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Abstract: In this paper, we propose a predator-prey model with genetic differentiation both in the
predator and prey. First, we analyze two special cases: a model without the predators and a model with
one genotype in both the predator and prey, and for each model show that the positive equilibria are
always globally stable when they exist, while the boundary equilibria are always unstable. Then, for the
newly proposed model, we give the results that the positive equilibrium is always local stable when it
exists, the boundary equilibrium at the origin is always unstable, and the stability of another boundary
equilibrium is determined by the existence of the positive equilibrium. Moreover, our discussions show
the existence of local center manifolds near the equilibria. Finally, we give some examples to illustrate
our results.
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1. Introduction

Since Lotka and Volterra [1, 2] proposed the classical Lotka-Volterra predator-prey model, it has
received much attention in studying the relationships between the predator and prey [3–7]. In the
meaning of biology, the population cannot grow unrestrictedly. However, the prey grows infinitely in
the absence of the predator for the original Lotka-Volterra predator-prey model. To correct this
unrealistic defect, the modified Lotka-Volterra predator-prey model with the finite environment
carrying capacity for prey is considered and studied (refer to May [8] for a detailed model
construction), which is in the form

dx
dτ

= Rx
(
1 −

x
K

)
− hxy,

dy
dτ

= hxy − dy,
(1.1)
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where R and K are the per capita growth rate and the carrying capacity of the prey x, h and d are
the hunting ability and the death rate of the predator y, respectively. As part of the subsystem of
the proposed model in this article, more specific analysis and results for model (1.1) will be given in
Section 3.

Recently, Mobilia et al. [9] expanded Lotka-Volterra predator-prey model and studied the effects of
the spatial constraints and stochastic noise on the properties of the predator-prey systems. Considering
the spatial constraints and stochastic noise, Mobilia et al. [9] formulated a predator-prey model
similar to model (1.1), and a stochastic lattice Lotka-Volterra model (SLLVM). They obtained a lot of
important and interesting results differing from those of the classical (unrestricted) deterministic
Lotka-Volterra predator-prey model by a suitable mean-field approach, field-theoretic arguments and
Monte Carlo simulations. In the topical review [10], from the historical overview of population
dynamics to the stochastic lattice Lotka-Volterra predator-prey models, Dobramysl et al. focused on
spatially extended population dynamics models and the role of fluctuations and correlations in
biological systems induced by the demographic noise. Also, they demonstrated the cyclic dominance
of three-species populations and multiple species competition networks. The models in the above two
articles are the improvements of the Lotka-Volterra predator-prey by considering the finite carrying
capacity and incorporating the stochastic noise, spatial constraints and spatial extension.

The Lotka-Volterra predator-prey models have been explored and expanded widely in the aspects of
the diffusion, time delay, harvesting, switching and herd behavior [11–21], etc. However, considering
the effect of the population interactions for different genotypes on the ecosystem is a research hotspot
that has only been developed in recent years.

Taking into account the fact that the prey is genetically distinguishable and assuming that the prey
is divided into two subpopulations with two different genotypes x and y, Venturino [22] proposed an
ecogenetic model

dx
dτ

= (Rp − ax)(x + y) − hxz,

dy
dτ

= (Rq − by)(x + y) − gyz,

dz
dτ

= z[e(hx + gy) − m],

(1.2)

where z represents the predator, R is the reproduction rate of the prey, p and q = 1− p are the fractions
of the newborns for the two genotypes x and y, a and b are the population pressures of the two
genotypes of the prey, h and g are the predators’ different hunting ability to prey on the two genotypes
of food, respectively; m is the mortality rate of the predator, 0 < e < 1 is the conversion rates of the
prey into the predator’s newborns. The author showed that if the predator invasion number is greater
than 1 then the predator is permanent and the model is persistent. Furthermore, model (1.2) could be
persistent oscillatory under some conditions. Reference [23] also proposed an eco-genetic model with
distinguishable genotypes happened in the prey. Supposed that the genetically distinguishable species
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are the predator with two different genotypes y and z, Viberti and Venturino [24] introduced a model

dx
dτ

= R
(
1 −

x
K

)
x − hxy − gxz,

dy
dτ

= pe(hy + gz)x − my,

dz
dτ

= qe(hy + gz)x − nz,

(1.3)

where R and K are the reproduction rate and the environment’s carrying capacity of the prey x,
respectively, and all other parameters have the similar meaning to those in model (1.2). Then authors
investigated the extinction of the predator, the permanence of the prey and the coexistence of the two
species. However, model (1.3) does not allow persistent oscillation, which is the main difference
between models (1.2) and (1.3). Similar to model (1.3), Viberti and Venturino [25] proposed a
predator-prey model with Holling II response function in describing the dynamics of two different
genotypes predator.

Motivated by [22, 24, 25], we propose a predator-prey model in which the genetic differentiation
both happened in the predator and prey. The model is presented in the form as follows

dx
dτ

= (Rp1 − ax)(x + y) − mxu − nxv,

dy
dτ

= (Rq1 − by)(x + y) − myu − nyv,

du
dτ

= p2e(mxu + myu + nxv + nyv) − ku,

dv
dτ

= q2e(mxu + myu + nxv + nyv) − lv,

(1.4)

where the two genotypes population x and y of the prey have the same reproduction rate R, the two
genotypes population u and v of the predator have the same conversion rates 0 < e < 1; p1 and
q1 = 1 − p1 are the fractions of the newborns of the prey x and y respectively, p2 and q2 = 1 − p2 are
the fractions of the newborns of the predator u and v respectively, a and b are the different pressures
felt by the two types of prey population, k and l are the mortality rates of u and v respectively; we also
assume that the predator u has the same hunting ability to prey x and prey y, which is denoted by m;
Similarly, the hunting ability of predator v to prey x and prey y is denoted by n. All coefficients in
model (1.4) are positive. Assuming that both the two types of predators have different hunting abilities
to the two types of the prey, Castellino et al. [26] gave a more general predator-prey model with both
species genetically distinguishable. However, they only roughly analyzed the stability of the boundary
equilibria and showed some results by numerical simulations. In this paper, we shall give a detailed
analysis of the model (1.4).

In order to simplify calculations, we first nondimensionalize model (1.4) by letting t = eτ, x(τ) =
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αX(t), y(τ) = αY(t), u(τ) = γU(t), v(τ) = γV(t). Then it becomes

dX
dt

=
1
αe

(Rp1 − aαX)(αX + αY) −
1
αe

mαγXU −
1
αe

nαγXV,

dY
dt

=
1
αe

(Rq1 − bαY)(αX + αY) −
1
αe

mαγYU −
1
αe

nαγYV,

dU
dt

=
1
γe

p2e(mαγXU + mαγYU + nαγXV + nαγYV) −
1
γe

kγU,

dV
dt

=
1
γe

q2e(mαγXU + mαγYU + nαγXV + nαγYV) −
1
γe

lγV.

Let α =
Rp1

a , γ = e
m , and define new parameters r =

Rp1
e , c = n

m , w =
q1
p1

, s = b
a , p =

p2mRp1
a , q =

q2mRp1
a ,

g = k
e , d = l

e . Then the above model can be further simplified into

dX
dt

= r(1 − X)(X + Y) − XU − cXV,

dY
dt

= r(w − sY)(X + Y) − YU − cYV,

dU
dt

= p[(X + Y)U + c(X + Y)V] − gU,

dV
dt

= q[(X + Y)U + c(X + Y)V] − dV.

(1.5)

It is clear that all of models (1.2), (1.3), (1.4), and (1.5) have more than one predator or one prey, and
are generalizations of Lotka-Volterra predator-prey model apparently.

Azzali et al. [27] studied a competitive model with genetically distinguishable species. In fact,
model (1.4) is similar to the ecoepidemiology model, i.e., the population model with diseases spreading
in the species. Earlier researches on the ecoepidemiology models can be found from [28, 29], and
influences of diseases on the predator-prey models and competitive models can refer to the articles
[30–40].

The rest of this paper is organised as follows. In Sections 2 and 3, we shall analyze model (1.5)
without predators and model (1.5) with one genotype in both the predator and prey, respectively. The
full model of (1.5) will be discussed in Section 4. Some examples to illustrate our main results will be
given in Section 5. In Section 6, we shall give our conclusions and discussions.

2. Stability of model (1.5) without the predators

Without the predators, model (1.5) becomes

dX
dt

= r(1 − X)(X + Y),

dY
dt

= r(w − sY)(X + Y).
(2.1)

It is easy to know that (0, 0) and (1, w
s ) are two equilibria of the model. And we can obtain the following

two lemmas.
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Lemma 2.1. For model (2.1), the boundary equilibrium (0, 0) is unstable, and the positive equilibrium(
1, w

s

)
is locally stable.

Proof. The Jacobian matrix of (2.1) is

J1 =

[
r − 2rX − rY r − rX

rw − rsY rw − rsX − 2rsY

]
.

Then the characteristic polynomial of J1 at (0, 0) is λ2−(r+wr)λ, which has two eigenvalues λ1 = 0,
λ2 = r(1 + w) > 0. So, the origin (0, 0) is unstable.

Similarly, at (1, w
s ) the characteristic polynomial is

(
λ + r + wr

s

)
(λ+wr+sr), resulting in two negative

eigenvalues λ1 = −r
(
1 + w

s

)
, λ2 = −r(s + w). Therefore, equilibrium

(
1, w

s

)
is locally stable. �

Lemma 2.2. Model (2.1) does not admit any periodic solution.

Proof. Let

B1(X,Y) =
1

r(X + Y)
, W1(X,Y) = r(1 − X)(X + Y), W2(X,Y) = r(w − sY)(X + Y),

it is easy to know that B1(X,Y) is a continuously differentiable function in the first quadrant. We get
that

∂[W1(X,Y)B1(X,Y)]
∂X

+
∂[W2(X,Y)B1(X,Y)]

∂Y
= −1 − s < 0.

Then the Bendixson-Dulac criterion ( [41], Proposition 1.195) implies our result here. �

Then, Lemmas 2.1 and 2.2 yield the following global behavior of model (2.1).

Theorem 2.1. Positive equilibrium
(
1, w

s

)
of model (2.1) is globally asymptotically stable.

Remark 2.1. In the biological sense, Theorem 2.1 means that two genotypes of the prey will always
coexist without the predators. This is consistent with the Hardy-Weinberg law [42], which shows that
the gene and genotype frequencies in a species will remain constant from the first daughter generation
onwards.

3. Stability of model (1.5) with one genotype in both the predator and prey

When both the predator and prey have only one genotype, model (1.5) becomes the
nondimensionalization of the Lotka-Volterra predator-prey model (1.1), which is in the following
form

dX
dt

= r(1 − X)X − XU,

dU
dt

= pXU − gU.
(3.1)

It is easy to obtain that the model always has two boundary equilibria (0, 0) and (1, 0), and has a
positive equilibrium

(
g
p ,

r(p−g)
p

)
if p > g. The positive equilibrium

(
g
p ,

r(p−g)
p

)
approaches to the boundary

equilibrium (1, 0) as p→ g.
Next, by using Jacobin matrix and center manifold theory, we have Lemma 3.1 and 3.2 as shown in

the following.
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Lemma 3.1. For model (3.1), boundary equilibrium (0, 0) is always unstable, and the other boundary
equilibrium (1, 0)

(a) is stable when p < g;

(b) is unstable when p > g;

(c) has a local center manifold

W loc
c =

{
(x2, u2) ∈ R2 : u2 ∈ K, x2 = −

p
r

u2
2 +

(
3p2

r2 +
p
r

)
u3

2 + O(u4
2)
}

when p = g, where K is a small neighborhood of the origin, and[
x2

u2

]
= P−1

[
X − 1

U

]
, P =

[
1 1
0 −r

]
.

Proof. The Jacobian matrix of (3.1) is

J2 =

[
r − 2rX − U −X

pU pX − g

]
.

The characteristic polynomial of matrix J2 at (0, 0) is (λ− r)(λ+ g), which has two eigenvalues λ1 = r,
λ2 = −g. Therefore, equilibrium (0, 0) is a saddle point.

The characteristic polynomial of matrix J2 at (1, 0) is (λ + r)(λ + g − p), which has two eigenvalues
λ1 = −r < 0, λ2 = p − g. We have the following three cases.

(a) If p < g, then λ2 < 0, implying equilibrium (1, 0) is locally stable.
(b) If p > g, then λ2 > 0. Thus, equilibrium (1, 0) is a saddle point. Hence, unstable accordingly .
(c) If p = g, then λ2 = 0. By the center manifold theory [43, 44], there is a local center manifold at

equilibrium (1, 0), which is calculated as follows. Let x1 = X − 1, u1 = U. Model (3.1) becomes[
x′1
u′1

]
= A

[
x1

u1

]
+

[
−rx2

1 − x1u1

px1u1

]
, (3.2)

where

A =

[
−r −1
0 0

]
.

Equilibrium (1, 0) of model (1.5) becomes equilibrium (0, 0) of (3.2). The eigenvalues of A are the
same as those of matrix J2 at(1, 0), which are λ1 = −r, λ2 = 0. By the center manifold theory,
equilibrium (0, 0) has a one-dimensional center subspace and a one-dimensional stable subspace. The
eigenvectors of A with respect to λ1 and λ2 are

e1 =

[
1
0

]
, e2 =

[
1
−r

]
,

respectively. Let P = (e1, e2), then P−1AP = B, where B = diag(λ1, λ2). Therefore, Let[
x1

u1

]
= P

[
x2

u2

]
=

[
x2 + u2

−ru2

]
,
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then [
x′2
u′2

]
= P−1AP

[
x2

u2

]
+ P−1

[
−rx2(x2 + u2)
−rpu2(x2 + u2)

]
= B

[
x2

u2

]
+

[
−(x2 + u2)(rx2 + pu2)

p(x2 + u2)u2

]
.

The local center manifold at (0, 0) is described by an approximation function ψ : span{e2} →

span{e1}. Since ψ(0) = Dψ(0) = 0, we set the Taylor expansion near (0, 0) as

x2 = ψ(u2) = β2u2
2 + β3u3

3 + . . . .

By the center manifold approximation theorem, we have

−rψ(u2) − (ψ(u2) + u2)(rψ(x2) + pu2) = (2β2u2 + 3β3u2
3 + . . .)p(ψ(u2) + u2)u2.

Simplifying the above equation and comparing the coefficients of the two sides, we get

β2 = −
p
r
, β3 =

3p2

r2 +
p
r
.

Thus, the center manifold at (0, 0) is

W loc
c =

{
(x2, u2) ∈ R2 : u2 ∈ K, x2 = −

p
r

u2
2 +

(
3p2

r2 +
p
r

)
u3

2 + O(u4
2)
}
,

where K is a small neighborhood of the origin, and[
x2

u2

]
= P−1

[
X − 1

U

]
.

�

Lemma 3.2. If p > g, then model (3.1) has a stable positive equilibrium
(

g
p ,

r(p−g)
p

)
.

Proof. From the above discussion, the positive equilibrium
(

g
p ,

r(p−g)
p

)
exists if and only if p > g. For

model (3.1), the characteristic polynomial of Jacobian matrix at
(

g
p ,

r(p−g)
p

)
is f (λ) = λ2 + θ1λ + σ1,

where θ1 = r g
p , σ1 = rg p−g

p . It is clear that σ1 > 0. Let ∆1 = θ2
1 − 4σ1, then ∆1 < θ2

1. The roots of f (λ)

are λ1,2 =
−θ1±

√
∆1

2 . Then, we only need to discuss the real parts of λ1,2.
1. If ∆1 ≥ 0, then both λ1,2 are negative, and positive equilibrium

(
g
p ,

r(p−g)
p

)
is stable accordingly.

2. If ∆1 < 0, then λ1,2 are two conjugate complex numbers with negative real part, and positive
equilibrium

(
g
p ,

r(p−g)
p

)
is stable accordingly. �

Above discussion indicates the local behavior of equilibria in model (3.1), next we illustrate the
global dynamical behaviors of these equilibria. First, we need to discuss the existence of periodic
solution in model (3.1).

Lemma 3.3. For model (3.1), there is no periodic solution.
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Proof. Let

B2(X,U) =
1

XU
, H1(X,U) = r(1 − X)X − XU, H2(X,U) = pXU − gU.

It is easy to know that B2(X,U) is a continuous differentiable function in the first quadrant. Then, in
the first quadrant

∂[H1(X,U)B2(X,U)]
∂X

+
∂[H2(X,U)B2(X,U)]

∂X
= −

r
U
< 0.

By the Bendixson-Dulac criterion, model (3.1) has no periodic solution. �

From Lemmas 3.1, 3.2 and 3.3, we know the global behavior of model (3.1).

Theorem 3.1. For model (3.1), boundary equilibrium (0, 0) is always unstable, and

(a) if p > g, then boundary equilibrium (1, 0) is unstable and positive equilibrium
(

g
p ,

r(p−g)
p

)
is globally

asymptotically stable;

(b) if p < g, then boundary equilibrium (1, 0) is globally asymptotically stable and there is no positive
equilibrium.

From Theorem 3.1, we know that if the death rate of predator is bigger than its conversion rate, then
the predator will be extinct while the prey will be permanent; if the death rate of predators is smaller
than the conversion rate, then the predator and the prey will coexist permanently.

4. The dynamics of model (1.5)

4.1. Existence of the equilibria

It is easy to find that the origin E0(0, 0, 0, 0) and E1(1, w
s , 0, 0) are two boundary equilibria of model

(1.5). If
r(1 − X)(X + Y) − X(U + cV) = 0,
r(w − sY)(X + Y) − Y(U + cV) = 0,
p(X + Y)(U + cV) − gU = 0,
q(X + Y)(U + cV) − dV = 0,

(4.1)

has a positive solution, then it is the positive equilibrium of model (1.5). Let (X∗,Y∗,U∗,V∗) is a
solution of Eq (4.1), then

1 − X∗
X∗

=
w − sY∗

Y∗
, X∗ + Y∗ = h, U∗ =

ph2r
g

(1 − X∗)
X∗

, V∗ =
qh2r

d
(1 − X∗)

X∗
, (4.2)

where h =
gd

pd+cqg .
If 0 < X∗ < 1, 0 < Y∗ < w

s , U∗ > 0, V∗ > 0, then (X∗,Y∗,U∗,V∗) is a positive solution of (4.1), which
means it is the positive equilibrium of model (1.5).

From the first two equations of (4.2), we get

(1 − s)Y2
∗ + [w + 1 − (1 − s)h]Y∗ − wh = 0. (4.3)
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Let ∆2 = [w + 1 − (1 − s)h]2 + 4wh(1 − s), then ∆2 = [w − 1 + (1 − s)h]2 + 4w > 0. Let

f (Y) = (1 − s)Y2 + [w + 1 − (1 − s)h]Y − wh, (4.4)

then f
(

w
s

)
> 0 if h < 1 + w

s , and f
(

w
s

)
≤ 0 if h ≥ 1 + w

s .
Next, we shall prove that h < 1 + w

s is the necessary and sufficient condition for the existence of
positive equilibrium of model (1.5). First, we shall prove that if h < 1+ w

s then 0 < X∗ < 1, 0 < Y∗ < w
s ,

U∗ > 0, V∗ > 0, and model (1.5) has a positive equilibrium E∗(X∗,Y∗,U∗,V∗) accordingly. Three cases
are considered.

Case 1. When s = 1, we get Y∗ = wh
w+1 from (4.3). So, by (4.2),

X∗ =
h

w + 1
, U∗ =

phr
g

(w + 1 − h), V∗ =
qhr
d

(w + 1 − h).

If h < 1 + w, then 0 < X∗ < 1, 0 < Y∗ = wh
w+1 <

w
1+w (1 + w) = w, U∗ > 0, V∗ > 0.

Case 2. When s < 1, i.e., 1 − s > 0, it is easy to find that the parabola f (Y) is opening up and the
curve intersects vertical axis at point (0,−wh). Thus, (4.3) has one positive root

Y∗ =
h
2

+
−(w + 1) +

√
∆2

2(1 − s)
.

By (4.2) and the above equation, we get

X∗ =
h
2

+
w + 1 −

√
∆2

2(1 − s)
, U∗ =

ph2r
g

[
2(1 − s)

w + 1 + (1 − s)h −
√

∆2
− 1

]
,

V∗ =
qh2r

d

[
2(1 − s)

w + 1 + (1 − s)h −
√

∆2
− 1

]
.

If h < 1 + w
s , then f

(
w
s

)
> 0. From the image of parabola f (Y), we know that f (Y∗) = 0 and f (Y) < 0

as Y ∈ (0,Y∗). So 0 < Y∗ < w
s . By the first equation of (4.2), we have 0 < X∗ < 1. Accordingly, U∗ > 0

and V∗ > 0.
Case 3. When s > 1, i.e., 1 − s < 0, the parabola f (Y) is opening down and the curve intersects

vertical axis at point (0,−wh). Since 1 − s < 0 and w + 1 − (1 − s)h > 0, we know the center shaft of
the parabola is positive. So, f (Y) has two positive roots

Y∗1,2 =
h
2

+
−(w + 1) ±

√
∆2

2(1 − s)
,

which means

X∗1,2 =
h
2

+
(w + 1) ∓

√
∆2

2(1 − s)
, U∗1,2 =

ph2r
g

[
2(1 − s)

w + 1 + (1 − s)h ∓
√

∆2
− 1

]
,

V∗1,2 =
qh2r

d

[
2(1 − s)

w + 1 + (1 − s)h ∓
√

∆2
− 1

]
Mathematical Biosciences and Engineering Volume 17, Issue 3, 2616–2635.
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from Eq (4.2). By f
(

w
s

)
> 0 as h < 1 + w

s , f (Y) > 0 as Y ∈ (Y∗1,Y∗2) and f (Y) < 0 as Y < [Y∗1,Y∗2],
we get that w

s ∈ (Y∗1,Y∗2), which means 0 < Y∗1 < w
s < Y∗2. The same reason as that of Case 2 gives

0 < X∗1 < 1. Accordingly, U∗1 > 0, V∗1 > 0.
By the same analysis as the above three cases, we have that if h ≥ 1 + w

s then Y∗ ≥ w
s for Case 1

and 2, and both Y∗2 > Y∗1 > w
s for Case 3. From the second equation of (4.1), we know that Eqs (4.1)

have no positive solutions. Therefore, model (1.5) has no positive equilibria.
From the above discussion, we get the following results.

Theorem 4.1. Model (1.5) always has two boundary equilibria E0(0, 0, 0, 0) and E1(1, w
s , 0, 0).

Furthermore, h < 1 + w
s is the necessary and sufficient condition for the existence of an unique

positive equilibrium E∗(X∗,Y∗,U∗,V∗) of model (1.5), where 0 < X∗ < 1, 0 < Y∗ < w
s , U∗ > 0 and

V∗ > 0.

4.2. Stability of the boundary equilibria

The Jacobian matrix of model (1.5) at E0 is

J(E0) =


r r 0 0

rw rw 0 0
0 0 −g 0
0 0 0 −d

 .
The characteristic polynomial of J(E0) is λ(λ−r−wr)(λ+g)(λ+d), which has four eigenvalues λ1 = 0,
λ2 = r + rw, λ3 = −g and λ4 = −d. Since λ2 > 0, E0 is unstable.

Theorem 4.2. The boundary equilibrium E0 of (1.5) is unstable.

The Jacobian matrix of model (1.5) at E1 is

J(E1) =


−r − r w

s 0 −1 −c
0 −rw − rs −w

s −cw
s

0 0 p(1 + w
s ) − g cp(1 + w

s )
0 0 q(1 + w

s ) cq(1 + w
s ) − d

 .
The characteristic polynomial of J(E1) is(

λ + r + r
w
s

)
(λ + rw + rs)

{
λ2 +

[
g + d − (p + cq)

(
1 +

w
s

)]
λ + gd − (pd + cqg)

(
1 +

w
s

)}
.

J(E1) has two negative eigenvalues λ1 = −r − r w
s and λ2 = −rw − rs. The other two eigenvalues of

J(E1) are the roots of polynomial f1(λ) = λ2 − θλ + σ, where

θ = (p + cq)
(
1 +

w
s

)
− (g + d), σ = gd − (dp + cqg)

(
1 +

w
s

)
.

The two roots of f1(λ) are

λ3,4 =
θ ±
√
θ2 − 4σ
2

. (4.5)
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Let ∆3 = θ2 − 4σ, then

∆3 =

[
g − d + (p − cq)

(
1 +

w
s

)]2
+ 4cqp

(
1 +

w
s

)2
> 0.

It is easy to find that
g + d
p + cq

− h =
cqg2 + d2 p

(p + cq)(dp + cqg)
> 0,

so,
g + d
p + cq

> h. (4.6)

Now, we discuss the stability of E1 from three cases.
Case 1. If h > 1 + w

s , then

σ = gd − (dp + cqg)(1 +
w
s

) = (dp + cqg)
[

gd
dp + cqg

−

(
1 +

w
s

)]
= (dp + cqg)

[
h −

(
1 +

w
s

)]
> 0,

θ = (p + cq)
(
1 +

w
s

)
− (g + d) =

[(
1 +

w
s

)
−

g + d
p + cq

]
(p + cq)

<

[
h −

g + d
p + cq

]
(p + cq).

By (4.6) and σ > 0, we have θ < 0 and ∆3 = θ2 − 4σ < θ2, respectively. Therefore, both λ3,4 have
negative real parts, E1 is stable accordingly.

Case 2. If h < 1 + w
s , then

σ = (dp + cqg)
[
h −

(
1 +

w
s

)]
< 0,

and ∆3 = θ2 − 4σ > θ2 accordingly. For any θ, (4.5) shows that one of λ3,4 is negative and the other is
positive. Therefore, E1 is unstable.

Case 3. If h = 1 + w
s , then

σ = (dp + cqg)
[
h −

(
1 +

w
s

)]
= 0, θ =

[
h −

g + d
p + cq

]
(p + cq).

So, ∆3 = θ2 − 4σ = θ2. Because (4.6) means θ < 0, (4.5) shows that one of λ3,4 is θ and the other
is 0. Thus, the Jacobian matrix J(E1) has one zero eigenvalue and three negative eigenvalues. By the
center manifold theory, there exist a one-dimensional center manifold and a three-dimensional stable
subspace at E1.

From the above discussion, we get the following results.

Theorem 4.3. Equilibrium E1 of model (1.5) is stable if h > 1 + w
s , and unstable if h < 1 + w

s .

By Theorems 4.2 and 4.3, we know that if h > 1 + w
s then model (1.5) has no positive equilibrium

and E1 is stable. Since the axes are invariant sets of model (1.5), boundary equilibrium E1 is globally
stable when h > 1 + w

s .
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Theorem 4.4. If h > 1 + w
s , then the boundary equilibrium E1 is globally stable.

Theorem 4.5 gives a local center manifold at E1 for Case 3 of the above discussion.

Theorem 4.5. For boundary equilibrium E1, if h = 1 + w
s , then there is a local center manifold

W loc
c (E1) = {(x2, y2, u2, v2) ∈ R4 : v2 ∈ K1, x2 = β1v2

2 + 0(v3
2), y2 = β2v2

2 + 0(v3
2), u2 = β3v2

2 + 0(v3
2)},

where K1 is a small neighborhood of the origin,
x2

y2

u2

v2

 = P−1


X − 1
Y − w

s
U
V

 , P =


1 0 i1 i3

0 1 i2 i4

0 0 p(d + θ) pd
0 0 q(g + θ) qg

 ,
and

β1 =
s(pd + cqg)

r(s + w)

[( s
s + w

+
i3 − i1

θ

) (
1 +

w
s2

)
− 1

]
i3,

β2 =
pd + cqg
r(s + w)

[(
w

s + w
+

wi3 − s2i2

s2θ

) (
1 +

w
s2

)
−

w
s2

]
i3,

β3 = −
1
θ2

(
1 +

w
s2

)
i3(pd + cqg),

with
i1 = −

p(d + θ) + cq(g + θ)

θ + r
(
1 + w

s

) , i2 = −
w
s

p(d + θ) + cq(g + θ)

θ + rs
(
1 + w

s

) , i3 = −
pd + cqg

r
(
1 + w

s

) .
Proof. First, we take a matrix transformation. Let x1 = X − 1, y1 = Y − w

s , u1 = U and v1 = V , then
model (1.5) becomes 

x′1
y′1
u′1
v′1

 = J(E1)


x1

y1

u1

v1

 +


f1(x1, y1, u1, v1)
f2(x1, y1, u1, v1)
f3(x1, y1, u1, v1)
f4(x1, y1, u1, v1)

 ,
where

f1(x1, y1, u1, v1) = x1(−rx1 − ry1 − u1 − cv1), f2(x1, y1, u1, v1) = y1(−srx1 − sry1 − u1 − cv1),

f3(x1, y1, u1, v1) = p(x1 + y1)(u1 + cvx), f4(x1, y1, u1, v1) = q(x1 + y1)(u1 + cvx).

The eigenvalues of J(E1) are λ1 = −r
(
1 + w

s

)
, λ2 = −rs

(
1 + w

s

)
, λ3 = θ, λ4 = 0. By the center manifold

theory, (0, 0, 0, 0) has a one-dimensional center subspace and a three-dimensional stable subspace. The
eigenvectors of J(E1) with respect to λ1, λ2, λ3 and λ4 are

e1 =


1
0
0
0

 , e2 =


0
1
0
0

 , e3 =


i1

i2

p(d + θ)
q(g + θ)

 , e4 =


i3

i4

pd
qg

 ,
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respectively, where

i1 = −
p(d + θ) + cq(g + θ)

θ + r
(
1 + w

s

) , i2 = −
w
s

p(d + θ) + cq(g + θ)

θ + rs
(
1 + w

s

) , i3 = −
pd + cqg

r
(
1 + w

s

) , i4 =
w
s2 i3.

Let P = (e1, e2, e3, e4), then P−1J(E1)P = B, where B = diag(λ1, λ2, λ3, λ4). Let
x1

y1

u1

v1

 = P


x2

y2

u2

v2

 =


x2 + i1u2 + i3v2

y2 + i2u2 + i4v2

p(d + θ)u2 + pdv2

q(g + θ)u2 + qgv2

 ,
then, 

x′2
y′2
u′2
v′2

 = P−1J(E1)P


x2

y2

u2

v2

 + P−1


f1(x2, y2, u2, v2)
f2(x2, y2, u2, v2)
f3(x2, y2, u2, v2)
f4(x2, y2, u2, v2)

 = B


x2

y2

u2

v2

 +


g1(x2, y2, u2, v2)
g2(x2, y2, u2, v2)
g3(x2, y2, u2, v2)
g4(x2, y2, u2, v2)

 ,
where

g1(x2, y2, u2, v2) = f1(x2, y2, u2, v2) +
i3 − i1

pθ
f3(x2, y2, u2, v2),

g2(x2, y2, u2, v2) = f2(x2, y2, u2, v2) +
i4 − i2

pθ
f3(x2, y2, u2, v2),

g3(x2, y2, u2, v2) =
1
pθ

f3(x2, y2, u2, v2), g4(x2, y2, u2, v2) = −
1
pθ

f3(x2, y2, u2, v2),

and
f1(x2, y2, u2, v2) = (x2 + i1u2 + i3v2)[−rx2 − ry2 − (rm1 + m3 + m4)u2 − (rm2 + m3)v2],

f2(x2, y2, u2, v2) = (y2 + i2u2 + i4v2)[−srx2 − sry2 − (srm1 + m3 + m4)u2 − (srm2 + m3)v2],

f3(x2, y2, u2, v2) = p
[
x2 + y2 + (i1 + i2)u2 + (i3 + i4)v2

]
[(m3 + m4)u2 + m3v2] ,

f4(x2, y2, u2, v2) = q
[
x2 + y2 + (i1 + i2)u2 + (i3 + i4)v2

]
[(m3 + m4)u2 + m3v2] ,

with
m1 = i1 + i2, m2 = i3 + i4, m3 = pd + cqg, m4 = dθ + cqθ.

The local center manifold is described by a approximation function η : span{e4} → span{e1, e2, e3},

which we set
η(v2)e4 = η1(v2)e1 + η2(v2)e2 + η3(v2)e3.

Since η(0) = Dη(0) = 0, the Taylor expansion at the origin is

x2 = η1(v2) = β1v2
2 + · · · , y2 = η2(v2) = β2v2

2 + · · · , u2 = η3(v2) = β3v2
2 + · · · .

By the center manifold approximation theory, we have

−r(1 +
w
s

)x2 + g1 = (2β1v2 + . . .)g4,
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−rs(1 +
w
s

)y2 + g2 = (2β2v2 + . . .)g4,

θu2 + g3 = (2β3v2 + . . .)g4.

Simplifying the above equations and comparing the coefficients of the the same order terms in both
sides, we get

β1 =
s(pd + cqg)

r(s + w)

[( s
s + w

+
i3 − i1

θ

) (
1 +

w
s2

)
− 1

]
i3,

β2 =
pd + cqg
r(s + w)

[(
w

s + w
+

wi3 − s2i2

s2θ

) (
1 +

w
s2

)
−

w
s2

]
i3,

β3 = −
1
θ2 (i3 + i4)(pd + cqg).

Thus, we get the center manifold as follow

W loc
c (E1) = {(x2, y2, u2, v2) ∈ R4 : v2 ∈ K1, x2 = β1v2

2 + O(v3
2), y2 = β2v2

2 + O(v3
2), u2 = β3v2

2 + O(v3
2)},

where K1 is a small neighborhood of the origin, and
x2

y2

u2

v2

 = P−1


X − 1
Y − w

s
U
V

 .
�

4.3. Stability of the positive equilibrium

In this section, we consider the stability of E∗.

Theorem 4.6. If h < 1 + w
s , then the unique positive equilibrium E∗ of model (1.5) is stable.

Proof. The Jacobian matrix of model (1.5) at E∗ is

J∗ =


r − 2rX∗ − rY∗ − U∗ − cV∗ r − rX∗ −X∗ −cX∗

rw − rsY∗ rw − rsX∗ − 2rsY∗ − U∗ − cV∗ −Y∗ −cY∗
p(U∗ + cV∗) p(U∗ + cV∗) p(X∗ + Y∗) − g cp(X∗ + Y∗)
q(U∗ + cV∗) q(U∗ + cV∗) q(X∗ + Y∗) cq(X∗ + Y∗) − d

 .
Let j =

cqg2+pd2

pd+cqg , the characteristic polynomial of J∗ is

f∗(λ) = λ4 + a3λ
3 + a2λ

2 + a1λ + a0, (4.7)

where
a3 = r(s + 1)(X∗ + Y∗) + (U∗ + cV∗) + j,
a2 = r2s(X∗ + Y∗)2 + r2(X∗ + Y∗)[s(w − sY∗) + (1 − X∗)] + (d + g)(U∗ + cV∗) + r(s + 1) j(X∗ + Y∗),
a1 =r(p + cq)(sX∗ + Y∗)(X∗ + Y∗)(U + cV∗) + r2(X∗ + Y∗) j[s(w − sY∗ + (1 − X∗))]

+ gd(U + cV∗) + (p + cq)(X∗ + Y∗)(U + cV∗)2 + r2s j(X∗ + Y∗)2,
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a0 = gd[(U + cV∗) + r(sX∗ + Y∗)](U∗ + cV∗).

For 0 < X∗ < 1, 0 < Y∗ < w
s , we know a3 > 0, a2 > 0, a1 > 0 and a0 > 0. According to the

Routh-Hurwitz stability criterion, if
a2a3 − a1 > 0 (4.8)

also holds, then positive equilibrium E∗ is stable.
Next, we prove that (4.8) is satisfied. Let g(r) = a2a3 − a1. Substituting the values of U∗ and V∗ into

g(r), we get that g(r) = b2r3 + b1r2 + b0r, where
b2 = (X∗ + Y∗)(sX∗ + Y∗ + w + 1) [s(w − sY∗) + (1 − X∗) + s(X∗ + Y∗)] ,
b1 = (s + 1)2(X∗ + Y∗)2 j + (w − sY∗ + 1 − X∗)(2sX∗ + 2Y∗ + 1 + w) j,
b0 = (s + 1)(X∗ + Y∗) j2 + (w − sY∗ + 1 − X∗)[(d + g) j − dg].
From (4.2), we know that X∗ and Y∗ do not depend on r, and b2 > 0, b1 > 0. Since

(d + g) j − dg =
pd3 + cqg3

pd + cqg
> 0,

we have b0 > 0. So, g(r) > 0, i.e., (4.8) holds. Therefore, (4.8) and Theorem 4.1 mean that E∗ is
stable. �

Remark 4.1. Theorem 4.1 and 4.6 mean h < 1 + w
s is the necessary and sufficient condition for the

existence and stability of the unique positive equilibrium E∗ of model (1.5).

Remark 4.2. By Theorems 4.1, 4.3 and 4.6, we know that if h > 1 + w
s then model (1.5) has no positive

equilibrium and E1 is stable, and if h < 1 + w
s then the unique positive equilibrium of model (1.5) is

stable and E1 is unstable. Therefore, there is a transcritical bifurcation in model (1.5).

5. Examples

In this section, some examples are given to illustrate our main results. Furthermore, we get some
strategies for species protection by insight into the examples.

From the discussion in Section 4, we know that the boundary equilibrium E1 is stable when h >

1 + w
s , and the positive equilibrium E∗ appears and becomes stable when h < 1 + w

s . In order to testify
our analyzed results, we take some examples by simulation. For convenience, fix

r = 1, c = 1/4,w = 1/2, p = 1/3, q = 2/7, g = 3/4, d = 1/4,

and the initial condition (0.3, 0.5, 0.4, 0.8). Next, we observe the time series diagrams of the four
populations with four different values of s (see Figure 1). In this figure, the red dotted line represents
the size of prey X, the blue dotted line represents the size of prey Y , the red solid line represents the
size of predator U, the blue solid line represents the size of predator V .

In Figure 1(a), we choose s = 27/17 which satisfies the equality h > 1 + w
s . According to Theorem

4.3 and Remark 4.1, in this case the boundary equilibrium E1(1, 17
54 , 0, 0) is stable while the positive

equilibrium doesn’t exist. In the figure, the size of two prey populations X and Y approach to 1 and
0.31 ≈ 17

54 respectively as the time increases, while the two predator populations U and V both tend to
zero. This shows that E1 is stable, which verify our results.
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(a) s = 27/17
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(b) s = 1.1
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(c) s = 1
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(d) s = 0.8

Figure 1. Time series diagrams of solutions for model (1.5) with four different values of s.
Fixing r = 1, c = 1/4, w = 1/2, p = 1/3, q = 2/7, g = 3/4, d = 1/4, and the same initial
value (0.3, 0.5, 0.4, 0.8).

In Figure 1(b), we choose s = 1.1 which satisfies the equality h < 1 + w
s . According to Theorem

4.3 and Remark 4.1, in this case the boundary equilibrium E1(1, 5
11 , 0, 0) is unstable while the positive

equilibrium E∗(0.96, 0.41, 0.04, 0.09) is stable. In the figure, the size of two prey populations X and
Y approach to 0.96 and 0.41, and the two predator populations U and V both tend to 0.04 and 0.09
respectively as the time increases. This shows that E∗ is stable, which verify our results.

In Figure 1(c), we choose s = 1 which satisfies the equality h < 1 + w
s . According to Theorem

4.3 and Remark 4.1, in this case the boundary equilibrium E1(1, 1
2 , 0, 0) is unstable while the positive

equilibrium E∗(0.91, 0.46, 0.08, 0.20) is stable. In the figure, the size of two prey populations X and
Y approach to 0.91 and 0.46, and the two predator populations U and V both tend to 0.08 and 0.20
respectively as the time increases. This verifies our results.

In Figure 1(d), we choose s = 0.8 which satisfies the equality h < 1 + w
s . According to Theorem

4.3 and Remark 4.1, in this case the boundary equilibrium E1(1, 5
8 , 0, 0) is unstable while the positive

equilibrium E∗(0.86, 0.51, 0.14, 0.35) is stable. In the figure, the size of two prey populations X and
Y approach to 0.86 and 0.51, and the two predator populations U and V both tend to 0.14 and 0.35
respectively as the time increases. This verifies our results.
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From the biological point of view, the decrease of s can be regarded as the decrease in the ratio of the
survival pressure of population Y to the survival pressure of population X. In the process of decreasing,
the population Y has more advantages in survival than population X, which leads to an increase in the
population density. Conversely, the density of population X decreases due to the stronger stress in
the same environment. At the same time, both the densities of predator U and V are increased. It is
worth noting that, with the change of s in the above examples, the total amount of two prey populations
remains unchanged, while the total density of two predator populations expands. This result gives us
two implications for model (1.5): First, the balance of two prey groups can be adjusted by controlling
the environmental pressure experienced by one of the prey population; Second, endangered predator
populations can be saved by controlling the survival pressure of the prey population.

6. Conclusions and discussions

In this paper, a predator-prey model with genetic differentiation both happened in the predator and
prey is studied, and some interesting results are obtained.

For model (1.5) without the predators, by the qualitative analysis and the Bendixson-Dulac criterion,
we get that the boundary equilibrium (0, 0) is unstable, and the positive equilibrium (1, w

s ) is global
asymptotical stability. These indicate that the two genotypes of the prey will be permanent.

Model (1.5) with one genotype of the predator and prey has two boundary equilibria (0, 0) and
(1, 0), and a positive equilibrium

(
g
p ,

r(p−g)
p

)
when p > g. The boundary equilibrium (0, 0) is always

unstable. The boundary equilibrium (1, 0) is stable when p < g, unstable when p > g, and there is a
stable local center manifold at (1, 0) when p = g. The positive equilibrium

(
g
p ,

r(p−g)
p

)
is always stable

if it exists. We also show that there is no periodic solution in the model by using Bendixson-Dulac
criterion. Therefore, the global dynamics of the model is clear as follows: boundary equilibrium (1, 0)
is globally stable when p < g, positive equilibrium

(
g
p ,

r(p−g)
p

)
is globally stable when p > g, and there

is a transcritical bifurcation in the model when p = g.
Model (1.5) has two boundary equilibria E0(0, 0, 0, 0), E1(1, w

s , 0, 0), and a positive equilibrium E∗ if
and only if h < 1 + w

s . The boundary equilibrium E0 is always unstable. Another boundary equilibrium
E1 is stable when h > 1+ w

s , unstable when h < 1+ w
s , and there is a stable local center manifold at (1, 0)

when h = 1 + w
s . The positive equilibrium E∗ is stable if it exists. Furthermore, there is a transcritical

bifurcation in the model when h = 1 + w
s .

If h > 1 + w
s , then model (1.5) has no positive equilibrium, an unstable E0 and a stable E1. Since

the axes are invariant with respect to model (1.5), boundary equilibrium E1 is globally stable when
h > 1+ w

s . This means that the prey will be permanent and the predators will be extinct, which is similar
to the principle of competitive exclusion for two competitive species [45]. However, if h < 1 + w

s then
model (1.5) has a local positive equilibrium and two unstable boundary equilibria. The global stability
of the positive equilibrium needs to be further analyzed.
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