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Abstract: Location-based Service has become the fastest growing activity related service that people 

use in their daily life due to the boom of location-aware mobile devices. In edge computing along 

with the benefits brought by LBS, privacy preservation becomes a more challenging issue because of 

the nature of the paradigm, in which peers may cooperate with each other to collect and analyze 

user’s location data. To avoid potential information leakage and usage, user’s exact location should 

not be exposed to the edge node. In this paper, we propose a stochastic location privacy protection 

scheme for edge computing, in which the geographical distribution of surrounding users is obtained 

by analyzing proposed long-term density map and short-term density map. The cloaking scheme 

transfers user’s exact location to a cloaked location to satisfy predefined probability of having 

k-users in that area. Our scheme does not reveal any exact location information, thus it is practicable 

for the real scenario when edge computing is honest but curious. Extensive experimental results are 

conducted to verify the efficiency and effectiveness of our method. By varying the privacy protection 

requirements, the corresponding performance have been examined and discussed. 
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1. Introduction  

Due to the development and rapid expansions of the use of big data, IoT and 5G networks, 

massive data is generated by the edge equipment of the network. New challenges arise with respect 

to highly responsive cloud services delivery for mobile computing, scalabi lity and privacy-policy 
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enforcement, and the ability to mask transient cloud outages [1].  

Edge computing is a novel promising computing model that breaks the frontier of computing 

applications, data, and services away from the centralized nodes/Cloud to multitude of end-user or 

near-user edge terminal devices coordinates by the edge nodes [2]. It enables new applications and 

services such as VR head tracked systems requiring less than 16ms to achieve perceptual stability [1]. 

The data storing, analyzing, and processing all occur near the source of the data. 

The natural features and benefits of edge computing like heterogeneous distributed interactive 

architecture and massive data processing make the Cloud-to-User security and privacy protection 

methodologies no longer suitable/ tailor for edge computing. By serving as the first point of contact, 

edge nodes should help the users to enforce the privacy policies prior to release of the data to the 

cloud [1]. Besides, as some of the end devices are resources constrained, complex security 

algorithms cannot be executed or a large amount of data cannot be stored there [3]. 

Among all of the pervasive mobile and cloud-based services, location-based service is one of 

the most suitable services for the decentralized deployment of edge computing scenario. The 

burgeoning edge computing provides great opportunity to enhance the traditional location-based 

service because of its distinct characteristics like low latency, proximity and location awareness [4]. 

Since location-based service is provided inside of the sub-area of edge computing community 

independently, data is collected and processed without uploading to the cloud. Although deploying 

location-based service on edge node could avoid the location privacy threat from the central cloud 

provider, the concern on the location privacy still exists in the location-based service for the edge 

computing scenario. Location privacy threat arises during the procedure of the fingerprint 

localization, and the previous studies on location privacy are ineffective because of different threat 

models and information semantic. 

Based on the above observation, in this paper, we propose a location privacy preservation 

scheme for edge computing. We respect the fact that users may use one of the existing location 

cloaking techniques. Our solution is designed to be compatible with existing techniques by forming 

the users’ location distribution retrieved from the heterogeneous location information of all users. 

Based on the location distribution, we provide location cloaking techniques for the unprotected user 

by satisfying the predefined probability of having k-users in the cloaked area. We focus on the 

honest-but-curious (HBC, also known as semi-honest) adversary. According to [5], the HBC 

adversary is a legitimate participant in a communication protocol who will not deviate from the 

defined protocol but will attempt to learn all possible information from legitimately received 

messages. In our scenario, HBC edge node will be honest in performing the location based services 

but will be interested in learning all possible locations. Our scheme could provide privacy 

preservation on edge node and does not require any participates from the trusted third party. 

Meanwhile, our solution also prevent the edge node from knowing exact user location. 

The rest of this paper is organized as follows. Section 2 briefly reviews the related work. 

Section 3 describes the proposed SLPP architecture with its assumptions. We describe the design 

details of our proposed stochastic scheme in Section 4. Section 5 provides theoretical analyses and 

experimental evaluations. Finally, conclusions are drawn in section 6. 

2. Related work 

Plenty of researches focus on how to design privacy protection models or algorithms for 
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location-based service in fog or edge computing scenarios. The works are generally divided in three 

categories, which are location anonymization, obfuscation method and cryptography techniques. 

The most well-known anonymization method is k-anonymity, which is to combine users exact 

location with the rest k-1 users’ locations and send all k users’ location back to the server. The 

authors in [6] introduced an anonymous method by adding fake dummy locations to protect 

location privacy. Their method requires user’s exact locations, which may result in the location 

privacy disclosure. Ma et al. [7] achieved a k degree anonymity by modifying the vertex and edge 

in social networks. In [6–8], Grunwald et al. proposed an adaptive k-anonymity algorithm to meet 

the user’s anonymity constraints, by adjusting the resolution of location information based on the  

time and space dimensions.  

The popularity of applying k-anonymity scheme for location privacy is mainly because of 

simplicity [9]. A large number of works discuss about how to increase the k-anonymity efficiency 

and reduce the query obfuscation cost [10,11–13], by extending the obfuscation method to protect 

trajectory privacy [14], or adapting Gruteser et al.’s architecture to other domains such as VANET [15]. 

The idea of obfuscation is to replace user’s actual location by an imprecise location. A cloaking 

algorithm was proposed by Ghinita et al., in [16], Hilbert space filling curve ordering was used to  

sort and group user’s location. In [17], Xu et al. designed an algorithm based on user’s proximity 

information without knowing their real locations. Whereas they did not consider the case when user 

sends the area continuously, the overlapping regions may result in privacy leakage. Ma et al.  [18] 

solved the above issue by proposing an algorithm to avoid overlapping circle attack by changing 

the confidence level to a fixed value. Yuan T. et al. [19] also solved the overlapping problem by 

proposing a location privacy-protection method to preserver user’s trajectory privacy. They appl y 

mobility Markov chain to analyze user’s moving behaviors. The proposed cloaking algorithm 

enlarges small area in order to meet user’s privacy preferences. 

Though cryptograph can be used for protecting location privacy by not sending location to 

LBS, the current index methods cannot be used. In [20], T. Wang et al. proposed a trajectory 

privacy preserving scheme on a Fog structure for cloud-based location service. They applied public 

key cryptography to encrypt the data to ensure data security. The encrypted data is divided into 

separate parts, in which partial data is stored on the fog server for the physical protection, while the  

other part will be uploaded to the LBS server. Although their method prevent the attacks from 

restoring the raw data, data utility and quality of service are reduced as incomplete information 

provided to LBS. 

There are other privacy preserving methods which are used to protect user’s privacy while 

publishing their data, i.e. differential privacy [21,22] and t-closeness [23]. The user’s data is stored 

in a database, apply the above mentioned methods before sharing. After the data is published, it is 

then analyzed for different applications. 

3. System architecture and assumption 

In this section, we present and describe the system architecture of the proposed SLPP 

scheme for edge computing first. Then we discuss the assumption and compare it with the  

existing works. 
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3.1. System architecture 

Figure 1 shows the system architecture of the proposed SLPP scheme. We define four roles in 

our system including mobile end users, location-based service providers (LSPs), third party location 

protectors and edge node. 

 

Figure 1. The proposed SLPP architecture. 

Mobile End Users: Mobile end users along with their mobile devices continuously produce exact 

location information through GPS. They can provide their exact location to a LSP if they believe the 

LSP is trusted, or apply any location protection approach (on their device or through third party 

location protector), and then send the cloaked location information to LSP. In the scenario of edge 

computing, the protected/unprotected personal location information is stored and processed on the 

edge node since LSPs deploy their services on those nodes. 

LSPs: LSPs are online location-based service provides, e.g., Wechat or Twitter. LSPs stores 

map information and many different types of points and interests (POI) such as restaurants, hospital 

and gas station. Given user location information (exact or cloaked) and type of POI as a query, LSPs  

use their application logic to find answers from their database. In edge computing scenario, LSPs  

can also request real-time population density information from edge node to help them to improve 

their services. 

Third Party Location Protector: Third party location protector is often trusted by the registered 

users. They receive users’ exact location information and apply some particular types of algorithms to 

cloak user location information before sending to LSPs. Having trusted third party is posting an 
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attractive target for attacker since all exact location information is stored on it. In our proposed 

approach, mobile users do not need to use third party location protector. However, we still consider 

them since we respect the fact that third party location protectors exist in market, and our proposed 

scheme will be compatible with them. 

Edge Nodes: Edge nodes refer to the computing infrastructure/resource that exists close to the 

sources of data. LSPs deploy services on edge node to improve the quality of their services, e.g., 

service response time. In our proposed scheme, edge nodes are responsible for providing long-term 

and real-time population density information to LSPs and mobile end users. 

3.2. Assumption 

3.2.1. ( , , )K MAXK P D -User Privacy Profile:  

( , , )K MAXK P D -User Privacy Profile: Mobile end users can define their privacy requirement by 

specifying three parameters. Users are allowed to arbitrarily change the settings of thei r privacy 

profiles at any time. 

i) Anonymization degree, K : This parameter indicates the anonymity level requirement. 

Protection algorithm should calculate a cloaked area containing at least K  different users. 

ii) Probability threshold, KP : This parameter indicates the stochastic privacy requirement. The 

probability of having at least K  different users in the cloaked area should not be less than KP . 

iii) Maximum distance, MAXD : It specifies the maximum tolerable distance from the current 

location to the farthest boundary of cloaked area.  

3.2.2. Information Sharing:  

Information Sharing: Information is shared among different roles. 

i) Real-time population density map, RM : This information is produced by edge nodes and 

shared with users/LSPs. It only contains the cloaked user location information that is permitted to 

share by user and gets updated by edge node in real-time manner. User identification is not allowed 

to be shared along with RM . Edge nodes are not trusted in our scheme, but we assume that they are 

honest when sharing RM . 

ii) Long-term population density map, LM : This information is produced by edge nodes and 

shared with users/LSPs. It contains user appearance frequency information counted by edge nodes 

over a time period L . Edge nodes are not trusted in our scheme, but we assume that they are honest 

when sharing LM . 

iii) Cloaked individual user location information, uA : This information is produced by 

individual user and shared with edge nodes/LSPs. Individual user u takes RM , LM , ( , , )K MAXK P D  

as input and adopt proposed SLPP algorithm to generate uA . Alternatively, some users may rely on 

trusted third party location protector to generate this information. We do not restrict the shape of uA to 

circle, rectangle, or any other specific shape, which means our scheme is compatible with most of the 

existing techniques. All users are assumed to be legal users. 

In our scheme, we do not require any protection over the communication channels since none of 

the sensitive user location information will be shared during the entire process. Such security 

requirement is often observed when using trusted third party for location protection as sensitive data 
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must be transmitted from user to third party. It significantly improves the flexibility of privacy 

protection and makes it adoptable in untrusted network environment. 

4. Stochastic location privacy protection scheme  

In this section, we explain three major algorithms in our scheme. The edge node holds a cache 

in which to store the location information received from the users or the third party location 

protectors. The data are recorded in the format { , }T

uA T , where T

uA  is the cloaked location 

information from any user u  generated at time T. The edge node applies density map generating 

algorithm to produce long-term population density map LM  by using all records over a time interval 

L  and to produce real-time population density map RM  by using the records with 

_ _T latest time stamp  only. Then RM  and LM  is transmitted to any mobile user u  who 

needs to cloak his/her location. Given user current location at ( , )h v , RM , LM  and user privacy 

profile ( , , )K MAXK P D , we propose a stochastic evaluation algorithm to judge whether an arbitrary 

cloaked location A  satisfies user privacy protection requirement or not. Finally, a location cloaking 

algorithm is designed to calculate the cloaked individual user location information uA , which will 

be submitted to edge node as a part of LBS query. 

4.1. Density map generating algorithm 

The long-term population density map LM  is defined as a m n  matrix presenting the 

population density information in a m n  area. The individual items in LM  is denoted by  ijm  

showing the density information at location ( , )i j , where max  i m  and max  j n . Given 

current time stamp C , the input data of long-term population density map contains all records of 

{ , }, ,T

uA T u T C L   . 

For each time slot S , the algorithm first uses all cloaked locations { }S

uA  to generate a 

m n  matrix 
S

LM . We assume that the exact user location in a cloaked area 
S

uA  is completely 

random, in another word, the probability of having an individual user u  is same for all locations 

( , ) | ( , ) S

ui j i j A . Thus, the elements of 
S

LM  is defined as a summation of likelihood values shown 

in the following formula: 

 
1

| ( , )
( )

S S

ij uS
u u

m i j A
SIZE A

   (1) 

where ( )S

uSIZE A  is the size of cloaked area 
S

uA . 
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Then we combine the set of { }S

LM , C L S C     in a weighted cumulative manner to 

calculate 
LM  as follows: 

 
S S

L L

C L S C

M w M
  

   (2) 

where the weight factor Sw  is adopted as an exponential smoothing factor. It guarantees that the 

weight values of past observations are exponentially decreased over time. For example, if we use a 

degradation parameter   between 0 and 1, we can have 1Cw  , 1Cw   ,…, S C Sw   , etc. 

The small the   is, the faster the weight value decreases. 

It can be shown that in Figures 2 and 3, the cloaked location information and the long-term 

population density map. In Figure 2, a set of cloaked locations shaped round or square are randomly 

generated and presented. The lighter the color is, the older the time stamp is. In Figure 3, the final 

long-term population density map LM  for the same area. 

 

Figure 2. A set of cloaked location information generated over time. 

The real-time population density map RM  is defined as a set of cloaked area with current stamp 

C , i.e., { }C

R uM A . Edge node just collects the information, and no further calculation is needed. 

4.2. Stochastic evaluation algorithm 

Our proposed stochastic evaluation algorithm first takes a cloaked location A  and tries to find 

a set of cloaked locations from RM  that have non-empty intersection with A , i.e., finding 

{ },C C

R u uM A A A      . For every cloaked location in, RM   the probability of having one user 

at 
C

uA A  can be calculated by using the following formula: 
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,

,

( at ) | ( , ) , ( , )

ij

i jC C C

u u u

hv

h v

m

P u A A i j A A h v A
m

     




 (3) 

If C C

u uA A A  , then we can get ( at ) 100%C

uP u A A  . It can be demonstrated in Figure 

4 that the probability calculation method using the values of the long-term population density map. 

 

Figure 3. Long-term population density map of the same area as shown in Figure 2. 

Suppose that the size of RM   is n , we use 1 2{ , , ... , }nP P P  to denote the probability values 

derived from Eq (3). A set of Bernoulli random variables 1 2{ , , ... , }nb b b  is defined where 1ib   

means user i  is at 
C

uA A  and 0ib   means user i  is at ( )C C

u uA A A  . Thus, we can get 

( 1)i iP b P   and ( 0) 1i iP b P   . It is reasonable to assume that 1 2{ , , ... , }nb b b  are independent 

and identically distributed since they refer to different individual users.  

Given 1 2{ , , ... , }nb b b , the number of users in A  can be calculated as 
1

n

i

i

b


 , and the 

probability can be calculated as 
1

1

( ) (1 )i i

n
b b

i i

i

P P




 . Finally, we are able to evaluate the probability of 

having K  users at A  with the following formula: 

 
1

11

( users at ) sum of ( ) (1 ) ,i i

n n
b b

i i i

ii

P K A P P b K




      (4) 

Equation (4) is a special case of the multinomial distribution, and is also a special case of the 
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categorical distribution as each trial only two possible outcomes, but the success probabilities of 

trials are different. 

 

Figure 4. Calculating the probability of having one user in C

uA A . 

At the end, the stochastic evaluation algorithm will return a Boolean value denoting whether the 

probability of having more than K  users in A  satisfies privacy protection requirement KP  or 

not. The rule is presented in the following formula: 

 1

1 ( users at )
K

K

i

P i A P true

otherwise false




  


 


 (5) 

5. Simulations 

In this section, the simulations are conducted to verify the efficiency and effectiveness of 

our proposed SLPP algorithm. We first present the simulation settings, followed by the results  

and discussions. 

5.1. Simulation settings 

We conducted all of our simulations with the Java SE Development Kit and Eclipse 

programming environment, running on a PC with Intel Core-i7 2.4 GHz, 16 GB RAM and Microsoft 

Windows 7, 64-bit operating system. We used multivariate normal distributions to generate 5000 

mobile users’ locations with random   and   values in an area of 1000  1000. The time stamps 

of users’ locations were evenly distributed over 100 continuous time slots. Various parameter have 

been used in our simulations including 5 10K  , 50% 95%KP   and 95%  . 
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5.2. Size of cloaked location 

We computed the average size of cloaked location with K  and KP  value varied. In LBS 

scenario, the size of cloaked location is often considered as the major indicator of performance as it 

greatly affects the quality of LBS. A large cloaked location can protect user privacy better, but also 

makes the contents of LBS less accurate. Thus, most of the privacy protection scheme including our 

one tried to minimize the size of cloaked location while satisfying user privacy requirement.  

 

Figure 5. Average number of users vs. size of cloaked location. 

 

Figure 6. Value of K  versus size of cloaked location. 

5.2.1. Average number of users vs. size of cloaked location 

We first examined performance of SLPP in the areas with different population density. A 

relatively strict privacy requirement has been adopted in this simulation, i.e., 8K   and 90%KP  . 
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The results are shown in Figure 5. We compare our results with the method proposed in [24], which 

can always find the optimal cloaked area by using exact location information. When the cloaking 

has been done in an area with high population density, SLPP can provide near-optimal solution 

without using exact location. In many of the individual records, the size of cloaked location from 

SLPP is even smaller since only 90% of having at least K  users is required. With the population 

density decreased, we can observe that the performance of SLPP drops gradually. However, since  

the size of cloaked area increases dramatically, the difference between SLPP and optimal solution 

is not significant. 

 

Figure 7. Value of KP  versus size of cloaked location. 

5.2.2. Value of K versus size of cloaked location 

In this simulation, we varied value of K  with 90%KP   in a 100  100 area and average 50 

users. The results shown in Figure 6 tell that the results of SLPP approach to the optimal solution 

when the value K  is increased. The reason is that the users are not evenly distributed in the whole 

area. With larger K  value, the size of cloaked location definitely grows up, which results in a better 

opportunity to cover an area with higher population density. From previous results we know that 

SLPP can perform well in such area. 

5.2.3. Value of KP  versus size of cloaked location 

In this simulation, we varied value of KP  with 8K   in a 100  100 area and average 50 

users. As we can see from Figure 7, the results of SLPP can reach optimal level if KP  is 50%. The 

reason is that covering half of a cloaked location can provide approximately 50% of chance to 

include one user. With larger KP  value, the size of cloaked location in SLPP must grow up as the 

cost of using stochastic input instead of exact location information. 
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Figure 8. Value of K  and value of KP  versus processing time. 

5.3. Overhead of SLPP 

We examined the overhead of our proposed SLPP from the aspect of processing time. Since 

SLPP requires mobile user to cloak his/her own location, the processing time can have significant 

impact on both service response time and energy efficiency of mobile device. It is not hard to 

identify the stochastic evaluation algorithm is the most computational intensive task in entire solution 

since it has to calculate a lot of probability values. Thus, we varied the values of K  and KP  in 

this simulation to see the changes in processing time. 

As we can observe from Figure 8, the impact of K ’s value is significant. The processing time 

increases dramatically due to the fact that the complexity of Eqs (4) and (5) is related with value of 

K  in an exponential way. On the other hand, the value of KP  is linearly related with the processing 

time. As we request a higher probability of having same number of user, the algorithm only need to 

constantly increase the size of area to satisfy the required KP . 

6. Conclusions and future work 

In this paper, we proposed a stochastic scheme for edge computing to protect user’s location 

privacy. The main idea of our scheme is to cloak the location information for unprotected user that 

has to satisfy predefined probability of having k-users in the cloaked area. Our scheme does not 

require any participates from the trusted third part, and it is practicable for the real scenario when 

edge computing is honest and curious. In the future, we will extend our proposed stochastic scheme 

to preserve tractor privacy for moving user’s with continuous queries. 
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