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Abstract: Oncolytic virotherapy is a promising cancer treatment that harnesses the power of viruses.
Through genetic engineering, these viruses are cultivated to infect and destroy cancer cells. While this
therapy has shown success in a range of clinical trials, an open problem in the field is to determine
more effective perturbations of these viruses. In this work, we use a controlled therapy approach to
determine the optimal treatment protocol for a delayed infection from an immune-evading, coated
virus. We derive a system of partial differential equations to model the interaction between a growing
tumour and this coated oncolytic virus. Using this system, we show that viruses with inhibited viral
clearance and infectivity are more effective than uncoated viruses. We then consider a hierarchical level
of coating that degrades over time and determine a nontrivial initial distribution of coating levels needed
to produce the lowest tumour volume. Interestingly, we find that a bimodal mixture of thickly coated
and thinly coated virus is necessary to achieve a minimum tumour size. Throughout this article we
also consider the effects of immune clearance of the virus. We show how different immune responses
instigate significantly different treatment outcomes.
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1. Introduction

Oncolytic viruses are genetically engineered viruses that preferentially target and destroy cancer
cells [1]. This emerging anticancer strategy exploits the lytic nature of viral replication to enhance the
killing of malignant cells. Over the past decade, many oncolytic viruses have been tested in clinical
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trials [2], with one of these approved by the FDA for treatment of metastatic melanoma [3]. With the
advancement of a growing number of oncolytic viruses to clinical development, treatment protocol is
becoming a crucial factor for achieving optimal therapeutic efficacy.

Host immunity and the tumor microenvironment contribute significantly to inefficient virus de-
livery [4]. To overcome these obstacles, a range of novel mechanisms have been developed: gel-
based mediums, nanoparticles, immunomodulatory agents and molecules that can manipulate the tu-
mor microenvironment [4]. Gel-based mediums have been used successfully to improve virotherapy,
chemotherapy and immunotherapy [5–11]. In these therapies, therapeutic agents are either loaded onto
gels or coated to provide sustained therapy release and therapeutic efficacy. Nanoparticles have been
investigated as a viral DNA and RNA delivery system as they can be engineered to have a decreased
immune response [12], and their physical properties can be used to provide controlled viral release and
diminish infectivity, maintaining an elevated local concentration [4, 13, 14]. Alternatively, polymer-
based nanomaterials, such as polyethyleneglycol (PEG), have been shown to be effective at shielding
particles from the extracellular environment and preventing clearance [12].

Each of these mechanisms looks to extend the treatment activity by controlling delivery and mod-
ulating immune system involvement. Using these therapeutic devices it could be possible to control
viral diffusion through the tumour bulk prior to initial infection and avoid activation of immune clear-
ance. Previously, Jenner et al. [15] developed a Voronoi cell-based model that predicted that modifying
viruses to delay their initial infection of tumour cells and avoid immune clearance could improve vi-
rotherapy. They showed that the length of the delay before initial infection has an impact on the
efficacy of this modified treatment. While insightful, due to the complexity and computation time of
their model they did not investigate what proportion of delayed and non-delayed virus would be op-
timal. Additionally, they were not able to consider whether a distribution of delayed-infection times
throughout the injected virus population could improve treatment. In this work, we develop a deter-
ministic formulation for their Voronoi Cell-Based model to be able to analyse in-depth their treatment
predictions using an optimal control approach.

Mathematical modelling has been used to improve the understanding of oncolytic viruses. Sys-
tems of ordinary differential equations (ODEs) that consider the basic interaction between uninfected
cells, infected cells and viruses have been used to suggest significant improvements to treatment pro-
tocols [16–19]. More complex systems of ODEs that consider the heterogeneity in the cancer cell
cycle have also been used to determine effective dosage protocols using in silico clinical trials [20].
Partial differential equations (PDEs) have also been successful at understanding treatment pitfalls and
suggesting improved therapies by considering the spatial aspect of this therapy [21–23].

Optimal control theory is a useful approach used to understand optimal viral characteristics and
dosage protocols [17,18,20,24,25]. Finite-horizon optimal control provides a useful tool to determine
ways of minimising a variable in an ODE system. Zurakowski and Wodarz [25] used this method
to find the constant concentration of drug that minimised the lowest excursion of the total tumour
size during the optimisation horizon. Genetic algorithms are heuristic global optimization routines
frequently employed to estimate parameters in computational biology models. Cassidy and Craig [20]
used this method to generate personalised optimal schedules for patients in an in silico virotherapy
trial.

Coating an oncolytic virus to delay infection and evade the immune system using either gel-based
mediums or nanoparticles could be instrumental in improving oncolytic therapy. Drawing on previous
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modelling of the delayed-infection and immune-evading coated oncolytic virus by Jenner et al. [15],
we derive a PDE system for this therapy and investigate its potential. Using optimal control theory,
we determine a dosage combination for the modified (coated) virus that can minimise the tumour
size. Simultaneously, we investigate the impact of the viral clearance on the outcome of therapy by
investigating the optimal dosage regime for different viral-clearance models.

2. Model formulation

As previously demonstrated in the work by Jenner et al. [15], the efficacy of oncolytic virother-
apy can be improved by altering the virus’s delivery mechanism to delay infection and avoid immune
clearance. To investigate the applicability of this suggested treatment improvement and to optimise the
protocol, we have developed a system of PDEs based on their model, that incorporates the interaction
between an oncolytic virus and a population of tumour cells. Virotherapy is predominantly adminis-
tered intratumourally or intravenously, resulting in individual infection sites and a non-homogeneous
distribution of the virus throughout the tumour. We simplify this aspect to consider a single injection of
virus that initially coats the tumour periphery uniformly, and consider the dynamics of the virus-tumour
interaction are radially symmetric. To consider the impact of clearance on the virus’s effectiveness, we
develop four different modelling assumptions. Parameters for the model were then taken from previous
model optimisations to data.

2.1. Model description and assumptions

Consider a density of susceptible tumour cells S (x, t), growing under a logistic growth rate with
a normalised carrying capacity, where x is the radial distance from the centre of a circular tumour.
Two types of viruses are considered in the model: coated virus particles VC(x, t) and uncoated virus
particles VN(x, t). We assume that the coating inhibits the virus from infecting susceptible cancer cells.
Uncoated virus infects susceptible cells with rate constant β, creating a density of infected tumour cells
I(x, t). Infected cells die due to lysis at rate dI and produce α uncoated viruses. Infected cells grow at
the same logistic rate as the susceptible tumour cells. In the model developed by Jenner et al. [15] they
assumed virus-infected cells do not replicate; however, there is evidence that this can occur for differ-
ent modified viruses [26, 27]. Both susceptible and infected tumour cells have a diffusion coefficient
DT .

The coating on the coated virus particles degrades at rate dC. We assume coated viruses are not
detectable by the immune system and as such are removed from the system, through loss into the tis-
sue, lymphatic system or vasculature at a slow rate δC. Uncoated virus, however, is detectable by the
immune system and as such is cleared more rapidly at rate Imm(S , I,VN). This function represents the
immune-driven clearance of the virus and will be described in the following subsection. Realistically,
virus diffusion would be influenced by the fluid flow through the tumour and obstructions in the mi-
croenvironment, such as densely packed cells and vasculatures [15]. Since, we do not model additional
factors such as these, we assume one-dimensional radially-symmetric diffusion is able to account for
the average dynamics of virus diffusion. Coated and uncoated viruses, therefore, diffuse through a
tumour with the same diffusion coefficient DV .

To model the decay of coating from the virus in more detail, we consider K levels of viral coat-
ing. The Kth level representing fully coated virus, which degrades until there is no coating (i.e., to an
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uncoated virus). We model coated virus as having discrete levels of coating, and the density of virus
particles with an ith level of coating, 1 ≤ i ≤ K, is given by VC,i(x, t).

A summary of the dynamics for coated and uncoated virus treatments of a growing tumour is pre-
sented in Figure 1. The corresponding partial differential equation (PDE) system is provided in Equa-
tion 2.1–Equation 2.7, with corresponding boundary conditions and initial conditions in Equation 2.8.

∂VC,K

∂t
= DV

∂2VC,K

∂x2 − dCVC,K − δCVC,K , (2.1)

∂VC,K−1

∂t
= DV

∂2VC,K−1

∂x2 + dCVC,K − dCVC,K−1 − δCVC,N−1, (2.2)

...

∂VC,i

∂t
= DV

∂2VC,i

∂x2 + dCVC,i+1 − dCVC,i − δCVC,i, (2.3)

...

∂VC,1

∂t
= DV

∂2VC,1

∂x2 + dCVC,2 − dCVC,1 − δVC,1, (2.4)

∂VN

∂t
= DV

∂2VN

∂x2 + dCVC,1 − Imm(S , I,VN) − β(S + I)VN + αdI I, (2.5)

∂S
∂t

= DT
∂2S
∂x2 + rS (1 − (S + I)) − βS VN , (2.6)

∂I
∂t

= DT
∂2I
∂x2 + rI(1 − (S + I)) + βS VN − dI I, (2.7)



∂xVC,i(0, t) = 0, ∂xVN(0, t) = 0, ∂xS (0, t) = 0, ∂xI(0, t) = 0,
VC,i(L, t) = 0,VN(L, t) = 0, ∂xS (L, t) = 0, ∂xI(L, t) = 0,

VC,i(x, 0) = piVT (H(x − (P − ε)) −H(x − (P + ε))),
VN(x, 0) = (1 −

∑
pi) VT (H(x − (P − ε)) −H(x − (P + ε))),

S (x, 0) = H(x) −H(x − P),
I(x, 0) = 0.

(2.8)

In this system, t represents days and x is the radial distance from the tumour centre in µm. The tumour
grows within the fixed domain [0, L] and the initial radius of the tumour, P, must satisfy P << L. We
model a single injection of virus at the periphery P of the tumour and consider an initial combination
of both uncoated and coated virus with different levels of coating. The initial injection of virus is
administered at the periphery of a circular tumour and, as such, the area of the injection is AI =

π[(P + ε)2 − (P − ε)2], and as a result the total virus injected at the periphery of the one-dimensional
problem considered is VT = V0

AI
. The Heaviside functionH(x) is used to model the initial cell densities

and virus injection. The proportion of the initial injection of virus, V0, that contains each level of coated
virus is given by pi, where i is the coating level. Note that 0 ≤ pi ≤ 1 and

∑K
i=1 pi ≤ 1.

No-flux boundary conditions are used for the tumour populations at x = L to simulate that tumour
cells do not leave the edge of the domain. Since virus particles are much smaller than cells, we assume
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Figure 1. Schematic of Equation 2.1–Equation 2.7: interaction between coated virus VC,i (for
i = 1 : K), uncoated virus VN , susceptible tumour cells S and infected tumour cells I. An
initial concentration of coated and uncoated virus is injected into the system. Uncoated virus
infects susceptible cells, creating infected cells. These infected cells then undergo lysis dying
and releasing new uncoated viruses into the system. The coating on the virus decays until
the virus is completely uncoated. Uncoated virus is quickly cleared by the immune system.
Susceptible and infected tumour cells continue to replicate until an infected cell undergoes
lysis and dies.

they can diffuse past x = L and be lost, whether into the surrounding tissue or the vasculature system,
and we impose that VC,i(L, t) = VN(L, t) = 0. As we are modelling a radially symmetric tumour, no-flux
boundary conditions are also applied for cells and virus at x = 0.

The biological mechanisms modelled in Equation 2.1–Equation 2.7 are further described as follows:

• In Equation 2.1, virus particles at the maximum coating level VC,K diffuse through the tumour with
coefficient DV . The coating decays at rate dC, and as such, viruses leave the Kth coating level at
rate dCVC,K and enter the subsequent lower-coating-level population VC,K−1. Coated viruses are
cleared at rate δC.
• In Equation 2.2, virus particles at the next maximum coating level VC,K−1 diffuse through the

tumour with coefficient DV . Viruses from the Kth coating level join the (K − 1)th coating level at
rate dCVC,K , and viruses leave the (K−1)th coating level at rate dCVC,K−1 and enter the subsequent
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lower coating level VC,K−2. Coated viruses are cleared at rate δC.
• Equation 2.3 is the general formulation for coated viruses. Virus particles at the ith coating level

diffuse through the tumour with coefficient DV . The coating decays at rate dC, meaning viruses
from the coating levels above enter at rate dCVC,i+1, and viruses at the currect coating level leave
at rate dCVC,i. Coated viruses are cleared at rate δC.
• In Equation 2.4, virus particles at the last coating level diffuse and are cleared at the same rates as

the preceding coating levels. As this is the last coating level, virus lose the remaining coating and
enter the uncoated virus population VN at rate dCVC,1.
• In Equation 2.5, uncoated virus, VN , diffuses through the tumour with the same diffusion coeffi-

cient DV . Viruses are cleared by an immune response described by the function Imm(S , I,VN),
which can be dependent on the susceptible and infected tumour cells, S and I. Uncoated viruses
infect susceptible and infected tumour cells at rate β(S + I)VN , and new uncoated viruses are
created through cell lysis which occurs at rate dI I and produces α new viruses.
• In Equation 2.6, susceptible tumour cells diffuse with coefficient DT . They undergo proliferation

at a logistic growth rate r, normalised to a carrying capacity of 1. Susceptible cells are infected
by uncoated-virus at rate βS VN .
• In Equation 2.7, infected tumour cells also diffuse with coefficient DT . They similarly undergo

logistic growth. Infected cells arise through infection of the susceptible tumour cell population at
rate βS VN . These cells undergo lysis at rate dI I.

2.2. Modelling the immune clearance of uncoated virus

The immune response to an oncolytic virus is complex and depends heavily on the tumour type,
level of heterogeneity and the genetic modification of the virus. In this section, we develop four
hierarchically-related formulations for the clearance rate of uncoated virus by the immune system
Imm(S , I,VN). Each of the models considers a different aspect of the immune response to virotherapy.
Our primary goal is not to prove which model is correct, but to investigate how different assumptions
play a role in the outcome of therapy.

Virus particles that infect tumour cells can instigate both an anti-viral and anti-cancer immune
response. In general, an anti-viral response is one that targets either extracellular virus particles or
infected cells and an anti-cancer response is one that elicits an immune response that can apoptose
both infected and susceptible tumour cells. The clearance of viruses by the immune system has been
shown to be a major hindrance to oncolytic virotherapy [28]. In this work, we choose to model the
clearance of extracellular virus particles by the immune system with varying degrees of dependency
on the uncoated virus density, susceptible tumour cell density and infected tumour cell density.

The simplest way to model clearance of the uncoated virus is at a rate proportional to the number
of particles:

Imm(S , I,VN) = δNVN , (2.9)

where δN is the clearance rate constant. This model is regularly used in deterministic models [16].
It assumes that the immune system activation is not dependent on the activities of the virus or the
presence of the tumour, but on the density of the virus population.

In reality, the anti-viral immune response would be proportional to the number of infected cells as
the immune system becomes stimulated by the presentation of viral antigen on the surface of infected
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cells [32]. As the number of infected cells increases and more immune cells are activated, the strength
of the immune response will also increase. As such, we also consider the clearance of virus particles
as proportional to the number of infected tumour cells:

Imm(S , I,VN) = δNVN

∫ L

0
I(x̃, t)dx̃. (2.10)

In this model, we assume that the proportion of the tumour that is uninfected does not play a role in
the activation of an immune response.

In addition, the presence of tumour cells can elicit an immune response resulting in an influx of
immune cells at the tumour site. These cells can then become aware of the virus particles and contribute
to viral clearance. Assuming, therefore, that the immune system can be stimulated by the presence of
both susceptible and infected tumour cells provides a third viral clearance model:

Imm(S , I,VN) = δNVN

∫ L

0
(S + I)(x̃, t)dx̃, (2.11)

where the activation of clearance is equally proportional to both types of tumour cells.
In Equation 2.11 we assume that the rate at which susceptible and infected cells stimulate the clear-

ance of virus particles by immune cells is equivalent; however, this may not be the case. In the adaptive
immune system, cells such as dendritic cells and macrophages are stimulated by the presentation of
antigen [32]. Susceptible cells will only present tumour antigen (as they do not contain any viruses)
whereas infected cells will present virus antigen (as they have been infected by viruses) and tumour
antigen. As such there may be two different immune responses: an anti-cancer response and an anti-
viral response. These will affect the clearance of the virus in different ways. As expected the virus
immune response will rapidly clear virus particles, as this immune response is specific to viruses. The
tumour immune response will increase immune cell presence at the tumour site, which we assume in-
creases the likelihood of virus immune stimulation. As such, the viral clearance can be modelled with
different dependencies on the tumour cell populations:

Imm(S , I,VN) = VN

(
δNS

∫ L

0
S (x̃, t)dx̃ + δNI

∫ L

0
I(x̃, t)dx̃

)
, (2.12)

where δNS and δNI are the respective clearance rates of the anti-tumour and anti-viral responses.
In this work, we investigate the dynamics of Equation 2.1–Equation 2.7 with each of the differ-

ent models of the immune response to virotherapy. To date, no one has investigated how different
viral-clearance models may impact the efficacy of therapy, and we aim to provide motivation for this
discussion.

2.3. Parameter values and model simulation

The majority of the parameter values used in the following analysis were taken from Jenner et al.’s
investigation of a PEG-modified adenovirus conjugated with herceptin [30]. In this work, a reduced
ODE system similar to the PDE system in this work was used to optimise the infectivity rate, replication
rate, lysis burst rate and size (see Table 1). These parameter values were also similar to the ones
used in the VCBM model that conducted the preliminary investigation into the efficacy of this viral
coating [15].
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The remaining parameters were then estimated at values relative to our biological understanding of
the system. For the diffusion coefficients, we assumed the virus would diffuse faster than the tumour,
as such we chose DV = 0.001 and DT = 0.0001. Additionally, to simulate the immune evasion of the
coated virus we chose δC << δN , and as such set δC = 0.0001.

Lastly, we wanted a reasonable estimate for the degradation rate of viral coating. Oh et al. [9]
reported that gelatin-hydroxyphenyl propionic acid based hydrogel loaded with oncolytic adenovirus
degraded after 6 days. Alternatively, Croyle et al. [6] found that administration of polyethylene glycol-
coated viral vectors extended viral-gene expression by 38 days. Degradation of viral coating may
also be a function of particular molecular concentrations, with Tseng et al. [14] designed a hypoxia-
responsive vector carrier that oxidises with lactate oxidase. As we are not modelling a specific coating
device, but instead the theoretical concept of a coating that instigates a delay in viral infection, we chose
dC = 0.1, which is equivalent to the rate of cell lysis and a half-life for the coating of approximately
7 days. In this work, we examine a range of different initial proportions and levels of coating, which
implicitly determines the impact of varying the coating’s degradation rate.

Table 1. Parameters used in the optimal control analysis. Most of these parameters were
taken from previous work or the literature.

Parameter Units Description Value Source
DV µm2/days Virus diffusion coefficient 0.001 -
DT µm2/days Tumour diffusion coefficient 0.0001 -
dC day−1 Decay rate of coating from virus 0.1 -
δC day−1 Decay rate of coated virus 0.001 -
δN day−1 Decay rate of uncoated virus 1.38 [30]
dI day−1 Infected cell lysis rate 0.1 [30]
β day−1 Virus infection rate 0.862 [30]
r day−1 Tumour cell replication rate 0.037 [30]
V0 Virus (×1010) Initial injection 2 [30]
α Virus Lysis burst size 3500 [30]

The domain was fixed to [0, 2000], i.e., the maximum radial growth of the tumour was L = 2000µm.
The initial radius of the tumour was P = 1000µm and the width of the initial virus injection rim was
2ε = 0.1µm. To demonstrate the effectiveness of the coated therapy, model simulations for different
levels of coating are plotted in Figure 2. Three coating situations are considered: no coated virus,
one level of coated virus K = 1, and five levels of coated virus K = 5. It is clear that treatment
does significantly better by 50 and 100 days when coated virus is administered. Additionally, when
the coating level is increased to K = 5, it is clear the treatment is significantly more effective. This
is most likely a result of the coating providing further intratumoural diffusion before infection and
clearance can commence. All parameter values in the simulations were taken from Table 1 and the
initial proportion of coated virus at all coating levels was equal. The clearance model for the uncoated
virus was Equation 2.9.
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Figure 2. Simulations of the PDE system in Equation 2.1–Equation 2.7 for an initial dosage
of coated and uncoated virus given on the periphery of a radially symmetric tumour. The rows
correspond to different coating levels: no coated virus, coated virus with K = 1 and coated
virus K = 5 respectively. The columns represent the model solution at 0, 50 and 100 days.
The parameter values for the simulations are given in Table 1. The same total amount of virus
is administered, with 50% uncoated virus to 50% coated virus equally distributed among the
coating levels in the coated virus simulations. The clearance model is Equation 2.9.
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2.4. Parameter sensitivity

As a few of the parameters were estimated, we conducted a sensitivity analysis to determine the
variability in our model. Fixing all parameters to the values in Table 1 and using the clearance model
in Equation 2.9 and initial proportion of uncoated virus p = 0.5, we measured the change in the total
tumour cells at 100 days from perturbations of ±10% for the parameters noted in Figure 3. The lysis
burst size αmost significantly affected the tumour size at 100 days. This is not surprising, as increasing
or decreasing the amount of virus created through lysis would have a significant effect on the infection
and subsequent death of uninfected tumour cells. The next highest variability in the tumour volume
was exhibited from perturbations in the clearance rate of coated virus, δC, and the degradation rate of
the coating, dC. This suggests, that the dynamics of the coating mechanism will influence the tumour
volume reached under treatment. Overall, since the magnitude of the change in tumour volume is not
large, fixing these parameters and investigating an optimised scheduling for a delayed-infection coating
can provide a reliable approximation to the potential of this treatment.
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Figure 3. Parameter sensitivity analysis for Equation 2.1–Equation 2.7. The change in the
tumour volume is measured for either an increase of 10% (purple) or decrease of 10% (red)
in an individual parameter value from its original value in Table 1. The effect of varying the
coating level from K = 5 was also considered but for integer values of K = 4 and K = 6. The
immune clearance model was Equation 2.9.

3. Optimal maximum level of coating

To develop an optimised therapeutic protocol for the delayed-infection and immune-evading viral
treatment we first investigated whether coating the virus was optimal when compared to uncoated virus.
From this, we determined for the simple viral-clearance model Equation 2.9 the optimal proportion
of coated to uncoated virus in the initial injection. Furthermore, we then investigated whether there
is an optimal maximum level of coating K for each of the viral-clearance models in Equation 2.9–
Equation 2.12.
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3.1. Preliminaries

We consider two mathematical formulations to measure the efficacy of treatment. The first aims to
minimise the susceptible tumour density at a final assessment time T f days after the initial treatment
injection. In this metric, we ignore the infected cell population as once a cell becomes infected it will
eventually die through lysis. Additionally, we wish to suppress tumour growth throughout treatment,
as a treatment that allows for an excessive amount of tumour growth, irrespective of the size at a
particular point in time, would be unrealistic. These two metrics of treatment efficacy result in the
following mathematical formalisms:

min
p∈[0,1]K

J f (p,T f ) = ‖S (x,p,T f )‖L1
x

=

∫ L

0
|S (x,p,T f )|dx, (3.1)

min
p∈[0,1]K

J(p) = ‖S (x,p, t)‖L1
x,t

=

∫ T f

0

∫ L

0
|S (x,p, t)|dxdt, (3.2)

where S (x,p, t) is the density of susceptible tumour cells S (x, t) defined in Equation 2.1–Equation 2.7
for a given vector p, which is the initial proportion of coated virus in each coating level.

Initially, we investigated the effects of a single coating level (i.e., K = 1), allowing for the proportion
of initial coated virus p = p1 to vary. In Figure 4(a), we plot the value of the objective function
Equation 3.1 with respect to T f and p. In Figure 4(b), the optimal proportion for p for the constraint in
Equation 3.1 is plotted as a function of T f . After initial injection, there is a short period of days where
the treatment is optimal when there is no coated virus. As the final assessment time T f increases, we
see that this optimal proportion reaches p = 1. This is crucial for defining T f in the objective functions
above (Equation 3.1–Equation 3.2), as we need to set T f so that a non-trivial amount of coated virus
is necessary to minimise the amount of susceptible cancer cells. Interestingly, there appears to be a
critical threshold at 5 days, before which coated virus treatment is ineffective.

After 5 days, there is a non-zero proportion (p > 0) of initial coated virus that is optimal. From
this we can deduce that coating the virus improves the efficacy of treatment. In this simulation, the
viral clearance was modelled using the simple model in Equation 2.9. To investigate whether the viral-
clearance model affects the effectiveness of the coated virus, we now investigate the optimal maximum
number of coating levels, K, for each viral-clearance model presented in Section 2.2.

As in Figure 4, in Figure 5 and Figure 6, we plot our metric (Equation 3.1) of tumour growth under
treatment with varying maximum coating levels K ≥ 1. To simplify the study, we set p by fixing
the virus’s initial condition so that 50% of the virus is uncoated and the remaining 50% is equally
distributed between the K levels of coating, i.e., pi = 0.5/K for i = 1, . . . ,K. We model the efficacy of
this therapy with each of the viral-clearance models defined in Equation 2.9–Equation 2.12.

For the viral-clearance model in Equation 2.9, dynamics of the metric (Equation 3.1 with p set as
above) are plotted in Figure 5(a) and (b). This case considers the viral clearance to depend only on
the density of virus. We observe that the model eventually reaches a steady state irrespective of the
maximum coating level. Following the line in Figure 5(a) or (b), we see that the optimal number of
coating levels increases with time T f , similar to what was already observed in Figure 4. Assuming,
instead, that viral clearance is proportional to the amount of infected cancer cells (Equation 2.10)
gives the optimal coating levels over time T f plotted in Figure 5(c) and (d). For smaller time horizons
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(T f < 100), a faster-acting virus is more optimal, so the optimal coating level remains low, but as T f

increased beyond 200 days, the optimal coating level increases to around K = 20.
We wished to then examine whether modelling viral clearance as dependent on the susceptible

tumour population would result in similar dynamics to Figure 5. Modelling the viral-clearance rate
to be δNVN

∫ N

0
S (x̃, t)dx̃, results in almost complete tumour eradication, irrespective of the maximum

coating, see Figure 6(a). This may be a result of the rapid infection of susceptible cancer cells reducing
the viral clearance rate. In comparison, when both susceptible and infected cells contribute at different
rates to the viral clearance term (Equation 2.12), we see the observed dynamics in Figure 6(b). Under
this assumption, the tumour size over time depends more significantly on the maximum coating level.
When the density of susceptible and infected tumour cells contribute equally to the clearance rate
(Equation 2.11), we obtain the dynamics in Figure 6(c) and (d).

It is clear from Figure 5 and Figure 6 that the different viral-clearance models result in significantly
different treatment efficacy. Additionally, the resulting impact on the optimal maximum coating level
is noticeable. Based on this, we chose to determine the optimal proportion of virus in each coating
level using the Equation 2.11. The reason for this is that Figure 6(d) illustrated a change in the optimal
maximum coating as time horizon T f increased. Additionally, we feel that allowing both susceptible
and infected cells to elicit and immune response that results in direct (or indirect) viral clearance is
more biologically reasonable. To set our final time T f and maximum number of coats K to consider,
we observe the minimum point of the objective function in Figure 6(c). It is clear that the cancer
regrows to its initial size after about 300 to 400 days and achieves its minimum point for K ≤ 30
and T ≤ 300, so we fix these as our final time T f and maximum coating level K in the following
optimisation.
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Figure 4. (a) The value of the objective function ‖S (x,p,T f )‖L1
x

=
∫ L

0
|S (x,p,T f )|dx (as in

Equation 3.1) with respect to T f and p, the proportion of the initial injection that is coated.
In these simulations, the maximum coating level is K = 1, and clearance of uncoated virus
is modelled by Equation 2.11. In (a) and (b), the solid line shows the value of the optimal p
that minimises the objective function (Equation 3.1) for each T f .
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Figure 5. Susceptible tumour growth under treatment with different maximum coating levels
K, where K ∈ [0, 50]. The proportion of the initial injection with coating at level i is pi =

0.5/K, and the proportion of uncoated virus is 1 −
∑K

i=1 pi = 0.5. In (a) is a surface plot
of

∫ L

0
|S (x,T f )|dx (the objective function in Equation 3.1 with pi = 0.5/K for i = 1, . . . ,K)

with viral-clearance model Equation 2.9. The corresponding plot of the optimal maximum
coating K is plotted as a function of T f by the solid line in (a) and more clearly in (b). In (c)
is a surface plot of

∫ L

0
|S (x,T f )|dx (the objective function in Equation 3.1 with pi = 0.5/K for

i = 1, . . . ,K) with viral-clearance model Equation 2.10. The corresponding plot of optimal
maximum coating K is plotted as a function of T f by the solid line in (c) and more clearly in
(d).
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Figure 6. Susceptible tumour growth under treatment with different maximum coating levels
K, where K ∈ [0, 50]. The proportion of the initial injection with coating at level i is pi =

0.5/K and the proportion of uncoated virus is 1 −
∑K

i=1 pi = 0.5. In (a) is a surface plot
for

∫ L

0
|S (x, t)|dx with viral-clearance model δNVN

∫ L

0
S (x̃, t)dx̃, which is Equation 2.12 with

δNS = δN and δNI = 0. In (b) is a surface plot for
∫ L

0
|S (x, t)|dx with viral-clearance model

VN

(
δN

∫ L

0
S (x̃, t)dx̃ + 0.5δN

∫ L

0
I(x̃, t)dx̃

)
, which is Equation 2.12 with δNS = δN and δNI =

0.5δN . In (c) is a surface plot for
∫ L

0
|S (x, t)|dx with viral-clearance model Equation 2.11.

The corresponding trace of the optimal maximum coating K is plotted as a function of time
in (c) and more clearly in (d). In (a) and (b), the corresponding plots for the optimal total
coating levels are also provided, but obscured by the surface plot.
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3.2. Objectives

Based on the observations in the previous section, we define the following optimal control problems:

min
p∈[0,1]30

J f (p) =

∫ L

0
|S (x,p, 365)|dx

subject to Equation 2.1–Equation 2.7 and Equation 2.11
(3.3)

and

min
p∈[0,1]30

J(p) =

∫ 365

0

∫ L

0
|S (x,p, t)|dxdt

subject to Equation 2.1–Equation 2.7 and Equation 2.11
(3.4)

where T f = 365 and K = 30 have been chosen large enough so that a reasonable optimal point may
be obtained. Both Equation 3.3 and Equation 3.4 are based on our original optimisation formulations
in Equation 3.1 and Equation 3.2. Each objective function aims to optimise the proportion p of coated
virus in each coating level, where there is a maximum of K = 30 coating levels. The solution to
Equation 3.3 optimises p at the final time T f = 365, while the solution to Equation 3.4 optimises p for
the total cancer cell density over 365 days. The objective given by Equation 3.4 does not guarantee a
minimum tumour size at the final time; therefore, the resulting optimal p may be different.

4. Optimal fraction of the initial injection in each coating level

As demonstrated in the previous section, there is a non-trivial optimal maximum viral coating that
reduces the total tumour size, see Figure 6(c) and (d). To investigate whether the treatment efficacy
could be improved, we relaxed the condition on the initial proportion of virus in each coating level.
Below we describe the method undertaken to obtain the optimal proportion of initial virus in each
coating level. We considered the objective function set-up described in Section 3.2.

Fixing the optimal control problems to be defined by Equation 3.3 and Equation 3.4, we first gen-
erated a vector for the initial proportion in each coating layer p = [p1, p2, ....pK] where values for pi

were generated from the uniform distribution sets constraining
∑

i pi ≤ 1 and pi ≥ 0. This was done
several times, and the fmincon optimisation method in MATLAB was then applied. This optimisation
method uses the interior-point algorithm [29] for solving the optimal control problem. We investigated
different objective final times T f = 91, 182, 274 and 365 for Equation 3.3 and observed the changes of
optimal vector p as the objective time increased. The results for the optimisation of for Equation 3.3
and Equation 3.4 are presented in Figure 7 and Figure 8 respectively.

The results of the optimisation of both Equation 3.3 and Equation 3.4 imply that a mixture of high-
coating levels and low-coating levels are necessary to achieve a minimum tumour size. If we consider
the physical meaning of high and low-coating levels, this may correspond to thick and thin coating. As
such, there is some non-trivial dependence of the treatment efficacy on the decay rate from the coated
to uncoated virus states.

Moreover, the final-time optimisation results in Figure 7 suggest that the maximum coating in-
creases as time increases. When we classify classes of coating levels as either thin or thick (i.e., Vthin
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(b) T f = 182
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(c) T f = 274
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(d) T f = 365

Figure 7. Optimal initial proportion of virus in each coating level defined by the optimal
control problem in Equation 3.3 at (a) T f = 91, (b) T f = 182, (c) T f = 274 and (d) T f = 365.
The bars denote the proportion of the initial composition of injected virus at each coating
level to achieve a minimal tumour size at T f . Equation 3.3 was simulated with viral-clearance
model Equation 2.11 and K = 30.

and Vthick) the optimal initial proportion of virus can be summarised as

argminp∈[0,1]30J f (p, 91) = [VN ,Vthin,Vthick] ' [3%, 97%, 0%]

argminp∈[0,1]30J f (p, 182) = [VN ,Vthin,Vthick] ' [7%, 52%, 41%]

argminp∈[0,1]30J f (p, 274) = [VN ,Vthin,Vthick] ' [8%, 49%, 42%]

argminp∈[0,1]30J f (p, 365) = [VN ,Vthin,Vthick] ' [9%, 48%, 42%]

argminp∈[0,1]30J(p) = [VN ,Vthin,Vthick] ' [10%, 62%, 28%],

(4.1)

which allows us to clearly stratify how the proportion of thickly versus thinly coated virus changes
with time. As time increases, the optimal initial injection requires thicker coated virus. Overall, the
optimal ratio of uncoated to thin and thick virus is similar irrespective of the final time considered, with
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Figure 8. Optimal initial proportion of virus in each coating level defined by the optimal
control problem in Equation 3.4 for T f = 365. The bars denote the proportion of the initial
composition of injected virus at each coating level to achieve a integrated minimal tumour
size over the time interval [0,T f ]. Equation 3.4 was simulated with viral-clearance model
Equation 2.11 and K = 30.

p0 : pthin : pthick ' 1 : 5 : 4. This does not include the case where T f = 91, the shortest objective final
time. On the other hand, the results for optimisation of the integrated tumour size, Figure 8, is slightly
different with the ratio of uncoated to thin and thick coated virus as 1 : 6 : 3.

5. Discussion

Oncolytic virotherapy is a promising cancer treatment due to its ability to induce tumour-specific
cell lysis and as a delivery vector for other tumour-targeting agents. One major pitfall of these viruses
is their inhomogeneous diffusion throughout the tumour, a result of immune clearance [1] or high
multiplicity of infection of a single tumour cell. In this work, we look at overcoming these obstacles
by simulating a delayed-infection and immune-evading coated virus. We optimised the initial dosage
of this virus and demonstrated that modifying a virus in this manner could improve treatment.

Experimentalists have developed ways to avoid the immune clearance of viruses through modi-
fications with gel-based mediums, coating with polymers such as polyethylene glycol (PEG) [31],
immunogenic-engineered viral capsid and additional manipulations of the tumour microenvironment
with hormones such as relaxin. In previous work, Jenner et al. modelled a PEG-coated oncolytic ade-
novirus with a system of ODEs and analysed the virus’s ability to avoid immune detection. In other
previous work by Jenner et al. [15], a Voronoi cell-based model was developed to show the effective-
ness of a virus that was able to avoid immune detection and delay its infection. Extending both of the
modelling frameworks in [30] and [15], we developed a system of PDEs that considered the spatial
interaction of an oncolytic virus with a growing population of susceptible tumour cells. We investi-
gated the efficacy of an undefined coating mechanism that delayed the infection of cells and avoided
immune clearance. We also developed four viral-clearance models (Equation 2.9–Equation 2.12), that
modelled different aspects of the clearance process.

Coating the virus to delay infection and avoid immune clearance improves the efficacy of virother-
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apy (see Figure 2). Simulating the model with and without coated viruses we found that coated virus
diffused farther intratumourally before the onset of infection. This resulted in a significant increase
in the infected tumour cell number and reduced the overall tumour size (see Figure 2 last column).
To investigate the efficacy of the coated virus treatment, we considered one level of coated virus and
varying proportions of initial virus that was coated (Figure 4). For the first 5 days, the optimal propor-
tion of initially coated virus was negligible and the coated therapy was not as effective. But as time
increased, the optimal proportion of coated virus in the initial injection increased until all virus needed
to be coated to achieve a tumour minimum. This suggests that coating the virus improves virotherapy
in a time-dependent manner.

As the coating mechanism we are modelling in this work is theoretical, we decided to extend the
model to consider K levels of discrete coating. We then determined the optimal maximum coating
level that would minimise the tumour size, given equal proportions of coated virus in the initial injec-
tion (Figure 5 and Figure 6). The optimal maximum coating was simulated for a range of different
viral-clearance models. The goal was to quantify how the efficacy of treatment depended on both the
maximum coating level and the viral-clearance assumptions.

Initially, we considered viral clearance to be proportional to the amount of virus (see Figure 4(a)
and (b), and Figure 5(a) and (b)). Simulating Equation 3.1, we found that only a small maximum
coating level (K ≤ 5) was necessary for the first 250 days, after which the optimal maximum coating
increased linearly with time (Figure 5(b)). This suggests that the effectiveness of the coating is limited
by the initial rapid clearance of the uncoated virus. As such, the coated virus is needed to instigate the
infection and lysis of tumour cells. As time goes on, we see a tipping point at 250 days, after which
the ability of the coated virus to diffuse is sufficient to warrant a larger maximum coating.

When the rate of clearance depends on the number of either susceptible or infected cells, the max-
imum coating for the virus appears to approximately stabilise for 20 < K < 25 (Figure 5(d) and
Figure 6(d))). In addition, when the viral clearance is equally proportional to the number of infected
and susceptible tumour cells, the tumour is able to evade elimination and reaches a steady state value
(see Figure 6(c)). The dynamics with this model are similar to those where the clearance is proportional
to the number of virus particles (Figure 5(b)); however, the optimal maximum coating is completely
different. This difference in the optimal maximum coating trace is due to a larger initial clearance in
the case of Figure 6(c). This requires a larger delay in the initial viral infection and therefore a larger
maximum coating of the virus.

Realistically, the clearance of viral particles will not be equally proportional to the susceptible and
infected cells (Equation 2.12), see Figure 6(b). Simulating this viral-clearance model results in a linear
relationship between the optimal number of coats and time (figure not included). As time increases
the number of coats required to achieve a minimum tumour burden increased with a gradient of 0.25.
In contrast, when the clearance of viruses is equally proportional to the number of susceptible and
infected cells, the optimal number of coats roughly stabilises after 300 days. In other words, to reduce
the tumour volume over a long period of time approximately the same number of coats is needed when
we consider immune clearance to be equally proportional to both susceptible and infected tumour cells.
Whereas, if the clearance is not equally proportional to both cell types, the relationship between the
number of optimal coating levels and time is linear. Overall, this suggests that the type of immune
response exhibited in response to virotherapy can be crucial in determining, long-term, how many
coating levels is optimal.
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The different viral-clearance models considered results in significantly polarised dynamics: tumour
eradication or tumour stabilisation. For example, the treatments’ effectiveness is qualitatively similar
when the virus is cleared at a rate proportional to the density of infected or susceptible tumour cells
(Figure 5(c) and Figure 6(a)). This is possibly explained by the fact that the uncoated virus would
rapidly infect susceptible cells resulting in an approximately equivalent rate of viral clearance that is
slow enough to allow for tumour eradication. In comparison, when viral clearance is proportional to
both susceptible and infected cells, the tumour manages to stabilise (see Figure 6(c)). This suggests
that there is a rapid switching between effective and less effective treatment based on the viral clearance
rate.

In summary, modelling clearance as dependent on either the total susceptible or infected population
results in quasi-eradication of the tumour, irrespective of the number of coating levels (see Figure 5(c)
and Figure 6(a)). In comparison, assuming that the virus is cleared at a rate equally proportional to
both susceptible and infected tumour cells results in tumour stabilisation (see Figure 6(c) and Equa-
tion 2.11). Interestingly, modulating the clearance rate’s dependence on this population provides a
significantly non-uniform long-term result to the coating level of the virus (see Figure 6(b)). This
suggests that the clearance rate is significant and should be considered more carefully in future when
modelling virotherapy.

Following these simulations, we wished to investigate the effects of relaxing the condition on the
initial proportion of coated virus at each coating level. From the preliminary simulations (Figure 4–
Figure 6), it was possible to define the final objective time and maximum number of coatings (T f = 365
and K = 30), so that all observable possible behaviours would occur. We then defined two objective
functions (Equation 3.3 and Equation 3.4): the first was to minimise the tumour size at a specific point
in time T f days and the second was to minimise the overall tumour size throughout the entire time
period.

If we consider then the optimal initial composition for specific times (T f = 91, 182, 274 and 365),
we see that the proportion of thicker coated virus (K > 10) increases as the final time of the experiment
increases. Overall, solutions for T f > 91 have very similar ratios of uncoated, thinly coated (0 < i <
10) and thickly coated (i ≥ 10) virus, see Equation 4.1. This suggests that the thicker coated virus
takes a longer time to become effective, which is why in the 91 day window we do not see any thicker
coated virus (i > 10) being necessary for achieving an optimal tumour minimum.

Overall, for a long time period, a significant proportion of the virus needed to have a thicker coating
around i ≈ 13, see Figure 7(d) and Figure 8. Minimising the tumour size on day 365 requires a different
initial composition than minimising the tumour concentration over the entire 365 day period. This is
not surprising as minimising the tumour volume over a period of time requires a different dynamical
approach, as opposed to simply minimising the tumour volume at 365 days. What is surprising is
the similarity between the two optimal initial conditions. Both require a significant amount of thinly
coated virus (i ∈ (0, 5]), demonstrating that for long-term treatment effectiveness, a short-term delayed-
infected immune-evading treatment is key.

A future simplification of our model would be to consider a continuous coating of the virus, as
opposed to the discrete coating levels we have modelled. To achieve this, the PDE system could
be transformed into an age-structured model where the level of coating would become a continuous
variable. We decided not to model it in this way as experimentally it would be easier to create a
discretely coated virus that has specific characteristics.
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Normally, oncolytic virotherapy is administered in multiple dosages (typically three dosages every
second day). This work does not consider the effects of additional dosages on the tumour size. Future
work could investigate whether there are different optimal injection configurations for subsequent in-
jections. Alternatively, we could consider injections of solely uncoated or coated virus. For the current
preliminary investigation we consider a single dosage to illustrate the potential of this therapy and the
existence of an optimal solution.

Lastly, because we did not prove the uniqueness of the optimal solution, our solution does not guar-
antee the global minimum. In other words, it is possible for another solution to attain a smaller value
of the objective function. As we optimised by choosing randomized p several times, we cannot estab-
lish whether our solution is a global minimum or not. Therefore, proving uniqueness and existence is
another open problem.

A natural extension to this model, would be to consider the dynamics in a non-radially symmetric,
heterogeneous tumour microenvironment as non-uniform spatial interactions between virus particles
and tumour cells have been shown to significantly impact the outcome of virotherapy [15, 21]. Addi-
tionally, since we have demonstrated the importance of immune clearance, it would be worth explicitly
modelling the immune cells in a spatial environment with restrictions on their point of entry to the
tumour, to determine whether this may impact the optimisation results.

The next stage of this work would be to investigate experimentally whether designing an injection
with proportions of uncoated and coated virus defined by Figure 7 result in a reduced tumour size.
From this, it would be interesting to then investigate why this combination of uncoated, thinly coated
and thickly coated virus produces an optimal reduction in the tumour by investigating intratumoural
dissemination as a function of time.

6. Conclusion

Overall, our results suggest that it is possible to improve virotherapy by creating a delayed-infection
and immune-evading virus through coating or another mechanism. We have demonstrated that this
treatment can be further optimised by considering multiple coating levels. We have determined the
composition of the initial injection that should be coated at thin and thick levels. We also simulated
our system under different viral clearance assumptions and found that the rate of viral clearance is sig-
nificant in determining whether treatment results in tumour eradication or tumour stabilisation. While
exciting, it is still a theoretical principle and would need significant further experimental investigation
to verify its promise as an improvement on the current treatment approach.
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