intra-group achieve behavior
synchronization, while the between’s ones are not.

Besides, the simple comparison about the effectiveness of behavior awareness to epidemic states
is also shown. Under the situation of positive equilibrium existing, and the parameters are same as in
corresponding cases, we compare three cases about the infected term in each patch, such as bkS k(t)Ik(t),
αkbkS k(t)Ik(t) and φk(t)bkS k(t)Ik(t), for k = 1, 2, 3, respectively. And plotting their states’ curves as
shown in Figure 6. There are different marked states’ curves corresponding to represent distinct cases,
and one can see the stable infected states with cofactor α and φ before incidence are lower than the
without cases, i.e., the cofactor is 1. And comparing the effect among α and φ, we see that their curves
are almost the same, but the susceptible curves with φ is upper than the α curves and the infected curves
with φ are lower than the one with α. Which means that there exists tiny difference in effect between α
and φ that can not ignore. Those two cases trend to the same stable states, ultimately. This also shows
that the behavior of individuals can impact the process of epidemic.
Remark 6. Notice that from the range of αk and φk, we get
bkS k(t)Ik(t) > αkbkS k(t)Ik(t) > φk(t)bkS k(t)Ik(t), which means the numbers of infected individuals in
the unit time under the later two cases are less than the first case. From Figure 6, and under the
influence about parameters αk and φk, the infected number level are becoming lower. Furthermore,
when errors of behavior trend to zero, then φk trend to αk, so, their ultimate states will be same, while
the process may not the same due to the φk contains behavior pattern.
Remark 7. To be notice that in our simulation part, we just list some parameters values in systems to
demonstrate our main results and it is not based on the practical data. In the future work, there will be a
trying direction to introduce the real epidemic disease data to simulation and even forecast the disease
trend, such as the COVID-19 spread. And structure about the real relationship network is a vast work
that will be our aim in the next work.
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(a) (b)

(c) (d)

Figure 5. Total errors for within-group as well as the between-group under positive
equilibrium in the epidemic systems.

Figure 6. Simple numerical comparison about the effect of three different cofactor incidence
to the epidemic states, where S = S 1 + S 2 + S 3, I = I1 + I2 + I3, and α = (α1, α2, α3),
φ = (φ1, φ2, φ3).
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5. Conclusions

In this paper, we investigate the problem about behavior pattern cluster synchronization aroused by
patchy epidemic transmission based on external feedback pinning control strategy, in which the
coupled models combined with behavior synchronization systems and patchy dispersal epidemic
systems with constant population are constructed, where so called contact willing functions are
introduced in the epidemic systems and the dispersal is only concerned among the susceptible. Firstly,
in view of the constant population the boundedness is obvious, and the nonnegativity is also discussed
by the qualitative analysis for epidemic systems. And then we concern the stability of disease-free
equilibrium for the patchy epidemic systems and obtain the patchy related conditions that guarantee
globally asymptotically stable by using the Lyapunov analysis method. As well as, conditions that
insure the existence of positive equilibrium for epidemic systems are also derived. Next, behavior
pattern cluster synchronization aroused by patchy epidemic disease under the case of disease
spreading, as well as the global stability of positive equilibrium for epidemic systems are addressed at
the same time by means of Lyapunov function and the Lyapunov stable theory, meanwhile, sufficient
criteria, related to the structure of inner-group relation, dispersal matrix of the susceptible and scale of
diseases, making individuals to achieve behavior pattern cluster synchronization, are derived. The
simulation example is exhibited to demonstrate the effectiveness of the main results obtained here.
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