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Abstract: The traditional label propagation algorithm (LPA) iteratively propagates labels from a
small number of labeled samples to many unlabeled ones based on the sample similarities. However,
due to the randomness of label propagations, and LPA’s weak ability to deal with uncertain points, the
label error may be continuously expanded during the propagation process. In this paper, the algorithm
label propagation based on roll-back detection and credibility assessment (LPRC) is proposed. A
credit evaluation of the unlabeled samples is carried out before the selection of samples in each round
of label propagation, which makes sure that the samples with more certainty can be labeled first.
Furthermore, a roll-back detection mechanism is introduced in the iterative process to improve the
label propagation accuracy. At last, our method is compared with 9 algorithms based on UCI datasets,
and the results demonstrated that our method can achieve better classification performance, especially
when the number of labeled samples is small. When the labeled samples only account for 1% of the
total sample number of each synthetic dataset, the classification accuracy of LPRC improved by at least
26.31% in dataset circles, and more than 13.99%, 15.22% than most of the algorithms compared in
dataset moons and varied, respectively. When the labeled samples account for 2% of the total sample
number of each dataset in UCI datasets, the accuracy (take the average value of 50 experiments) of
LPRC improved in an average value of 23.20% in dataset wine, 20.82% in dataset iris, 4.25% in
dataset australian, and 6.75% in dataset breast. And the accuracy increases with the number of labeled
samples.

Keywords: Label propagation; small number of labeled samples; credibility assessment; certainty;
roll-back detection

1. Introduction

Traditional machine learning algorithms can be generally divided into three categories: (1) Super-
vised learning, which aims to learn from a large number of labeled samples and predicts the label of
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new unknown samples from the learned knowledge. In the practice, usually we can collect a large
number of unlabeled samples, but the process of assigning labels to the samples is time consuming [1].
(2) Unsupervised learning, there is no corresponding category known in advance, so the classifier can
only be learned from the sample set without labels. The unsupervised learning models are usually built
based on the similarity between samples. (3) Semi-supervised learning, it relies on a small number
of labeled samples to guide the label prediction of unlabeled samples [2,3]. New labeled samples are
continuously added to the training set to compensate for the small number of labeled samples, which
leads to performance defects in supervised learning.

Recently, the application of semi-supervised learning algorithm is more and more extensive, and
scholars have done a lot of researches in this area. In addition to the traditional semi-supervised learn-
ing algorithm, such as S3VM [4], many new methods have been proposed. J. Levatic, et al. [5]
proposed an extension of predictive clustering trees for multi-target regression (MTR) and ensembles
thereof towards semi-supervised learning. This approach preserves the attractive properties of the
decision tree while allowing the use of unlabeled samples. In particular, it is interpretable, easy to
understand, quick to learn, and can handle numerical and nominal description characteristics. B. Jiang,
et al. [6] proposed a novel graph-based semi-supervised learning framework which includes the sparse
Bayesian semi-supervised learning method and the incremental sparse Bayesian semi-supervised learn-
ing method. The proposed algorithms can generate sparse solutions and make probabilistic prediction
by transformation and induction. Label propagation algorithm (LPA) is a semi-supervised learning
method based on graph. The labels are propagated from some known samples (vertices) to the un-
known ones based on the similarities between the vertices in the graph [7]. LPA has the advantages
of low complexity and high efficiency, and it has been widely applied in the fields of network com-
munity mining [8,9], information classification [10,11] and multimedia recognition and processing
[12]. However, the traditional LPA simply takes the similarities between samples as the basis of label
propagation, which lacks the evaluation criteria of new labeled samples. In addition, since the algo-
rithm incorporates the new labeled samples into the training set, the propagation error may gradually
increase, leading to the degeneration of the performance [13]. Due to the randomness during the pro-
cess of propagation and the weak ability of LPA to deal with uncertain points, many new improved
methods are proposed. C. Gong et al. [14] proposed a novel iterative LPA, in which each propagation
alternates between two paradigms, teaching to learn and learning to teach (TLLT). In the ”teaching to
learn” process, learners disseminate the simplest unmarked examples assigned by the teacher. In the
”learning-to-teach” step, the teacher adjusts the selection of the simplest subsequent example based on
the learner’s feedback. J. Hao, et al. [15] adopted the fuzzy method when dealing with the categories
of unlabeled samples. The categories of unlabeled samples are represented by the fuzzy membership
degree in the interval of [0,1]. The final step of the algorithm is to remove the ambiguity. X. K.
Zhang, et al. [16] dealt with the problem of random label selection by the value of node similarity. B.
Wang et al. [17] proposed dynamic label propagation (DLP) to simultaneously deal with the multiclass
and multi-label problem, the method in DLP is to update similarity measures dynamically by fusing
multi-label and multi-class information.

In this paper, we put forward a Label Propagation based on Roll-back and Credibility (LPRC)
algorithm to solve these problems. First, the credibility (label confidence) of each unlabeled sample is
evaluated. According to the evaluation results, the label propagation order of the samples is determined,
and the samples with high credibility are labeled in advance. Then, in order to avoid the impact of false
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label propagation, a roll-back mechanism based on feedback performance evaluation is proposed. In
the process of label propagation in every fixed number of iterations, the new labeled samples will be
default with the correct labels and added to the training set. At the same time, the samples in the
original training set with the same size of new labeled samples will be chosen to moved out as a new
dataset waiting to be labeled. The new labeled samples cannot be added to the training set until the
propagation accuracy reached a predefined threshold, so we can reuse these new labeled samples in
LPA with certain confidence.

The traditional LPA is described in section 2, and the details of LPRC algorithm is present in
section 3. In section 4, we give the comparison results both on artificial synthetic dataset and UCI
dataset, respectively. Finally, the conclusions and future research plan are given in section 5.

2. Label propagation algorithm

In label propagation algorithm, first, all categories in the sample set are required to be known.
Assuming the number of categories in the samples set is t, C = {c1, c2, ..., ct} represents the collection
of all the categories in the dataset. Then, the dataset is defined as follows: using XL = {x1, x2, ..., xl} to
represent the dataset of labeled samples, and XU = {x1, x2, ..., xu} to represent the dataset of unlabeled
samples. X = XL ∪ XU , and xi ∈ R

d, 1 ≤ l << u. In addition, YL = {y1, y2, ..., yl} represents the
labels set of labeled samples, YU = {y1, y2, ..., yu} represents the labels set of unlabeled samples. At the
beginning, all labels of unlabeled samples can be set as 0 for the initial value of YU is not so important.

The label propagation algorithm aims to spread labels of labeled samples to the samples with the
greatest similarity. Take X as the initial training matrix, classify the samples in XU through the labeled
samples in XL, add each round of newly labeled samples in XU to XL, and then use the updated XL to
conduct a new round of training on the unlabeled samples in XU . The label propagation algorithm will
repeat the above process until it reaches a certain end condition.

For a labeled sample xa ∈ XL, the similarity between it and the unlabeled sample xb ∈ XU determines
whether xa will spread its label to xb. X. Zhu et al.[18] defines the similarity between any samples xi

and x j as:

wi j = exp(−
d2

i j

σ2 ) = exp(−

∑D
d=1(xd

i − xd
j )

2

σ2 ) (2.1)

The label of samples will be spread according to the similarity between samples themselves. Clearly,
the greater the similarity between sample xa and xb, the easier it is for xa to propagate its own label to
xb. In [18], a (l + u) × (l + u) probabilistic transition matrix T is defined as (2.2), and Ti j represents the
possibility that node i propagates its own label to node j.

Ti j = P(i→ j) =
wi j∑l+u

k=1 wk j
(2.2)

Meanwhile, a (l + u) × t label matrix Y records the relationship between each sample and each
category. Yi j represents the probability that the i − th sample xi belongs to the j − th class. The initial
value of the unlabeled sample in the label matrix Y is not very necessary to the classification result, and
all the initial values in Y can be set as 0. Using the probability propagation matrix T to continuously
update the label matrix Y , and then the maximum s values in Y are chosen. In other words, finding
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the s unlabeled samples with the greatest similarity to the labeled samples, and assigning them to
corresponding labels, then, moving them from XU to XL. Repeat the process until the stop condition is
satisfied.

3. LPRC algorithm

The traditional LPA only need a small number of labeled samples in the training process. In each
subsequent training, the number of labeled sample dataset is continuously expanded by using the newly
labeled samples to improve the accuracy of classification. But in this process, there are also some prob-
lems that we cannot ignore. In reality, the differences between samples belong to different categories
are often not so clear, and the samples at the edge of the category are sparser than those at the center
of the category.

As shown in Figure 1(a), the samples on the boundary of two categories are identified as key nodes.
If the key nodes are wrongly labeled during the label propagation procedure, it would bring serious
impacts on the latter label propagation of unknown samples. Just as Figure 1(b) shows.

(a) (b)

Figure 1. A distribution assumed to explain the importance of key node. (a) The samples
with correct classes; (b) The result of key node being misclassified.

Therefore, we propose LPRC algorithm. First, we will evaluate the credibility of these unlabeled
samples, instead of classifying them directly, and the sequence of classification operation of unlabeled
samples is determined according to the credibility value of themselves. For those samples with high
credibility values, will be classified first. This part will be described in detail in section 3.2.

In addition, considering the distribution differences of samples in each category in the dataset, we
also put forward new ideas on how to select samples for labeling in each round. And this part will be
described in section 3.1.

Finally, as the label propagation algorithm constantly updates the training matrix and increases
the number of labeled samples, the classification error may be continuously expanded, resulting in a
drastically reduced accuracy. Therefore, we propose a roll-back mechanism based on feedback effect
detection. In the process of label propagation, the algorithm performs feedback accuracy detection on
the currently labeled samples every k rounds of iteration. Only when the set conditions are satisfied,
the algorithm will continue the next round of iteration. Otherwise, the samples labeled in this round
will be discarded and the label propagation of this round will be carried out again. This part will be
described in detail in section 3.2.
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3.1. The selection of unlabeled samples

In a dataset, we can find that the distribution of samples in different categories is often different,
which will also have a certain impact on the label propagation algorithm. Figure 2(a) shows a distri-
bution of the samples in a dataset. We can see that the samples of class A are more densely distributed
than those of the other two categories. The distribution of class B samples gradually becomes sparse
from the center. The distribution of class C samples is relatively uniform. There is an obvious dis-
tance between each pair of adjacent samples in Class C, which means C is sparser than the other two
categories.

(a) (b)

(c) (d)

Figure 2. (a) A dataset with all labeled samples. 2(b)–2(d) A propagating step of label
propagation. (b) The initial state with only 3 labeled samples. (c) A situation that may occur
in the course of propagation in one round. (d) The result because of the different density of
the sample distribution.

According to the label propagation algorithm, each round will spread corresponding labels to s
unlabeled samples that are most similar to the labeled samples. At this time, since the samples of class
C are more sparsely distributed than those of the other two classes, the similarity wc between any two
samples xc1 and xc2 of class C is generally lower than wa (wb) between wa1 and wa2 of any two samples
of class A (class B). This may lead to that class C has not received any labels spread from the labeled
samples of the class during the first n iterations.

However, the labeled sample dataset of the other two classes may misclassify the samples on the
edge of the category in the subsequent propagation due to the continuous expansion. As a result, with
the constant updating of XL, the classification errors in the later stage will become larger and larger,
and even the phenomenon of class A (class B) merging the samples of C may occur. Figure 2(b)–
2(d) have shown this situation. Although the samples of class B in the dashed box are at the edge,
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their distribution is sparser than that of the samples in the center of the category. Compared with the
samples of class C, whose samples are evenly and sparsely distributed in the original category, they
are easier to be spread corresponding labels by the similar samples. So, as shown in figure 2(d), the
samples in the solid box that originally belong to class C may be wrongly classified as class B. With
iteration after iteration of the algorithm, this error will be gradually amplified, and resulting in a large
number of these samples being swallowed by class B.

In order to avoid the situation mentioned above, we no longer select the s most similar samples
from the entire unlabeled sample dataset, but from the perspective of each category to consider them
separately when we select unlabeled samples to label in each round. That is, β = s/t unlabeled samples
most similar to the labeled samples of the class are selected from the t classes for labeling respectively.
In each round of iteration, new labeled samples are guaranteed to be added to each category, so that
the labeled sample dataset of each class can be uniformly expanded, avoiding the phenomenon of rapid
expansion of a certain class and large disparity in volume between categories, thus reducing or even
avoiding category annexation.

At the later stage of the algorithm iteration, the value of s may need to be recalculated. 1. All
unlabeled samples of t1 certain classes are classified over: set t = t − t1, s = β × t. 2. The number of
unlabeled samples α remaining in each class exists α < β: set β = α, s = β × t.

3.2. Credibility assessment

As previously mentioned in section 2, the traditional label propagation algorithm obtains the largest
s values directly from the label matrix Y , and continuously updates Y by using the probability prop-
agation matrix T . Namely to find the s unlabeled samples with the highest similarity to the labeled
samples, assign them to the corresponding labels, and move them from XU to XL.

However, such a selection mechanism actually only considers one aspect of ”similarity”. At this
point, we need to conduct a classification credibility assessment of these unlabeled samples.

When we get a labeled sample data set, we often hope that these samples can well represent the
classes to which they belong, and there are obvious differences between them. It means that these
samples are distributed in the center of their respective categories. In practice, however, we cannot
guarantee the quality of the labeled samples we get. For example, most of these samples are on the
boundary of two adjacent classes, so it is likely that the distance between these samples is not as sig-
nificant as we expected. If a label propagation algorithm is used at this time, there may be cases where
the similarity of some unlabeled samples to two (or more) labeled samples of different classes is close
to and higher than all other similarities, which means the probability that the unlabeled sample may be
assigned to its own label by two (or more) different categories is similar. The reason is that the label
propagation generated by traditional methods is completely controlled by the adjacency relationship
between samples, including those labeled and unlabeled samples. The labels of labeled samples are
blindly spread to unlabeled adjacent samples without considering the difficulty and risk of transmission
[14].

As the labeled sample dataset continues to expand with the iteration of the algorithm, we hope that
the quality of this dataset can be guaranteed. In this way, the classification accuracy will not be signif-
icantly reduced, and the probability of label propagation between samples of different categories can
be controlled. Therefore, we need to make an assessment of the label propagation order of unlabeled
samples.
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Figure 3. A distribution of unlabeled samples, the existing labeled samples are shown as the
red and blue solid circles.

As shown in Figure 3, we assume that there is such a sample distribution: the dividing line of A and
B is indicated by the dotted line in the figure, and the existing labeled samples are shown as the red and
blue solid circles in the figure. In this round of update of the algorithm, there are samples a-c waiting
to be labeled. The distance dAc from sample c to class A is less than the distance dAa from sample a to
class A, the distance dBc from sample c to class B is less than the distance dBb from sample b to class
B, and here we have: dAc − dBc = λ, λ→ 0.

So, the probability PAc that sample c belongs to class A, and the probability PBc that sample c
belongs to class B are both large and they are very close. In the traditional label propagation algo-
rithm, the label will be assigned to sample c according to max(PAc, PBc), but this may cause the wrong
classification of sample c.

In our newly proposed LPRC algorithm, we will further process the label matrix Y after each
iteration under the conditions in section 3.1: sorting the label sequence of samples, so as to improve
the classification accuracy of the label propagation algorithm.

As we mentioned in Section 2, in the label matrix Y , Yi j represents the probability that the i − th
sample belongs to the j − th class. Then, when the situation we discussed in this section occurs, it
means the set of categories for the dataset C = {c1, c2, ..., ct}, ∃xi ∈ XU ,Yxic1 − Yxic2 ≤ λ, λ→ 0. At this
point, for any sample xi ∈ XU , there is a set of label vectors YxiC = {Yxic1 ,Yxic2 , ...,Yxict}, represents the
probability that the sample xi belongs to each category. We find out the maximum value Yxicn and the
second largest value Yxicm from the set of label vectors, and set Dvalue = Yxicn − Yxicm .

Here we can get: Y =


Yx1c1 Yx1c2 ... Yx1ct

Yx2c1 Yx2c2 ... Yx2ct

... ... ... ...

Yxuc1 Yxuc2 ... Yxuct


It exists in YxiC = {Yxic1 ,Yxic2 , ...,Yxict}: Yxicn = Dmaxi = max(Yxic1 ,Yxic2 , ...,Yxict), and

DMmaxi = max(Yxic1 ,Yxic2 , ...,Yxic(n−1),Yxic(n+1), ...,Yxict). Moreover, here we need to use Class =

{class1, class2, ..., classu} ∈ C to record the category Cn indicated by Yxicn . Setting Dvpi =

(Dvaluei , classi), then we can get a two-dimensional matrix Dvp to store the value of Dvalue, and
classn represents the class Cn with the highest probability that the sample belongs to: Dvp =
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Dmax1 − DMmax1 class1

Dmax2 − DMmax2 class2

... ...

Dmaxu − DMmaxu classu


In each round of update of label matrix Y , the sample set is first divided according to the category

set C and the value of the sample in set Class. Samples have the same value in set Class will be divided
into a subset. Select β samples with the largest values in Dvalue from each subset to label. That is,
β unlabeled samples are selected from t categories each time should be sure that, the probability that
these unlabeled samples belong not only to the certain class is as large as possible, but also to other
classes is as small as possible. This operation could ensure the credibility of samples added to the
labeled sample dataset in each round. We refer to such samples as easy-to-label samples.

If the samples a-c in Figure 4 is evaluated here based on Dvalue and Class, the sequence of them to
be labeled can be changed.

The label matrix Y composed of the label vector set of samples a–c is: Y =


YaA YaB
YbA YbB
YcA YcB


After calculating its Dvalue and Class, respectively, we can get: Dvp =


Dmaxa − DMmaxa class1

Dmaxb − DMmaxb class2

Dmaxc − DMmaxc class3


According to Figure 5, for sample c: YcA − YcB = λ, λ→ 0, therefore, it will be labeled at the end.
Compared with sample c, sample a and b are not only close to their own classes, but also keep a

relatively obvious distance from the different classes to some extent. Such samples like a and b are
more reliable in classification.

After samples a and b are given corresponding labels (A and B) respectively, sample c will be
affected by both the original labeled samples and the newly labeled samples a and b. We will get the
result that sample c is divided into class B by superimposing these effects before, which is exactly in
line with the actual distribution of the sample dataset.

3.3. Roll-back detection mechanism

The advantage of the label propagation algorithm is that it is simple, fast and efficient, but it also
has the drawback that the results of each iteration are unstable and the accuracy is not high. In order
to control this instability, we added a detection mechanism in the process of algorithm iteration, which
called ”roll-back”.

As we know, the traditional label propagation algorithm will label s new samples in each round of
iteration and add this part of the samples to the labeled sample dataset. If there is a classification error
in the newly added sample in this part, then the classification errors in the later stage will increase with
the iteration of the algorithm. So here we try to use the ”roll-back” detection mechanism to control this
error.

After each round of iteration, we will get s samples of new labels. At this time, we add a condition:
each iteration of k rounds, a roll-back detection is carried out for the newly labeled s samples of the
round. Only when the condition is satisfied, the algorithm continues to execute. Otherwise, the newly
labeled s samples of the round will be discarded and the label propagation of the round will be carried
out again. Under the conditions in section 3.1, the flow path of the roll-back detection mechanism set
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for the new labeled samples of the round is as follows:
1. Use Nk

s to represent the dataset composed of s unlabeled samples with new labels in the k − th
round, and add Nk

s = {xn1 , xn2 , ..., xns} ∈ XU to XL. By default, all labels owned by samples in Nk
s are

correct.
2. Find the center sample of Nk

s and then calculate the distance Dis = {D1,D2, ...,DS } between each
sample and the center sample. Draw a circle with max(Dis) as the radius r, search for samples in Xk

L
within this range, and remove them out as Us. If the sample number within this range is s1, and s1 < s,
we will randomly select s − s1 samples from Xk

L − Us1 to Us.
3. Use Xk

L to represent the labeled sample dataset used for training in the k − th round, select s
samples to be removed out from Xk

L as a new independent unlabeled sample dataset Us.
4. Let a conduct label propagation on samples in Us, and detect the accuracy of newly transmitted

labels on samples in Us.
5. Set the accuracy rate as Rp and the threshold as η. If Rp < η, then the samples in Nk

s will
be discarded and the round of label propagation will be carried out again. If Rp < η, the algorithm
continues.

4. Experimental results and analysis

In order to evaluate the effectiveness of the method proposed in this paper, we conducted experi-
ments in the artificial synthetic dataset and UCI dataset, respectively. The hardware environment of
the experiment is: Intel(R) Core(TM) i7-9700, CPU 3.00GHz, and the software environment is: Win-
dows10+Matlab2017a+Python3.6.

4.1. Synthetic dataset

In Python, we used the method (sklearn.datasets()) provided by the sklearn library to generate the
5 synthetic datasets [19] we needed, as shown in figure 4 and table 1. Dataset circles is a double ring
shape, and it contains 1500 samples and 2 classes, 750 samples in each class. Dataset moons is made
by 1500 samples and it also contains 2 classes, 750 samples in each class. Dataset varied, aniso, blobs
each has 1500 samples and 3 classes, 500 samples in each class.

Figure 4. The illustration of artificial synthetic datasets, to show the distribution of samples.

We used 9 algorithms and LPRC algorithm for experimental comparison. These algorithms have
been proved to have high classification performance, and have been applied in many fields. And they
can adapt well to the situation of only a small number of labeled samples is known. The classification
effects of the 10 algorithms on the five artificially synthesized datasets and the original datasets are
shown in Figure 5, and the specific classification accuracy is shown in table 2. Labeled rate represents
the percentage of labeled samples in each dataset.
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LPRC (labeled rate = 0.01,s = 15), KNN (labeled rate = 0.01,k = 1) [20], DecisionTreeClassifier
(labeled rate = 0.01) [21], GaussianNB (labeled rate = 0.01) [22], LPA(label rate = 0.01, s = 15)
and keep the number of labeled samples for each category has the same proportion as the number of
samples for that category.

Table 1. The detail of each artificial synthetic dataset.

Datasets Sum Classes Sum of each class
Circles 1500 2 750
Moons 1500 2 750
Varied 1500 3 500
Aniso 1500 3 500
Blobs 1500 3 500

Figure 5. The classification result of the 10 algorithms on 5 synthetic datasets, the last
column shows the original datasets.

Mathematical Biosciences and Engineering Volume 17, Issue 3, 2432–2450.
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Table 2. The accuracy of the 10 algorithms on 5 synthetic datasets.

Algorithms
Datasets

Circles Moons Varied Aniso Blobs

MiniBatchKmeans 33 % 17 % 38 % 7 % 0 %
Meanshift 50 % 87 % 2 % 32 % 33 %

SpectralClustering 1% 74 % 34 % 99 % 33 %
DBSCAN 50 % 0 % 33 % 33 % 100 %

GaussianMixture 33 % 9 % 1 % 0 % 33 %
GaussianNB 58.48 % 86.34 % 93.93 % 79.26 % 99.86 %
DecisionTree 75.77 % 89.16 % 95.42 % 90.37 % 100 %

KNN 62.25 % 82.78 % 89.02 % 87.88 % 100 %
LPA 99.86 % 99.93 % 66.53 % 67.80 % 100 %

LPRC 100 % 100 % 97.80 % 99.80 % 100 %

By comparing the classification effects of the above 10 algorithms on 5 synthetic datasets, we can
see that the classification ability of LPRC algorithm is better than other algorithms on the whole, and
it can also better match the distribution of samples.

4.2. UCI dataset

The datasets iris, wine, australian, breast, downloaded through UCI [23], also used the above 10
algorithms for experimental comparison. The information for the data set is shown in table 3. Dataset
iris has 150 samples and 3 classes, and the number of features is 4. Dataset wine contains 178 samples
for 3 classes, and 13 features. Dataset australian contains 690 samples and 14 features, and dataset
breast contains 699 samples and 10 features. Both of dataset australian and breast has 2 classes.

The classification results of 5 algorithms, LPRC, KNN, GaussianNB (GNB), DecisionTreeClassi-
fier (DTC) and LPA with different labeled rate are shown in figure 6(a)-(d) and table 5 (average value
of 50 experiments is taken for each result), and the classification results of the other 5 algorithms are
shown in table 4.

Table 3. The details of 4 UCI datasets.

Datasets Sum of samples Number of features Number of classes
Iris 150 4 3

Wine 178 13 3
Australian 690 14 2

Breast 699 14 2
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Table 4. Accuracies of other 5 algorithms on these 4 UCI datasets.

Algorithm
Dataset

Iris Wine Australian Breast

MiniBatchKmeans 2% 10% 47% 6%
Meanshift 33% 7% 49% 4%

SpectralClustering 17% 16% 32% 40%
DBSCAN 17% 4% 52% 3%

GaussianMixture 0% 18% 44% 9%

(a) (b)

(c) (d)

Figure 6. The recognition accuracies with different labeled rate for different algorithms.
(a) The classification accuracies of these algorithms with different labeled rate on dataset
wine. (b) The results on dataset iris. (c) The results on dataset australian. (d) The results on
dataset breast. Compared with these experimental results can prove the good performance in
classification of LPRC, especially when the labeled rate is small.

Otherwise, an additional experiment is made to compare the performance of LPRC with TSVM
[24] and negative selection algorithm (NSA), these algorithms just need a small number of labeled
samples. The results on UCI datasets of these 3 algorithms are shown in figure 7(a)–(b) and table 6,
and the results on synthetic datasets are shown in figure 8.
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Table 5. Accuracies with different labeled rate of the 5 algorithms on these 4 UCI datasets.

Dataset
labeled rate

Algorithm
GaussianNB DecisionTree KNN LPA LPRC

iris

2% 69.96% 74.54% 75.54% 74.00% 94.33%
4% 78.22% 84.68% 84.82% 81.99% 95.41%
6% 84.59% 86.41% 86.24% 87.53% 95.94%
8% 87.82% 89.01% 87.67% 89.71% 96.16%

10% 89.80% 90.10% 89.62% 90.16% 96.19%
12% 92.47% 90.77% 90.91% 91.41% 96.28%
14% 93.00% 91.46% 91.40% 92.05% 96.48%
16% 93.31% 91.86% 92.46% 91.33% 96.45%
18% 93.21% 91.68% 92.42% 92.60% 96.73%
20% 94.11% 92.72% 93.63% 92.60% 96.68%

wine

2% 66.02% 67.19% 68.17% 67.58% 90.44%
4% 71.49% 74.81% 72.00% 82.21% 93.99%
6% 74.06% 77.65% 73.34% 85.71% 93.43%
8% 76.78% 80.63% 75.61% 86.45% 94.58%

10% 78.62% 82.37% 75.60% 89.44% 94.47%
12% 79.68% 83.30% 76.30% 90.07% 94.84%
14% 79.33% 84.16% 76.17% 90.91% 95.21%
16% 81.52% 84.35% 77.94% 91.71% 95.24%
18% 82.34% 85.00% 77.99% 91.97% 95.41%
20% 83.01% 87.45% 78.17% 91.71% 95.49%

australian

2% 73.16% 75.08% 76.12% 75.79% 79.29%
4% 75.21% 76.71% 78.05% 78.09% 79.29%
6% 77.13% 77.45% 78.78% 79.31% 80.56%
8% 80.31% 78.87% 79.58% 80.21% 81.15%

10% 80.45% 79.70% 81.15% 80.49% 81.37%
12% 80.73% 80.51% 81.62% 81.63% 82.36%
14% 80.85% 80.93% 82.69% 82.32% 82.83%
16% 80.81% 80.52% 83.69% 82.91% 83.61%
18% 81.32% 80.43% 83.47% 83.35% 84.13%
20% 81.01% 81.40% 84.15% 83.38% 84.37%

breast

2% 87.98% 88.26% 90.54% 92.89% 96.67%
4% 88.04% 89.68% 92.15% 94.71% 96.78%
6% 88.99% 89.81% 93.25% 94.54% 96.82%
8% 89.50% 90.78% 95.10% 95.30% 96.90%

10% 89.73% 91.70% 95.47% 95.85% 96.94%
12% 90.18% 91.93% 95.59% 95.67% 96.94%
14% 91.82% 92.61% 95.66% 96.18% 97.02%
16% 91.41% 92.91% 96.24% 96.12% 97.21%
18% 91.73% 92.43% 96.67% 96.19% 97.16%
20% 92.47% 93.21% 96.32% 96.33% 97.24%
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(a) (b)

Figure 7. The recognition accuracies with different labeled rate for different algorithms.
(a) The classification accuracies of these algorithms with different labeled rate on dataset
australian. (b) The results on dataset breast.

Figure 8. The classification result of the 3 algorithms on 2 synthetic datasets.

After experimental comparison, we found that the LPRC algorithm has good performance in clas-
sification, and it especially has high accuracy when only has a small number of labeled samples. As
the number of labeled samples increases, the accuracy rate also shows an increasing trend. In the pro-
cess of propagation, the error caused by the addition of new labeled samples is reduced, and the case
of one class of samples being swallowed by another is prevented. The classification effect has been
significantly improved.

5. Statistical test for comparison of LPRC

Another experiment is made to further test the method LPRC we proposed. The result is analyzed
by a significance test to assess the effectiveness of LPRC. Table 7 shows the average results for 50 runs
of LPA and LPRC on 5 UCI datasets, and we can find that the accuracies of LPRC are higher than
LPA. The statistical test of the results is based on two hypotheses of the average accuracy acc values
of LPRC, where u0 is the average accuracy of LPA: H0 : acc is similar with u0

H1 : acc is significantly bigger than u0;

Based on the central limit theorem, the average accuracy obtained by repeating the algorithm can
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Table 6. Accuracies with different labeled rate of the 3 algorithms on these 2 UCI datasets.

Dataset
labeled rate

Algorithm
TSVM NSA LPRC

australian

2% 72.17% 59.91% 79.29%
4% 76.58% 65.75% 79.29%
6% 77.20% 68.01% 80.56%
8% 78.56% 69.48% 81.15%

10% 81.85% 69.71% 81.37%
12% 81.90% 71.34% 82.36%
14% 83.23% 72.38% 82.83%
16% 83.89% 71.35% 83.61%
18% 83.86% 72.19% 84.13%
20% 84.67% 72.74% 84.37%

breast

2% 93.22% 82.13% 96.67%
4% 93.91% 88.27% 96.78%
6% 94.77% 91.23% 96.82%
8% 94.72% 92.57% 96.90%

10% 94.87% 93.66% 96.94%
12% 94.99% 92.94% 96.94%
14% 95.11% 93.16% 97.02%
16% 95.23% 93.93% 97.21%
18% 95.35% 94.31% 97.16%
20% 95.14% 93.53% 97.24%
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Table 7. The results of statistical test (α = 0.05).

Dataset labeled rate
Algorithm

LPA LPRC Statistical test

acc1 var1 acc2 var2

iris

2% 74.00% 1.03E-02 94.33% 1.74E-03 138.17
4% 81.99% 7.25E-03 95.41% 7.26E-04 129.57
6% 87.53% 6.59E-03 95.94% 4.59E-05 89.33
8% 89.71% 1.96E-03 96.16% 4.01E-05 230.36

10% 90.16% 1.67E-03 96.19% 4.27E-05 252.75
12% 91.41% 1.22E-03 96.28% 4.99E-05 279.43
14% 92.05% 9.17E-04 96.48% 4.27E-05 338.17
16% 91.33% 8.02E-04 96.45% 5.41E-05 446.88
18% 92.60% 5.07E-04 96.73% 4.13E-05 570.21
20% 92.60% 4.72E-04 96.68% 5.60E-05 605.09

wine

2% 67.58% 1.67E-02 90.44% 7.64E-03 95.82
4% 82.21% 1.17E-02 93.99% 4.30E-04 70.47
6% 85.71% 6.44E-03 93.43% 1.65E-03 83.91
8% 86.45% 5.85E-03 94.58% 3.50E-05 97.28

10% 89.44% 1.63E-03 94.47% 2.10E-04 216.01
12% 90.07% 1.28E-03 94.84% 6.53E-05 260.86
14% 90.91% 1.33E-03 95.21% 7.35E-05 226.32
16% 91.71% 7.66E-04 95.24% 4.83E-05 319.84
18% 91.97% 7.70E-04 95.41% 5.98E-05 312.72
20% 91.71% 5.85E-04 95.49% 6.25E-05 452.31

australian

2% 75.79% 5.46E-03 79.29% 3.12E-03 44.87
4% 78.09% 4.64E-03 79.29% 3.79E-03 18.10
6% 79.31% 3.51E-03 80.56% 1.38E-03 24.93
8% 80.21% 2.72E-03 81.15% 1.17E-03 24.18

10% 80.49% 1.26E-03 81.37% 1.16E-03 48.89
12% 81.63% 1.36E-03 82.36% 9.49E-04 37.57
14% 82.32% 6.70E-04 82.83% 6.64E-04 53.28
16% 82.91% 5.16E-04 83.61% 5.95E-04 94.96
18% 83.35% 6.27E-04 84.13% 4.27E-04 87.08
20% 83.38% 6.11E-04 84.37% 5.08E-04 113.42

breast

2% 92.89% 2.12E-03 96.67% 8.78E-06 124.80
4% 94.71% 4.79E-04 96.78% 1.31E-05 302.50
6% 94.54% 7.34E-04 96.82% 1.23E-05 217.44
8% 95.30% 1.68E-04 96.90% 1.05E-05 666.66

10% 95.85% 8.29E-05 96.94% 1.11E-05 920.39
12% 95.67% 1.14E-04 96.94% 1.70E-05 779.82
14% 96.18% 9.49E-05 97.02% 2.14E-05 619.60
16% 96.12% 8.01E-05 97.21% 1.79E-05 952.55
18% 96.19% 1.17E-04 97.16% 2.04E-05 580.35
20% 96.33% 5.68E-05 97.24% 1.87E-05 1121.48
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be assumed to follow a normal distribution. According to [25], (acc−u0)
(s/
√

n) coincides with T (n − 1), and
if H0 established, the average accuracy acc would be close to the value of u0 for H0. Otherwise, H0

would be rejected with a confidence level of 1 − α when (acc−u0)
(s/
√

n) ≥ Tα(n − 1) is satisfied. We use s to
represent the sample variation and n is the number of repetitions.

The results of the statistical test are shown in table 7, acc1 and acc2 represent the average accuracies
of LPA and LPRC, respectively.

As can be observed in table 7, for the given confidence level, all the test results are higher than the
rejection threshold Tα=0.05(49) = 1.6777. It means that H0 does not established and H1 is true. This
experiment proved that the proposed method LPRC is effective.

6. Conclusion and future work

In this paper, a new algorithm LPRC is proposed to improve the stability of the traditional LPA.
To achieve better propagation results, a credibility assessment and a roll-back detection schemes are
designed. The credibility assessment of each sample is calculated first to determinate the label propa-
gation order, which ensures that the new labeled samples are more reliable to be added to the labeled
set for future propagation. Then, a roll-back mechanism based on feedback detection is used to the
control the propagation error caused by wrong labels. Only when the exit conditions are satisfied, the
new labeled samples could maintain their labels and be moved to labeled sample dataset, or the new
labeled samples in this round will be discarded.

LPRC not only maintains the original simple and efficient features of label propagation, but also
increases its accuracy in classification. The comparisons based on the artificial synthetic datasets
and the UCI datasets demonstrated that classification performance of LPRC are obviously better than
traditional algorithms. In particular, it is suitable to the situation with only a small number of labeled
samples.

In the feature, we will continue to make deep research in label propagation algorithm in order to
let it exert the best performance. The research we made is just based on the static samples, but in
the practice, the samples are always dynamical. Considering with this situation, we will focus on the
dynamic samples in the next step to fit the practical applications better.
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