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Abstract: The universality of M-polynomial paves way towards establishing closed forms of many
leading degree-based topological indices as it is done by Hosoya polynomial for distance-based indices.
The study of topological indices is recently one of the most active research areas in chemical graph
theory. The aim of this paper is to establish closed formulas for M-polynomials of Linear chains of
benzene, napthalene, and anthracene graphs. From this polynomial we also compute as many as nine
degree-based topological indices for these three chains. Our results will potentially play an important
role in pharmacy, drug design, and many other applied areas of molecular sciences.
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1. Introduction

Chemical graph theory is an emerging subfield of Mathematical Chemistry which helps in provid-
ing us tools such as polynomials and functions [1] to characterize properties of substances [2]. Wiener
index has been largely used in [3]. A general modelling of some vertex-based indices of benzenoid
systems has been presented in [4] and hexagonal systems in [5]. These tools carry potential informa-
tion relating the structural properties of a molecular substance. Mathematicians are actively developing
structural polynomials and functions that can take structural parameters such as number of atoms or
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molecules in a certain unit or number of bonds etc. as inputs to these functions and the out put informa-
tion will be related to the properties of these molecular substances [6]. The main problem comes in the
development of a very general polynomial that can generate these key functions after successive opera-
tions of differentiation and integration. The Hosoya polynomial is one such ingredient in the context of
distance-based topological indices and key functions obtained from it are Weiner index, hyper Weiner
index, and Harary index [6]. The M-polynomial is quite similar to the Hosoya polynomial except the
fact that it produces degree-based topological indices.

A similar breakthrough was obtained recently by Deutsch and Klavzar [7] in 2015 in the form of
M-polynomial which is extensively used nowadays to obtain many degree-based indices of different
structures. The Authors established closed forms of degree-based indices of some famous structures
like nanostar dendrimers in [8], titania nanotubes in [9], V-phenylenic nanotubes and nanotori in [10],
boron nanotubes in [11], polyhex nanoubes in [12] and benzenoid systems in [13]. These indices have
been closely linked with properties of chemical substances [14]. Wiener indices of trees have been
computed in [15] which have a lots of applications. Benzenoid hydrocarbons play a vital role in our
environment, food and chemical industries. In this article we are concerned about some linear chains of
hydrocarbon in which benzene is an integral element. All considered graphs are simple and connected.
We fix G for a connected simple graph with edge set E(G) and vertex set V(G) , d, is the degree of
vertex u, 6 = min{d, : u € V(G)} and A = max{d, : u € V(G)}. The M- Polynomial of G is defined as

MG, xy)= D myxly,

S<<i<A

where m;; is the number of edges uveE(G) such that i < j [7]. For the sake of mere computation, we
prefer to notate M(x,y) = f(x,y). In 1975 Milan Randic introduced the Randic index R_;,>(G) and he

defined it as
Rip@G)= > (1/Vd,d,).

uveE(G)

the generalized Randic index is defined as

Ri(G)= > (1/dyd,)"

uveE(G)

,[16]. Randic used this index to study molecular attributes in [17]. Bollobas et al. discussed graphs
with maximal weight using Randic index in [18]. New look of this index is presented in [19]. Authors
discussed some molecular graphs with Randic index in [20] and with maximal Randic index in [21].
The Inverse Randic index [22], is defined as

RR,(G) = D (dd)"

uveE(G)

It is clear that R_,»(G) is a special case of R,(G) where @ = —1/2. This index has vast application in
diverse areas [23] and [24]. Some recent results about Randic index can be traced from [25]. Gutman
and Trinajstic defined two other indices as

Mi(G)= ) did,
uveE(G)
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MyG)= ) did,

uveE(G)
and the modified second Zagreb index is

MGy = ) 1/dd,.

uveE(G)

For details about these indices we refer to [26] and [27]. Some properties of Zagreb index have been
outlined in [28] The Symetric Division index is also an important index given as

SSD(G) = Z {(min(d,,, d,))/(max(dy, d,)) + (max(d,, d,))/(min(d,, d,))}

uveE(G)

Harmonic Index is
H(G) = Z 2/du + dv’

uveE(G)

the inverse sum index is

1G)= ), did/(dd,),

uveE(G)

and the augmented Zagreb index is

AG)= ). (dd/(d, +d,~2)).

uveE(G)

For further details of these indices, we refer to [29] and [30] where Zagreb indices and some of its
variants have been provided. We use the following notations for the operations

of(x,y)
ox

_0f(x,y)
=y

D, =x

b

y ay
5":f f(t’y)dt,
0 t

5, = f” AGSIPN
0

t
Jf(x,y) = fx, x),

and
Qo (f(x,) = x" f(x,y).

Benzenoid graphs play important part in industry of hydrocarbons. Saturation numbers of benzenoid
graphs have been computed in [31]. Linear chains of these benzene contribute in formation of many
other important hydrocarbons. In 1981 Graovac et al. studied about benzenoid system with zero
Energy gap [32]. In 2001 Gutman discussed Hosoya polynomial of benzenooid graphs [33]. In 2004
Vukicevic et al. gave the results about the Wiener indices of Benzenoid graph [34]. In 2006 Gutman et
al. computed the formula for calculating resonance energy of benzenoid hydrocarbons [35]. In 2009
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vesel studied about 4-tiling of benzenoid graphs [36]. In 2011 Das et al. gave the spectral properties
of some matrix of benzenoid systems [37].

In the present article we focus on the combinatorial and topological aspects of Linear chains of Ben-
zene, Nepthalene and Anthracene graphs. In particular we establish closed results for M-polynomials
of these systems and then using successive operations of calculus, we derive formulas for topological
indices of these systems.

2. The main results
In this section we will compute M Polynomial of linear chains of benzene, napthalene and an-

thracene graphs and also some topological indices related to these graphs. We start with the linear
chains of benzene.

SOEI

Figure 1. Linear chain of benzene graph.

Theorem 2.1.1 The M-Polynomial of linear chain of benzene graph is

M(B,, x,y) = 6x*y* + 4(n — Dx>y* + (n — Dx’y’.

Proof. Let B, be the linear chain of benzene graph. Then from Figure 1 we have

[V(B)| =4n+?2

|E(B,)| =5n+1
The edge set E(B,, has following three partitions

|Eoo| = {e = uveE(By)\d, = 2d, = 2},
|E3,2| = {6 = MVEE(Bn)ldM = 3dv = 2}’
|E33| = {e = uveE(B,)|d, = 3d, = 3},

and

|Esn| = 6,
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|E3> = 4(n-1),

|E3,3| = n-1.
Thus , M polynomial of B, is
M(B,,x,y) = mi(By)x'y’

i>j

= > By + ) msa(B)xXy + ) ms(B)xy
2>2 3>2 323

= D mna(BIXY + Y mn(B)XY + ) mi(B,)xy
2>2 3>2 3>3

= |ExlX®y + [Esplx’y? + |Es5lxy’
= 6x2y2 +4(n — 1))(3y2 +(n - 1)x3y3.

Now using the operations discussed in introduction we have the following results,
proposition 2.1.2 Let B, be linear chain of benzene graph then

1. My(B,) =26n-2
2. My(B,) =33n-9
3. M"(B,) =Tn/9 +13/8
4. Ra(B,) = (39.20%2 4 320y 4 (Q2a+1 3 _ 30 pa+2 _ 320
5. RRa(B,) = (1/3%.27" + 1/3%)pn + (3/22"1 — 1/32.2072 — 1/320)
6. SSD(B,) = 32n/3 + 2
7. H(B,) = 29n/15 + 16/15
8. I(B,) = 63n/10 - 3/10
9. A(B,) = 2777n/64 + 295/64
Proof. Let
M(B,, x,y) = 6xzy2 +4(n — 1))c3y2 +(n— 1)x3y3.
Then ,
D.(f(x,y)) = 12x°y* + 12(n— Dx’y* + 3(n — Dx’y’.
Dy(f(x,y)) = 12x%y* + 8(n — Dx*y?* + 3(n — Dx'y’.
DD, (f(x,y)) = 24x*y* +24(n - D)x’y* +9(n - x’y’.
6(f(x,y) = 3x3*+4/3(n— Dx*y?* +1/3(n - Dx’y .
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8.0,(f(x,y)) = 3/2xy* +2/3(n— Dx’y* +1/9(n — 1)x’y’.
DIDI(f(x,y) = 27136 +372°(n— DXy’ + 3% (n— Dx’y’,

SI0N(f(x,y) = 3/2°7'XY +1/3°2°(n - DXy +1/3*(n — Dxy’.
6,D.(f(x,y)) = 6x°y +6(n— DX’y + (- 1)x’y.

0.Dy(f(x,y) = 6x°y* + 6(n — Dx*y* + (n — Dx’y’.

S J(f(x, ) = 3/2x* +4/5(m—1Dx’ +1/6(n — 1)x°.
6. J(D,D(f(x,y)) = 6x*+24/5(n—1)x° +3/2(n - 1)x°.
5,02J(DIDY(f(x,y) = 48x" +32(n— Dx’ +729/64(n — 1)x*

1. First zagreb Index :
M,(B,) = (D, + Dy)f(X,)’)|x:y:1 =26n -2,

2. Second Zagreb Index :
M>(B,) = (DyD) f(x, y)lx=y=1 = 33n =9,
3. Modified Second Zagreb Index :
M5 (By) = (6x0,)f(, Ylimy=1 = Tn/9 + 13/8,
4. Generalized Randic Index :
Ra(B,) = DIDS(f(X, y)lxmy=t = (372772 + 32 + (227413 = 37.27%2 - 3%%),
5. Inverse randic Index :
RRa(B,) = 8565 (f(x, Y)lamy=1 = (17372771 + 1/3°Nn + (3/2°71 = 1/37.2°72 - 1/3%%),
6.Symmetric division Index:
SSD(B,) = (6:Dy + 6,Dy) f(x, )| x=y=1 = 32n/3 + 2,

7.Harmonic Index:
H(B,) = 26, J(f(x,y)|=1 = 29n/15 + 16/15,

8.Inverse Sum Index :
1(B,) = 6.:J(DyD(f(x,y)))lx=1 = 63n/10 = 3/10,
9. Augmented zagreb Index :

A(B,) = 6,0 2J(DID}(f (x, Y))leo1 = 2777n/64 +295/64,

O
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2.1. Aspects of linear chains of nepthalene graphs

Now we move towards the second main object of this article. Figure 2 is a linear chain of Napthalene
graphs.

Figure 2. Linear chain of napthalene graphs.

. Theorem 2.1.3 The M-Polynomial of linear napthalene L.N,, graph is

M(L.N,, x,y) = 6x2y2 +4Q2n - 1))c3y2 + (5n - 4)x3y3.

Proof. Let L.N, be the linear napthalene graph. Then from Figure 2 we have

|V(L.N,)| = 10n

\E(L.N,)| = 13n - 2.

The edge set E(L.N,, has following three partitions

|Eyo| = {e = uveE(L.Ny)\d, = 2d, = 2},
|Eso| = {e = uveE(L.Ny)\d, = 3d, = 2},
|E3 3| = {e = uveE(L.N,)ld, = 3d, = 3},

and
|E2p| = 6,
|Esn| = 8n—4=42n-1),
|E3’3| = S5n-—4.

Thus , M polynomial of L.N,, is

Mathematical Biosciences and Engineering Volume 17, Issue 3, 2384-2398.
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M(B,,x,y) = ) mi(LN,)xy’

i>]

= > mn(LN)PY + Y mn(LN)EY + D mas(LN,)xy’
2>2 3>2 3>3

= D mn(LN)PY + Y mp(LN)EY + D mas(LN,)xy?
2>2 3>2 3>3

= |Exl?y’ +|Esolx’y + |E35lx’y’

= 6x°y* +4Q2n - DX’y + (5n — 4)x°y’.

proposition 2.1.4 Let L.N, be linear napthalene graph then,

M, (L.N,) = 70n - 20,
M>(L.N,) = 93n - 36,

MZ(L.N,) = 17n/9 +7/18,

Ra(L.N,) = (5.32 4 302043y, 4 (220+1 3 _ 30 Da+2 _ 4 320),

. RRa(L.N,)) = (5/3% + 1/3%.207 2y + (3/220°1 — /322072 _ 4/32),
. SSD(L.N,) = 82n/3 — 14/3,

. H(L.N,) = 73n/15 + 1/15,

. I(L.N,) = 171n/10 — 24/5,

. A(L.N,)) = 7741n/64 — 473/16.

O 0N AW~

Proof. Let
M(L.N,, x,y) = 6x°y* + 42n — 1)x’y* + (5n — 4)x°y°.

Then,

D.(f(x,y)) = 12x}*+12Q2n - 1)x*y* + 3(5n — 4H)x°y’,
Dy(f(x,y)) = 12x°y* +8(2n - 1)x’y* +3(5n — 4)x°y’,
DD, (f(x,y)) = 24x°y* +242n — Dx’y* + 9(5n — 4)x’y’,
6:(f(x,y)) = 3x3*+4/32n - DX’y + 1/3(5n - 4)x°y,
8.0,(f(x,y)) = 3/2x*y* +2/32n — Dx’y* + 1/9(5n — 4)x°y,
DIDS(f(x,y)) = 2°"13x% 43727720 - Dxy* +3%(5n - 4)x°y’,
SIST(f(xy) = 3/2°7'Y +1/37.2°7(2n - DXy’ + 1/3%(5n - )Xy,
oD (f(x,y)) = 6)62y2 +6(n — 1))c3y2 + (5n — 4)x3y3,
6.D,(f(x,y) = 6x°y*+8/32n— Dx’y* + (5n - 4)x°y’,
S J(f(x, ) = 3/2x*+4/52n - 1Dx° +1/6(5n — 4)x°,
5 J(D,DL(f(x,y))) = 6x* +24/52n — 1)x° +3/2(5n — 4)x°,
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810 J(DIDY(f(x,y)) = 48x" +32(2n— 1)x° +729/64(5n — 4)x*.

1. First zagreb Index :
Ml (LNn) = (Dx + Dy)f(-x’ y)|x:y:1 = 70n - 20.
2. Second Zagreb Index :

MZ(LNn) = (Dny)f(X, y)lx:y:I = 93n - 36.

3. Modified Second Zagreb Index :
M3(L.N,) = (6.:8,) f (X, Yoyt = 171/9 +7/18.
4. Generalized randic Index :
Ra(L.N,) = DIDY(f(x, Y)limy=1 = (537 + 3727 ) + (220713 - 372742 - 4.3%),
5. Inverse randic Index :
RRa(L.N,) = 8365 (f(x, Y)lxmy=t = (5/3% +1/39.2° ) + (3/2%71 = 1/37.2772 = 4/3%).
6.Symmetric division Index:
SSD(L.N,) = (6,Dy + 6,Dy) f(x, y)|y=y=1 = 82n/3 — 14/3.

7.Harmonic Index:
H(L.N,) =26, J(f(x,y)|x=1 = 73n/15 + 1/15.

8.Inverse Sum Index :
I(L.N,) = 6:J(DyD,(f(x,y))lx=1 = 171n/10 — 24/5.
9. Augmented zagreb Index :

A(L.N,) = 830_,J(DID}(f(x,y)lxet = T741n/64 — 473/16.

2.2. Aspects of linear chains of anthracene graphs

Now we move towards the theoretical aspects of linear chain of anthracene graphs. Following
Figure 3 gives a mathematical pattern of carbon atoms sequencing. |

Figure 3. Linear chain of anthracene graph.
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Theorem 2.1.5 The M-Polynomial of linear anthracene L.A,, graph is

M(L.A,, x,y) = 6x*y* + 4(3n — Dx*y* + 2(3n — 2)x°y°.

Proof. Let L.A, be the linear anthracene graph. Then from figure 3 we have

[V(L.A,)| = 14n,

IE(LA,)| = 181 - 2,

The edge set E(L.A, has following three partitions

|E2o| = {e = uveE(L.Ayld, = 2d, = 2},
|E32| = {e = uveE(L.Ay)ld, = 3d, = 2},
|E3 3| = {e = uveE(L.Ay)\d, = 3d, = 3},

and
|E2n| = 6,
|E3o| = 4(GBn-1),
|E3’3| = 2(31’1—2)

Thus, M polynomial of L.A,, is

M(B,,x,y) = ) mi(LA)XY,
2]
= D ma(LAYRY + ) mn(LANEY + ) mys(LA)KY,
2>2 3>2 3>3
= D mn(LA)EY + ) man(LA)CY + ) ma(LA)KY,
2>2 3>2 3>3
= |Epl?y? +Esaly? + |Essley’

Mathematical Biosciences and Engineering Volume 17, Issue 3, 2384-2398.
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= 6x°y* +43n - Dx*y* +2(3n - 2)xy’,

proposition 2.1.6 Let L.A, be linear anthracene graph then,

. RCX(L.An) — (32a+1'2 + 3(”1.2(”2)1’1 + (22a+1.3 _ 3(1.2a+2 _ 32(1.22)’
. RRa(L.A,) = (1/3%71.2072 4 2321y, 4 (32201 _ 1 /3e pa=2 _ 4/32)

M(L.A,, x,y) = 6x*y* + 43n — Dx*y* + 2(3n — 2)x°y°.

1. M(L.A,) =96n — 20,
2. My(L.A,) = 126n — 36,
3. M}(L.A,) = 8n/3 +7/18,
4
5
6. SSD(L.A,) =38n—14/3,
7. H(L.A,) =34n/5 + 1/15,
8. I(L.A,) = 117n/5 - 24/5,
9. A(L.A,) = 825n —473/16.
Proof. Let
Then ,
D(f(x,y))
Dy(f(x,y))
DyD,(f(x,y))
0:(f(x, )
0.:0,(f(x,y))

DEDI(f(x,y))

826 (f(x,))
8,D.(f(x,y))

8. Dy(f(x,y))

5. J(f(x,)

8. J(D,D(f(x, 7))
5,02 J(DID}(f(x,y)))

1. First zagreb Index :

12x%y* + 12(3n — DX’y + 6(3n — 2)x°y°,

12x°y* + 8(3n — 1)x*y?* + 6(3n — 2)x°y?,

24x*y* +24(3n — Dx*y* + 18(3n — 2)x°y?,

3x%y* +4/33n — Dxy?* +2/33n - 2)x%y?,

3/2x°y* +2/33n — Dx*y* +2/93n — 2)x°y?,

220+ 3322 4 37 2923 — 1)x*y? + 327230 — 2)x°y’,
3722072y £ 1/3%.2972(3n — Dx’y? +2/3%%(3n - 2)x°y°,
6x>y* + 6(3n — 1x*y* + 2(3n - 2)x%y?,

6x°y* +8/3(3n — 1)x*y* + 2(3n — 2)x°y°,

3/2x* +4/5(3n - 1)x° + 1/3(3n — 2)x5,

6x* +24/53n - 1)x° +33n - 2)x°,

48x* +32(3n — 1)x* +729/32(3n — 2)x*.

M(LA,) = (D, + Dy)f(x7 y)lx:yzl =96n - 20

2. Second Zagreb Index :

MZ(LAn) = (Dny)f(X, y)'xzy:l = 126n - 36

Mathematical Biosciences and Engineering
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3. Modified Second Zagreb Index :
ME(LA) = (6,6, (%, Yliyer = 8n/3 +7/18
4. Generalized randic Index :
Ra(L.A,) = DIDS(f(x,3))lxmy=1 = (37712 4+ 39712720 4 (220413 — 302042 — 320 22)
5. Inverse randic Index :
RRa(L.A,) = 8865 (f(x, Y)amy=r = (1737712972 4+ 2/3% Y+ (3/2°71 = 1/3%.2°72 — 4/3%)
6.Symmetric division Index:
SSD(L.A,) = (0:Dy + 6,Dy) f(x,y)|x=y=1 = 38n —14/3

7.Harmonic Index:
H(LA,) = 26 J(f(x, )]zt = 34n/5 +1/15

8.Inverse Sum Index :
I(L.A,) = 6, J(DyD.(f(x, y))lx=1 = 117n/5 = 24/5
9. Augmented zagreb Index :

A(LA,) = 6,0 2J(DID(f (x, y))lx=1 = 825n — 473/16.

3. Conclusions

In this paper we derived M-polynomials and closed forms of some degree-based topological indices
of linear chains of benzene, napthalene and anthracene graphs. Actual features about these results are
the correlation of these indices on the basic units of these three chains. These indices could poten-
tially play a significant role in determining properties of these compounds and others in which these
compounds are used. It is important to mention here that some of these topological indices are derived
directly by using techniques and definitions available in the literature.
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