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Abstract: We propose a mathematical framework for introducing random attachment of bacterial
cells in a deterministic continuum model of cellulosic biofilms. The underlying growth model is a
highly nonlinear coupled PDE-ODE system. It is regularised and discretised in space. Attachment is
described then via an auxiliary stochastic process that induces impulses in the biomass equation. The
resulting system is an Itô stochastic differential equation. Unlike the more direct approach of modeling
attachment by additive noise, the proposed model preserves non-negativity of solutions. Our numerical
simulations are able to reproduce characteristic features of cellulolytic biofilms with cell attachment
from the aqueous phase. Grid refinement studies show convergence for the expected values of spatially
integrated biomass density and carbon concentration. We also examine the sensitivity of the model
with respect to the parameters that control random attachment.
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1. Introduction

Bacterial biofilms are microbial depositions on, usually immersed, abiotic or biotic surfaces. The
attachment of cells from the surrounding aqueous phase to the substratum, or to already existing
colonies, plays a prominent role in the biofilm life cycle and for the initiation of biofilm colony
formation [1]. Despite its importance, cell attachment is normally not accounted for in mathematical
models of biofilm growth that have been studied in the literature for more than three decades. Many
of these models are deterministic continuum models, whereas cell attachment on the biofilm scale is
typically considered a discrete stochastic process. Therefore incorporating attachment in existing
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models is not straightforward.
The traditional one-dimensional Wanner-Gujer biofilm model, which is frequently used in

engineering applications to study biofilm performance, is a coupled hyperbolic-elliptic free boundary
value problem with nonlocal effects. Underlying this model is the assumption that a biofilm covers
the substratum homogeneously and that biofilm processes are governed only by substrate gradients
normal to the surface area. The few studies that include attachment processes usually assume a
constant attachment rate, i.e., describe attachment as a continuous, deterministic process [2–5]. The
same assumption is also made in a multiscale model of biofilm formation in porous media, in which
exchange of biomass between the actual biofilm and the aqueous phase is considered [6]. This model
concept, due to its one-dimensional nature, does not allow to track spatial heterogeneities in biofilm
structure or how they may arise from sparsely distributed attachment events.

To overcome the limitations of one-dimensional models for the study of biofilm
structure-function-dynamics relationships, several multi-dimensional partial differential equation
biofilm models have been proposed. This includes models that can be considered direct extensions of
the Wanner-Gujer model [7, 8], or models that are based on different basic assumptions, such
as [9–11] which describe biofilms as fluids, or the density-dependent diffusion-reaction model [12]
which takes the view of biofilms as spatially structured populations. Whereas biofilms have been
characterised as both, the model [12] is the only one that has been derived from both perspectives,
see [13]. Also in such models attachment may be accounted for as a deterministic continuous process,
e.g., employing a constant attachment rate as in [14] in a fluids model, or via chemotaxis as for
example in a semilinear diffusion-reaction equation that does not explicitly distinguish between
bacteria in the biofilm and the surrounding aqueous phase [15]. The random and discrete localised
aspects of attachment in these partial differential equation models are, if at all, usually only included
in the form of randomly generated initial data that prescribe location, and sometimes size, of colonies
at the onset of the simulation, e.g., in [7, 13, 16].

To overcome this limitation and to be able to account for discrete stochastic attachment in
deterministic continuum biofilm models is the objective of the present study. More specifically, we
will be considering the extension of a two-dimensional model for cellulolytic biofilms. Cellulolytic
biofilms play an important role in the production of cellulosic ethanol, a biofuel that can be
implemented in the currently existing transportation infrastructure.

The production of biofuels from food products, such as sugar, starch, or fats and oils, are not as
sustainable as their production from inedible resources, e.g., lignocellulose∗, due to the
ever-increasing demand for food and feedstock [17]. In the US, the annual production of cellulosic
ethanol from lignocellulosic resources such as woody biomass, switchgrass, and crop waste was
estimated at 53 billion gallons in 2016 [18]. The commercial production of cellulosic ethanol in large
quantities is deemed achievable for lignocellulosic biomass. However, several technical difficulties
arose with utilising this type of feedstock: biomass recalcitrance, which is associated with the
resistance of cell walls to enzymatic deconstruction; the heterogeneity of the substrate, which arises
from the complex structure of lignocellulosic feedstock [19]. As a result, the biomass needs to be
treated and prepared before ethanol can be extracted. In consolidated bioprocessing (CBP)
preparation and production stages, namely enzyme production, polysaccharide hydrolysis and sugar
fermentation, are combined in one single operation [19, 20]. CBP requires microorganisms that are

∗Lignocellulose is composed of carbohydrate polymers (cellulose, hemicellulose), and an aromatic polymer (lignin).
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highly efficient at producing cellulolytic enzymes and at fermenting resultant sugars; at the same time
they should produce small amounts of other byproducts and be able to live in high levels of
ethanol [20].

Strains of bacteria used in CBP, such as Clostridium thermocellum and Caldicellulosiruptor
obsidiansis, consume a cellulosic substratum and form cellulolytic biofilm colonies, which are
distributed spatially and evolve temporally [21–23]. Such cellulolytic biofilms, unlike the more
traditional biofilms one encounters for example in wastewater engineering, tend to produce only very
little amounts of extracellular polymeric substance (EPS). They attach directly to the fibrous
substratum and form monolayer biofilms [21, 23]. Whereas traditional biofilms form colonies that
grow into the aqueous phase and receive their nutrients from there via diffusion, cellulolytic biofilms
do not form such structures and instead consume and degrade the cellulosic substratum that supports
them. This leads to the development of crater-like structures in the substratum that are sometimes also
referred to as inverse colonies [23]. Cellulolytic biofilm formation and growth progresses through a
number of stages (see Figure 1):

1. Attachment to the cellulosic fibres,
2. Cell growth and division,
3. Inverted colony formation,
4. Formation of crater-like depressions due to substrate consumption and substratum degradation,
5. Radial growth of the depressions and their eventual coalescence,
6. Formation of uniform-thickness biofilm.

Due to cell detachment from cellulolytic biofilms, there are free cells in the aqueous phase, the
existence of which has been corroborated by experimental observations [21, 23]. Among possible
reasons for the existence of such free floating cells in general are mechanical detachment as a result of
shear forces exerted by the aqueous phase on the biofilm [24], unavailability of space for new cells,
biological detachment induced by quorum sensing or starvation [25–27], etc. Cells from the aqueous
phase can form new colonies upon attachment to random locations on the substratum, as depicted in
Figure 1. The different stages of spatio-temporal evolution of biofilm formed by C. obsidiansis on
cellulose chads were captured by a confocal laser scanning microscope in [23] and are illustrated in
Figure 1.

The possibility of adhesion and formation of a thriving bacterial colony at a certain position on the
substratum can be affected by several aspects, including [28]:

• Environment: temperature, bacterial concentration, chemical treatment, etc.,
• Bacterial characteristics: hydrophobicity, surface charge, appendages, etc.,
• Substratum properties: chemical composition, roughness, physical configuration, etc.

Consequently, because of the sheer number of parameters required to characterize the attachment
and adhesion of cells, the mathematical formulation of these phenomena on the basis of physical
principles is very complex. One possible way to simplify the mathematical modeling of the
attachment phenomenon is to think of it as an emergent random occurrence where the effect of all the
deterministic underlying mechanisms are lumped together and treated as a single stochastic process.
We treat them as a stochastic driving force that causes a single attachment event to take place
arbitrarily at any point in space and time. As soon as such attachment of biomass occurs, a new
colony can start developing.
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Figure 1. Top panel: Schematic diagram showing the six stages of cellulolytic biofilm
formation: (1) initial cell attachment, (2) cell growth and division, (3) inverted colony
formation, (4) emergence of crater-like depression, (5) growth and merging of craters, (6)
uniform biofilm formation. Bottom: Confocal Laser Scanning Micrographs of cellulosic
biofilms; cells are displayed in green. Left panel: Formation of cell clusters and craters of
C. obsidiansis on a cellulose chad with attachment from the aqueous phase, after a) 0h, b) 8h,
c) 16h, d) 24h, e) 44h, f) 48h, g) 56h and h) 68h (top view). Radius of craters ≈ 40µm. Right
panel: Crater like depression formed by C. thermocellum. a) top view, b) cross-sectional
view. Length scale bar = 10µm. All images are from [23], where also more details about the
microscopy and experimental setup are provided.

The mathematical modeling of stochastic cell attachment and the possible effects it may have on
the growth and temporal evolution of biofilms is the main focus of our study. Specifically, we are
concerned with the question how such discrete stochastic initial attachment can be included in the
deterministic continuum model for cellulosic biofilm growth that has been introduced previously
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in [29]. The overall goal is to introduce a straightforward mathematical framework for modeling the
random cell attachment and to perform numerical simulations by which the model can be tested and
computationally analyzed. Of paramount importance is to cast this model in a setting for which a
theoretical framework exists, and numerical methods for which it is known that they represent the
stochasticity of the underlying model correctly and reliably. Therefore, we choose to develop a model
in the context of Itô stochastic differential equations [30, 31]. We suggest that, barring computational
costs, the modeling framework that we aim to establish here could potentially also be applied to more
traditional biofilms and incorporated in other continuum models of biofilm structure formation.

Our work builds on and aims to overcome limitations of an earlier stochastic attachment model that
was used in an ad-hoc manner by modifying a deterministic model of cellulolytic biofilms [29]. Here,
the deterministic part deals with the formation and temporal evolution of cellulolytic biofilms and is
described by a continuum model, namely a highly nonlinear degenerate coupled system of a partial
differential equation (PDE) and an ordinary differential equation (ODE). The biomass production and
mechanics is governed by the PDE and the uptake of the substrate is governed by the ODE. The ad-hoc
inclusion of stochastic cell attachment in that study was basically implemented by the addition of an
impulse function to the biomass PDE: if a certain quantity (Q) is greater than a uniformly distributed
U[0,1]-random number, the impulse function becomes non-zero and a fixed amount of biomass is
added to the PDE; otherwise the value of the impulse function is zero and no biomass is added. The
quantity, Q, encodes that an attachment site is less probable to be occupied if it already accommodates
some biomass (M) and if it is deficient in nutrient substrate (C), i.e., Q ∝ (1−M)C. By formulating the
attachment phenomenon this way, the proposed continuum model in [29] has reproduced the qualitative
behavior of cellulolytic biofilms with cell attachment. In Figure 2 we show a snapshot of that model
from [29], for comparison with the experimental observations shown in Figure 1. Here, as in the
experiments in [32] the substratum was initially inoculated with a single colony and it was investigated
how random attachment deforms the circular structures that form. Although this approach is successful
in generating qualitative results that resemble the experimental observations, due to the form of the
stochastic component, standard results from stochastic differential equations do not apply and there is
no guarantee that the stochasticity observed in the numerical simulations is a true representation of the
stochasticity in the underlying model and not amplified or smeared by numerical artifacts.

Our goal is to introduce a modeling framework that can be supported by established stochastic
theories, and for which numerical algorithms are known that faithfully represent the stochasticity of
the underlying equation.

One possible path to modeling random attachment of cells would be to formalize it as random
noise. For instance, one could add white noise to the PDE that describes the bacterial density, which
turns it into a stochastic PDE (SPDE). Whereas there is some theory established for semi-linear
stochastic diffusion-reaction equations [33] this seems not to be the case for degenerate
diffusion-reaction equations. Moreover, further undesirable side effects will be associated with this
direct approach to incorporate stochasticity in the model: it could lead to negative values of the
solutions - especially at locations where no biomass is attached - and to an uncontrollable rate and
magnitude of cell attachment. These are due to the nature of white noise, or more specifically additive
white noise, which can assume both positive and negative values with arbitrary magnitudes. Instead,
one could consider noise terms with state-dependent coefficients, e.g., multiplicative noise, which
ensures that solutions remain non-negative. For instance, for systems of semi-linear parabolic SPDEs
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Figure 2. An example of simulated PDE-ODE system from [29] with an initial central
inoculation of cells and random attachment of cells. Here M stands for the biomass density
(0 ≤ M ≤ 1). Note the formation of inverse colonies especially in the center, cf. Figure 1.

it has been shown that if the deterministic and stochastic components satisfy certain conditions, the
non-negativity of solutions is guaranteed [34]; or in case of systems of (ordinary) SDEs, even
necessary and sufficient conditions for the non-negativity and/or boundedness of solutions are
known [35]. Another possible remedy would be to directly modify the numerical schemes that
estimate the solution by including reflecting or absorbing barriers: reflecting barriers send negative
values to their corresponding positive counterparts and absorbing barriers swap negative values with
zeros, cf. e.g., [36–38]. However, the relation between the numerical simulations and the
mathematical model are unclear and it is therefore questionable whether the simulations are valid tests
of the actual model’s behavior.

Furthermore, the uncontrollability of attachment makes the simple addition of white noise
problematic. All positive values of the noise term correspond to attachment events for which the
amount of the attached bacteria takes arbitrary values. This behavior has been corroborated by our
exploratory numerical simulations (data not shown) that have demonstrated that the high frequency of
attachment instances and the randomly varying amount of attaching bacteria in each instance do not
qualitatively replicate the experimental observations, e.g., the prominent features of cellulolytic
biofilms shown in Figure 1. This problem follows from the mathematical properties of the added
white noise. Since the noise is primarily realized by sampling the normal distribution in the numerical
simulations of SPDEs and SDEs, the high frequency of attachment events and their arbitrary
magnitude are natural outcomes.

The mentioned issues arise if white noise is simply added to the PDE-ODE model. Therefore, the
starting point in our approach to model the random attachment of cells is to conceive an attachment
mechanism that is driven by a local stochastic property of the substratum and the environment. We call
this local stochastic property the attachment factor (AF). It is assumed to be a continuous stochastic
process that can be roughly interpreted as a particular local background noise in the system. We also
assume that the AF is driven by a local Itô SDE whose stochastic part is proportional to the local values
of state variables. This SDE’s deterministic part is assumed to be zero so that there are no contributions
to the temporal evolution of the AF from any deterministic sources.
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Random cell attachment is a discrete event. Our approach treats these random events as impulsive
phenomena, similar in spirit to the ad hoc approach in [29] but technically refined. We consider an
impulse function (the AF operates as the independent variable of this function) that provides the
means for introducing the stochastic cell attachment to arbitrary locations on the substratum and also
allows controlling different aspects of the attachment. Most importantly, the issue with negative
solutions can be readily addressed since we have the freedom to choose an impulse function with
suitable properties: a function that always outputs positive values will not add negative biomass
especially to locations where there is no biomass. Furthermore, the effective domain of the chosen
impulse function can be adjusted by its characterizing parameters. For instance, one may manipulate
the frequency of attachment by careful exploitation of the function parameters that affect its effective
domain. Also, the amount of attaching bacteria in a single event can be controlled by the coefficient of
the impulse function.

In order to obtain numerical solutions for the new model that includes random attachment, the
governing biomass PDE is discretized spatially by a uniform grid in the same manner as in [29].
The discretization converts the PDE into a finite system of lattice ODEs where each ODE governs
the biomass dynamics locally in a specific grid cell. The stochasticity in each cell is simulated via
the corresponding locally-defined Itô SDE, which governs the AF. The conversion of the PDE to a
system of ODEs has the added benefit of allowing us to use established SDE solvers for each cell.
The alternative would have been to add the stochastic terms to the underlying PDE and then solve the
stochastic PDE. Since the deterministic PDE is highly nonlinear with a porous medium equation like
degeneracy as biomass vanishes and a super-diffusion singularity where it attains its threshold value,
no numerical method is known to guarantee that the stochasticity would be correctly rendered. For
a first proof of concept we have used the simplest SDE solver, the Euler-Maruyama method for the
numerical integration of the resulting model. We have made this choice in order to capture the effect
of stochasticity in the model.

Finally, we point out that in addition to deterministic continuum biofilm models, also biofilm models
are known which themselves are discrete and stochastic, such as individual based models that track
individual cells, or cellular automata models that are based on them. To include a discrete stochastic
attachment process in those would be straightforward. The focus of our work is to include attachment
in deterministic biofilm models. A comparison with such innately discrete stochastic models is beyond
our scope.

2. The underlying spatially explicit continuum model

2.1. Model assumptions

Our model is based on the spatially explicit model of cellulolytic biofilms in [29], which is a
modification of the previous prototype biofilm growth model in [12]. In case of cellulolytic biofilms
the bacteria hydrolyse their substratum instead of receiving nutrients from the surrounding aqueous
phase. The basic model assumptions are:

1. The local capacity per unit area/volume of the substratum for accommodating bacterial biomass
is limited by a finite quantity.

2. The only consumed substrate for biomass production is carbon. Since it is part of the chemical
composition of the substratum, it is immobile, i.e., it does not diffuse.
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3. The production, spatial distribution and movement of biomass only depends on the local
availability of space and nutrients. Biomass is produced if nutrients are available and the biofilm
does not expand into neighboring positions if space is locally available to allocate new biomass.

4. Carbon is consumed and converted into new cells. Substrate uptake and production of biomass are
driven by standard saturation kinetics: if substrate becomes locally limited its uptake by cells is
proportional to both local biomass and available substrate. If it is abundant, substrate degradation
is proportional to the local biomass only, close to the maximum uptake rate.

5. Cell loss in the biofilm occurs either due to cell death or due to detachment of viable cells. In
our model formulation, both these mechanisms are subsumed in a single cell loss process. The
amount of lost biomass is assumed to be proportional to the local biomass density. Once carbon
substrate is locally degraded growth ceases and cell loss becomes the dominating process.

6. In the original model in [29] there is no attachment of cells from the aqueous phase.

We will cast our model here in a two-dimensional setting. More specifically, we will consider
the limiting case of cellulosic biofilms that spread across a very thin cellulosic substratum, the depth
of which is negligible compared to the length scales of the colonies. This is one of the two setups
that were considered in [29]. Inoculation of the substratum in this case is possible everywhere in the
domain. Furthermore, in [29] it was shown that the same 2D model can also be applied to simulate the
penetration of substrata by cellulosic biofilms. In that case the domain of the model is a vertical slice
through the substratum and some parts of the boundary of the domain constitute the interface with the
external aqueous phase that is not explicitly considered. Inoculation, in this case is restricted to that
part of the boundary. We will comment on this setup from the perspective of the current study briefly
in Section 6.

2.2. Governing equations

The model comprises a PDE that governs the spatiotemporal evolution of the biomass density, M,
and this PDE is coupled to an ODE that describes the evolution of the carbon concentration, C:

∂tM = ∇ · (D(M)∇M) + F(C)M, (t, x) ∈ (0,∞) ×Ω, (2.1)
∂tC = −G(C)M, (t, x) ∈ (0,∞) ×Ω. (2.2)

Here M = M(t, x), C = C(t, x), D(M) is the biomass diffusion coefficient, F(C) the net biomass growth
rate and G(C) the uptake rate of the carbon substrate. The spatial domain is Ω ⊂ Rd, d = 1, 2, 3. Due
to high computational costs, the model is only simulated for d = 1 and d = 2. In the two-dimensional
case the domain is assumed to be rectangular. The actual biofilm consists of the subregion

Ω0(t) = {x ∈ Ω |M(t, x) > 0}.

Following [12], the density dependent biomass diffusion coefficient D(M) is given by

D(M) = δ
Mα

(M∞ − M)β
, α ≥ 1, β ≥ 1, (2.3)

where δ > 0 is the motility coefficient and M∞ > 0 the maximum biomass density.
The diffusion coefficient exhibits two distinct limiting behaviors: (i) if the local biomass density

approaches its maximum value, M∞, additionally produced biomass moves to neighboring positions
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on the substratum (in accordance with model assumption 1); (ii) if sufficient space is available, newly
produced biomass is accommodated locally (in accordance with model assumption 3). These
behaviors emerge from the underlying nonlinear modes of diffusion. For 0 ≤ M � M∞, the diffusion
coefficient can be approximated by a degenerate power law, as known from the porous medium
equation, D(M) ≈ Mα, which vanishes as M approaches zero. In fact, the degenerate power law
creates an expanding biofilm colony with a sharp distinct front: if the initial data has compact support,
then the corresponding solution has compact support [39]. The exponent α determines how much
biomass can be accommodated locally before a noticeable expansion to neighboring regions takes
place. When 0 � M < M∞, the biomass density approaches the singularity and super diffusion
becomes dominant, D(M) ≈ (M∞ − M)−β, which prevents the biomass density to attain its maximum
value M∞ [39]. Here, the exponent β determines the strength of this effect. We emphasize that both
nonlinear diffusion effects are needed; on the one hand, to ensure an expansion with finite speed (due
to the porous medium nonlinearity) and on the other hand, for the local volume filling effect (due to
the super diffusion singularity). Neither one alone can cause both of these effects [29].

The net biomass growth rate is composed of the true biomass growth rate and the cell loss rate. By
model assumption 2 carbon is the sole growth limiting substrate, and the true growth rate is given by a
Monod reaction function [46] (model assumption 4). Cell loss, by model assumption 5, occurs through
two different mechanisms: cell death and cell detachment to the aqueous phase. Both mechanisms are
combined in a constant, called the cell loss rate. Hence, the net growth rate is given by

F(C) = µ
C

κ + C
− λ, (2.4)

where µ > 0 is the maximum specific growth rate, λ > 0 the cell loss rate and κ > 0 is the half
saturation concentration.

The uptake rate of the carbon substrate is modeled by standard saturation kinetics and given by a
Monod function (model assumption 4),

G(C) = Υ
C

κ + C
, (2.5)

where Υ > 0 is the maximum consumption rate. The uptake rate G approaches a constant value when
substrate is locally abundant. When and where the substrate is limited, the uptake rate is proportional
to the local carbon concentration.

The substrate uptake rate in (2.5) is the only driving factor in (2.2). There are no transport
mechanisms since carbon is assumed to be immobilized in the substratum (by model assumption 2).
This distinguishes the current model from the original modeling framework in [12].

The biomass is confined to the domain Ω, and homogeneous Neumann boundary conditions are
imposed,

∂nM(t, x) = 0, (t, x) ∈ [0,∞) × ∂Ω, (2.6)

where ∂n denotes the outward unit normal derivative and ∂Ω the boundary of Ω. The initial condition
for the biomass density is

M(0, x) = M0(x), x ∈ Ω, (2.7)

where M0 > 0 in a few small patches inside Ω and M0 ≡ 0 in the rest of Ω.
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The initial condition for the carbon concentration is

C(0, x) = C0(x), x ∈ Ω, (2.8)

where we assume that C0 > 0 in Ω. Although C0 can depend on the spatial position, in the simulations
we set C0 to its maximal value C∞ everywhere in Ω, which is in agreement with experiments conducted
on homogeneous paper chads as the cellulosic substrata [21, 23, 40].

For diffusion-reaction equations with the specific diffusion coefficient (2.3) only few analytical
results are available in the literature, hence such models were mainly studied in numerical
experiments. To prepare it for computer simulations, the model is cast into the non-dimensional form
by re-scaling x, t, M and C as follows

x̃i =
xi

L
for i ≤ d, t̃ = µt, M̃ =

M
M∞

, C̃ =
C

C∞
,

where L is a characteristic length of Ω; for instance, in the two-dimensional case it can be chosen as the
length of the longest side of a rectangular domain. Moreover, 1/µ is the characteristic time for biomass
growth and the time scale of the dimensionless problem. The dimensionless parameters are given by

κ̃ =
κ

C∞
, Υ̃ =

M∞Υ

C∞µ
, λ̃ =

λ

µ
, δ̃ =

δM(α−β)
∞

µL2 .

This leads to the model in non-dimensional form

∂t̃M̃ = ∇̃ · (D̃(M̃)∇̃M̃) + F̃(C̃)M̃, (2.9)
∂t̃C̃ = −G̃(C̃)M̃, (2.10)

where

D̃(M̃) = δ̃
M̃α

(1 − M̃)β
, F̃(C̃) =

C̃

κ̃ + C̃
− λ̃, G̃(C̃) = Υ̃

C̃

κ̃ + C̃
,

and the corresponding initial data for a homogeneous cellulosic substratum are

M̃(0, x̃) = M̃0(x̃), C̃(0, x̃) = 1. (2.11)

To simplify notations, from now on we will omit the tilde.

2.3. Spatial discretization

For simulation purposes, following the Method of Lines approach, the PDE-ODE system (2.9)–
(2.10) is converted into a system of ODEs by spatial discretization. We use for this a standard finite
volume method as introduced in [42].

We place an N × M uniform grid over the rectangular domain Ω B [0, L] × [0,W]. Equation (2.9)
is integrated over each grid cell vi, j, and using the divergence theorem we obtain

d
dt

∫
vi, j

M =

∫
∂vi, j

JndS +

∫
vi, j

F(C)MdV , i = 1, ...,N, j = 1, ...,M, (2.12)
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where the area integral involving the term ∇ · (D(M)∇M) is converted into the surface integral for
the outward normal flux through the boundary ∂vi, j of the grid cell. The biomass density and carbon
concentration are both evaluated at the centers of the grid cells, i.e., in terms of the grid indices and
grid lengths we have

Mi, j (t) B M
(
t, xi, y j

)
≈ M

(
t,
(
i −

1
2

)
∆x,

(
j −

1
2

)
∆x

)
, (2.13)

Ci, j (t) B C
(
t, xi, y j

)
≈ C

(
t,
(
i −

1
2

)
∆x,

(
j −

1
2

)
∆x

)
, (2.14)

where the sides of each grid cell are equal to ∆x = L
N = W

M . The area integrals are evaluated by the
mid-point rule. The flux integrals are evaluated for each cell edge separately by the mid-point rule as
well. Since the fluxes are computed at the grid cell edges, we need to evaluate the diffusion coefficient
in these positions. To this end, we follow the approach in [39] where the flux across a shared interface
of two grid cells is approximated by the arithmetic average of the diffusion at the centers of those cells.
The derivative of M across each cell edge is approximated by the central finite difference formula. By
applying this discretization to Eq (2.9) we end up with the following ODE for the biomass density

d
dt

Mi, j =
1

∆x

(
Ji+ 1

2 , j
+ Ji− 1

2 , j
+ Ji, j+ 1

2
+ Ji, j− 1

2

)
+ Fi, jMi, j, (2.15)

where Fi, j B F(Ci, j) =
Ci, j

κ+Ci, j
− λ. With the boundary conditions (2.6), the flux terms in (2.15) are

obtained as

Ji+ 1
2 , j

=


1

2∆x

(
D

(
Mi+1, j

)
+ D

(
Mi, j

)) (
Mi+1, j − Mi, j

)
, for i < N,

0, for i = N,
(2.16a)

Ji− 1
2 , j

=

 0, for i = 1,
1

2∆x

(
D

(
Mi, j

)
+ D

(
Mi−1, j

)) (
Mi−1, j − Mi, j

)
, for i > 1,

(2.16b)

Ji, j+ 1
2

=


1

2∆x

(
D

(
Mi, j+1

)
+ D

(
Mi, j

)) (
Mi, j+1 − Mi, j

)
, for j < M,

0, for j = M,
(2.16c)

Ji, j− 1
2

=

 0, for j = 1,
1

2∆x

(
D

(
Mi, j

)
+ D

(
Mi, j−1

)) (
Mi, j−1 − Mi, j

)
, for j > 1.

(2.16d)

Applying the same discretization to (2.10) we obtain

d
dt

Ci, j = −Gi, jCi, j, (2.17)

with Gi, j B G(Ci, j) = Υ
Ci, j

κ+Ci, j
. There are no fluxes across cell edges since the substrate is immobile.

For computational purposes, the lexicographical grid ordering is introduced,

π : {1, ...,N} × {1, ...,M} → {1, ...,NM} , (i, j) 7→ p = (i − 1)M + j, (2.18)
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and we end up with two NM-component vectors for the biomass density and carbon concentration:
M = (M1, ...,MNM)T and C = (C1, ...,CNM)T with Mp B Mπ(i, j) = Mi, j and Cp B Cπ(i, j) = Ci, j. Hence,
spatial discretization, converts the PDE-ODE system into the following system of 2NM ODEs,

dM
dt

= D (M) M + F (C) M,

dC
dt

= −G (C) M.

(2.19)

Here D (M), F (C) and G (C) are NM × NM matrices. The entries of D (M) are calculated using the
first term in (2.15) and the corresponding definitions in (2.16), after the biomass density indices are
mapped to p using (2.18). The entries of F (C) and G (C) are evaluated by using the growth rate and
uptake rate formulae for each Cp, respectively.

Remark 1. The matrixD (M) is symmetric and weakly diagonally dominant with non-positive diagonal
entries and non-negative off-diagonal entries. The matrices F (C) and G (C) are diagonal. If Cp = 0
the pth diagonal entry of G (C) becomes zero while the same entry in F (C) becomes negative with a
magnitude equal to the cell loss rate.

3. A Spatially explicit model with random cell attachment

As mentioned in the introduction, we aim at formulating a new approach using SDEs to model
random attachment of cells from the aqueous phase to the substratum. Hence, we discard model
assumption 6 in Section 2.1 and allow for attachment to occur.

3.1. Model assumptions for attachment

Attachment refers to the process by which cells from the aqueous phase adhere to the substratum
or join an already existing biofilm colony. In many controlled experiments, no bacteria are present in
the inflow, so that the attaching cells are cells that have previously detached, but have not yet been
washed out. This is for example the case for the experiments described in [32, 40], which formed the
basis for the development of the model in [29], which we extend here. The close proportionality
relationship between growth activity in the reactor and biomass in the effluent reported in [32]
suggests that availability of cells in the aqueous phase is not a limiting factor for attachment, and that
detachment is proportional to the number of active cells in the system. Therefore, we make here the
simplifying assumption that attachment and detachment can be modeled independently. This allows
us to assume an unlimited reservoir of cells available for attachment in the aqueous phase, and thus
that the occurrence of an attachment event is independent of other detachment events and of
detachment activity. To describe detachment as a continuous phenomenon subsumed in a constant cell
loss rate λ, as introduced in [29], is consistent with the above proportionality between cell yield and
active biomass and the description of cell growth activity as a continuous process. Hence, we keep
this assumption for the cell yield process.

3.2. Mathematical model for stochastic cell attachment

We add an impulse function to the biomass ODE (2.15) in order to devise a mechanism for picking
up stochastic attachment signals received as inputs and converting these signals into attached biomass
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at some arbitrary position on the substratum. These input signals, which we call the attachment factors
(AFs), are denoted by φ. We aim to choose an impulse function, f (φ) with properties that allow to
control different aspects of attachment and appropriate characteristics for numerical implementation.
For instance, the normal distribution possesses most of the required properties, however, its maximum
value depends on its width. This can cause that the biomass density exceeds its upper bound which
is not admissible. Therefore, choosing an impulse function with a maximum equal to the theoretical
upper bound for the biomass density is required.

We construct an impulse function from the Fermi-Dirac distribution mostly used in physics, which
suits our modeling framework well. The range of this function is [0, 1] and its shape can be adjusted
by tweaking its characterizing parameters a, b and σ,

f (φ) =
1

e
φ−b
σ + 1

−
1

e
φ−a
σ + 1

, a ∈ R, b ∈ R, σ > 0, φ ∈ R. (3.1)

In Figure 3 the function f is plotted for a = 0.9, b = 1.0 and different values of σ. As the value of σ
decreases, the function becomes more rectangular and in the limit, as σ → 0, its support converges to
[a, b].
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Figure 3. The impulse function, f (φ), plotted for a = 0.9 and b = 1.0 and different values of
the parameter σ.

Including stochastic attachment in the model by adding the introduced impulse function to the
biomass ODE (2.15) we obtain

dMi, j

dt
=

1
∆x

(
Ji+ 1

2 , j
+ Ji− 1

2 , j
+ Ji, j+ 1

2
+ Ji, j− 1

2

)
+ Fi, jMi, j + γ1h(Mi, j)C

γ2
i, j fi, j, (3.2)

where 0 < γ1 � 1, γ2 ≥ 1 and

h(M) =

1 − M − ε, M ≤ 1 − ε
0, M > 1 − ε.

Except for the last one the terms were defined in (2.15) and (2.16), and

fi, j B f (φi, j) = (e
φi, j−b
σ + 1)−1 − (e

φi, j−a
σ + 1)−1.
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Here, we additionally introduced the factor γ1h(Mi, j)C
γ2
i, j in the term for cell attachment. The factor

h(Mi, j) ensures that bacterial cells attach preferably where no other cells are present, and the term Cγ2
i, j

prevents attachment to carbon-free positions. The exponent γ2 is included for a generic formulation,
and γ1 controls the intensity of bacterial attachment per unit time. In this parameter properties may
be subsumed that are specific to the species, such as cell size, etc. We choose γ1 � 1 such that
the numerical realizations are in agreement with the experimental observations in [21] and [23]. The
spatially discrete substrate ODE (2.17) remains unchanged.

In order to simulate the AF we consider in each grid cell (i, j) the Itô SDE

dφi, j = ψh(Mi, j)Cν
i, jdW (i, j)

t , ν ≥ 1, (3.3)

where W (i, j) denote independent standard scalar Wiener processes and dW (i, j)
t the corresponding Itô

differentials. The exponent ν is included for the sake of generality. The constant coefficient ψ controls
the magnitude of noise, which can be harnessed as a control parameter for the rate of attachment events.
The stochastic fluctuations in the system are proportional to volume filling and available substrate.
One could argue that the amplitude of the stochastic variation is linked to the available space and the
amount of substrate in a grid cell. In fact, without mollification of the impulse function, i.e., as σ→ 0,
attachment events occur when the value of φi, j in a grid cell falls in the support of the impulse [a, b]
(assuming that φi, j is initially outside of the support of fi, j); the more frequently this happens, the higher
is the rate of attachment. If a grid cell is free of biomass, then the higher the carbon concentration,
the greater is the amplitude of the stochastic variation in (3.3), which increases the likelihood that
φi, j attains a value within [a, b]. This, in turn, increases the chance of attachment of bacteria to that
grid cell. As time progresses, either the biomass density reaches its saturation level or the carbon
concentration tends to zero. In either case, the right-hand side of (3.3) becomes zero and φi, j reaches a
steady state.

Recognizing the underlying mechanism of the SDE (3.3), we remark that even if the stochastic
variation tends to zero as space is occupied and/or substrate is consumed, the asymptotic (steady state)
value of φi, j can lie in the support of the impulse function, [a, b]. However, multiplying the impulse
function by the factor γ1h(Mi, j)C

γ2
i, j nullifies the lasting impulse that can be caused by these relatively

rare events: it switches off the attachment of bacteria if either no carbon or no space is available in a
grid cell.

A key question that we will answer in simulations below, is whether our mollification (3.1)
approximates this behavior well enough.

The semi-discrete system for the model including random attachment is obtained via the
lexicographical grid ordering (2.18) in the same way as (2.19). The difference is the addition of the
impulse function to the biomass ODEs and the coupling to the system of Itô SDEs (3.3). The AF and
the Itô differential are both evaluated at the centers of the grid cells, i.e.,

φi, j (t) B φ
(
t, xi, y j

)
≈ φ

(
t,
(
i −

1
2

)
∆x,

(
j −

1
2

)
∆x

)
, (3.4)

dW (i, j)
t B dW

(
t, xi, y j

)
≈ dW

(
t,
(
i −

1
2

)
∆x,

(
j −

1
2

)
∆x

)
. (3.5)

Using the mapping (2.18), we obtain two additional NM-component vectors for the AF and the Itô
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differential : φ = (φ1, ..., φNM)T and dWt =
(
dW (1)

t , ..., dW (NM)
t

)T
with φp B φπ(i, j) = φi, j and dW (p)

t B

dW (π(i, j))
t = dW (i, j)

t .
The whole system now comprises 3NM SDEs. In fact, the equations for the biomass and carbon

concentration are regular ODEs that can be considered as special cases of Itô SDEs with zero stochastic
terms. To simplify notations we formally write the entire model as system of SDEs,

dM =
[
D (M) M + F (C) M + I (M,C) F(φ)

]
dt,

dC = [−G (C) M] dt,

dφ = T (M,C) dWt,

(3.6)

where D (M), F (C) and G (C) are NM × NM matrices with the properties described in Remark 1. We
introduced two new NM×NM matrices: I (M,C) and T (M,C). The vector F(φ) has NM components
and its entries are the impulse function evaluated in each grid cell.

Remark 2. The matrices I (M,C) and T (M,C) are diagonal with the pth diagonal entries ipp =

γ1h(Mp)Cγ2
p and tpp = ψh(Mp)Cν

p, respectively. They vanish if Mp = 1 or Cp = 0 and attain their
maximum values when Mp = 0 and Cp = 1. Therefore, we have 0 ≤ ipp � 1 and tpp ≥ 0. The
components of the vector F(φ) are given by fp B fπ(i, j) = fi, j such that fp = (e

φp−b
σ + 1)−1 − (e

φp−a
σ + 1)−1.

By construction, we have 0 ≤ fp ≤ 1 and fp vanishes when φp, the value of the pth entry of φ, lies
outside the support of the impulse function.

Due to the singularity in the diffusion coefficient (2.3), we cannot apply classical SDE theory to
analyze the well-posedness and qualitative behavior of (3.6), e.g., the non-negativity and boundedness
of solutions. Hence, as in the analysis of the underlying deterministic models [41, 42], we regularize
the diffusion coefficient and consider

Dε(M) =


0, M < 0,

δ
Mα

(1 − M)β
, 0 ≤ M ≤ 1 − ε,

δε−β (1 − ε)α , M > 1 − ε.

(3.7)

This yields the regularized SDE problem

dMε =
[
Dε (Mε) Mε + F (Cε) Mε + I (Mε ,Cε) F(φε)

]
dt,

dCε =
[
−G (Cε) Mε] dt,

dφε = T (Mε ,Cε) dWt.

(3.8)

3.3. Non-negativity and boundedness of solutions

The drift and diffusion terms of the regularized SDE system (3.8) are locally Lipschitz continuous
and hence, a unique local solution exists [30]. We now show that the biomass density and carbon
concentration are non-negative and bounded. To this end we recall comparison principles and
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invariance criteria for systems of SDEs in [35] and [43] that yield explicit necessary and sufficient
conditions for the boundedness and non-negativity of solutions.

We consider a general system of SDEs

dX(t) = f (t,X(t))dt + g(t,X(t))dWt, t > 0,

X(0) = X0,
(3.9)

where f : [0,∞) × Rn → Rn is a continuous, measurable function and g : [0,∞) × Rn → Rn×m is
a continuous, measurable matrix-valued mapping. Moreover, W is an m-dimensional adapted Wiener
processes and dWt denotes the corresponding Itô differential.

We assume that there exists a unique solution of (3.9).

Definition 3.1. A subset S ⊂ Rn is called invariant for the stochastic system (3.9) if for every initial
data X0 ∈ S the corresponding solution X(t) almost surely remains in S for t ≥ 0, i.e.,

P ({X(t) ∈ S , t ≥ 0}) = 1.

For the following theorem we refer to [35].

Theorem 3.2. Let ap,bp ∈ R ∪ {∞}, bp > ap and p ∈ I where I ⊆ {1, ..., n} is non-empty. The set

S B
{
X ∈ Rn : ap ≤ Xp ≤ bp, p ∈ I

}
is invariant for the SDE system (3.9) if and only if, for all t ≥ 0 and p ∈ I,

• fp(t,X) ≥ 0 for X ∈ S such that Xp = ap,
• fp(t,X) ≤ 0 for X ∈ S such that Xp = bp,
• gp,r(t,X) = 0 for X ∈ S such that Xp ∈

{
ap, bp

}
, r = 1, ...,m.

This theorem extends the well-known tangential condition for systems of ODEs (see [48]) to SDE
systems. In fact, if the stochastic term g is identically zero, the set S is invariant for the ODE system if
and only if the conditions on f are satisfied.

For the following comparison principle for SDEs we refer to [43].

Theorem 3.3. Let I ⊆ {1, ..., n} be non-empty. We consider two SDE systems of the form (3.9) with
drift terms f , f̃ , diffusion terms g, g̃ and initial data X0, X̃0. The following statements are equivalent:

(i) If the initial data satisfy (X0)p ≥ (X̃0)p, p ∈ I, then

P
({

Xp(t) ≥ X̃p(t), t ≥ 0
})

= 1, p ∈ I.

(ii) The functions f , f̃ , g and g̃ satisfy

• fp(t,X) ≥ f̃p(t, X̃) for t ≥ 0,
• gp,r(t,X) = g̃p,r(t, X̃) for t ≥ 0, r = 1, ...,m,

for all X, X̃ ∈ Rn such that Xp = X̃p and Xl ≥ X̃l for l ∈ I.
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This theorem extends classical comparison principles for ODE systems to SDEs. In particular, if the
stochastic term is zero, the comparison principles hold if the ODE system is quasi-monotone (see [48]).

We now apply Theorem 3.2 and Theorem 3.3 to show that the biomass density and the carbon
concentration of the regularized system (3.8) are non-negative and bounded. In the sequel, we denote
by 1 ∈ RNM and 0 ∈ RNM the vectors 1 = (1, ..., 1)T and 0 = (0, ..., 0)T . Furthermore, we write U ≤ V
if the inequality holds componentwise, i.e., if Up ≤ Vp for all p ∈ {1, ...,NM}.

Proposition 1. Let M ε and C ε be the solutions of (3.8) and suppose that the initial data satisfy 0 ≤
M ε(0) ≤ η1 with η ∈ (0, 1) and 0 ≤ C ε(0) ≤ 1. Then, the corresponding solutions satisfy

0 ≤ C ε
≤ 1 almost surely for all t ≥ 0,

0 ≤ M ε < µ almost surely for t ∈ [0,T ],

where the constant µ depends on the initial values and T .

Proof. The stochastic terms in the equations for the biomass density and carbon concentration in (3.8)
are zero, and hence, it suffices to verify the conditions on the drift term.

The initial data for the carbon concentration satisfies 0 ≤ Cε(0) ≤ 1. According to Remark 1, the
matrix G (Cε) is diagonal and the pth component of the right hand side is

−(G (Cε) Mε)p = −Υ
Cε

pMε
p

κ + Cε
p
.

For Cε
p = 0 the latter vanishes and for Cε

p = 1 it is non-positive if Mε
p ≥ 0. Therefore, the equation for

the carbon concentration satisfies the conditions in Theorem 3.2.
The equation for the biomass consists of three parts: the stochastic cell attachment,

I (Mε ,Cε) F(φε), the biomass growth, F (Cε) Mε , and the diffusion, Dε (Mε) Mε . Recalling Eq (2.16),
Remark 1 and Remark 2, we have

• pth component of I (Mε ,Cε) F(φε):

ifp = γ1h(Mε
p)Cεγ2

p f εp ,

• pth component of F (Cε) Mε:

fmp = (
Cε

p

κ + Cε
p
− λ)Mε

p,

• pth component of Dε (Mε) Mε:

dmp =
1

2∆x

[(
Dε(Mε

p−M) + Dε(Mε
p)
)

Mε
p−M +

(
Dε(Mε

p−1) + Dε(Mε
p)
)

Mε
p−1

−
(
Dε(Mε

p−M) + Dε(Mε
p−1) + 4Dε(Mε

p) + Dε(Mε
p+1) + Dε(Mε

p+M)
)

Mε
p

+
(
Dε(Mε

p+1) + Dε(Mε
p)
)

Mε
p+1 +

(
Dε(Mε

p+M) + Dε(Mε
p)
)

Mε
p+M

]
.

For Mε
p = 0, we have 0 ≤ ifp, fmp = 0 and

dmp =
1

2∆x

[(
Dε(Mε

p−M)
)

Mε
p−M +

(
Dε(Mε

p−1)
)

Mε
p−1
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+
(
Dε(Mε

p+1)
)

Mε
p+1 +

(
Dε(Mε

p+M)
)

Mε
p+M

]
.

Since all terms are non-negative if Mε
p−M, Mε

p−1, Mε
p+1 and Mε

p+M are non-negative, it follows that
M ε ≥ 0.

Finally, to prove the upper bound for M ε we use Theorem 3.3 and construct a suitable barrier
function. We consider the ODE system

d
dt

M̂ε = Dε
(
M̂ε

)
M̂ε + F

(
Ĉε

)
M̂ε + γ11,

d
dt

Ĉε = −G
(
Ĉε

)
M̂ε .

(3.10)

Let Mtot =
∑NM

p=1 M̂ε
p and Ctot =

∑NM
p=1 Ĉε

p. Then, adding up the equations we obtain

d
dt

(
Mtot +

1
Υ

Ctot

)
≤ NMγ1,

and consequently, (
Mtot(t) +

1
Υ

Ctot(t)
)
≤

(
Mtot(0) +

1
Υ

Ctot(0)
)

+ NMγ1t. (3.11)

The non-negativity of the solutions M̂ ε and Ĉ ε of the ODE system (3.10) follow by the same arguments
as for the stochastic system. Hence, the inequality (3.11) implies that the biomass density is bounded.
Finally, since

ifp = γ1h(Mε
p)Cεγ2

p f εp ≤ γ1,

we observe that solutions of the ODE system (3.10) are upper solutions for the stochastic attachment
model (3.8), which implies the boundedness of the biomass density.

�

Remark 3. Since we impose homogeneous Neumann boundary conditions and allow for random cell
attachment events, we cannot expect that the biomass density necessarily remains bounded by its
maximum value for all times. While attachment ceases as M = 1 is reached, the deterministic growth
part, depending on parameters and initial conditions might lead to M reaching unity somewhere in
finite time. This is in agreement with the situation for the deterministic model with diffusive supply of
substrates [41], in which case there is the possibility that one might find M → 1 a.e. in finite time and
a subsequent breakdown of the model. In our setting, contrary to the one studied in [41], substrate is
not replenished but continuously depleted in locations where biomass is present, i.e., substrate
degradation is faster. Where biomass is present, C is a strictly monotonically decreasing function and
C → 0 eventually. Biomass loss will start dominating locally when C < λκ/(1 − λ) =: Ccrit [N.B.: we
tacitly assume here λ < 1, otherwise the cell loss rate would be stronger than the growth rate even
under ideal conditions and the population is not able to establish itself], eventually leading to
M → 0. Strictly speaking, as in the case of the deterministic model, under homogeneous Neumann
conditions the stochastic attachment model is valid as long as the biomass density remains below its
physical upper bound. In all simulations the initial biomass density is low and did not attain values
close to 1 anywhere in the domain, i.e., C dropped down to Ccrit always before M reached unity, i.e.,
this restriction is not severe from a practical perspective.
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Table 1. Model parameters used for 2D simulations.

Parameter Symbol Value Reference
Motility Coefficient δ̃ 1.0 × 10−6 [29]
Diffusion Coefficient Exponent 1 α 4.0 [29]
Diffusion Coefficient Exponent 2 β 4.0 [29]
Maximum Consumption Rate Υ̃ 0.4 [29]
Half Saturation Concentration κ̃ 0.01 [29]
Cell Loss Rate λ̃ 0.42 [29]
Control Parameter of f (φ) σ 0.00001 assumed
Shift Parameters of f (φ) a & b 0.99 & 1.00 assumed
Density of an Attached Cell per Time Step γ1 0.01 assumed
Biomass Attachment Exponent γ2 1.0 assumed
Constant Coefficient in the AF SDE ψ 0.04 & 0.08 assumed
Exponent in the AF SDE ν 1.0 assumed
Initial Data for φ φ0 0.0 assumed
Starting Integer Seed for the PRNG sd 10 assumed
Domain Length L 1.0 assumed
Domain Width W 1.0 assumed
Grid Size N × M 29 × 29 assumed

4. Computational implementation

To numerically integrate the SDE (3.6) we use the Euler-Maruyama method, the probably simplest
and most basic algorithm to solve Itô differential equations. It is known that the Euler-Maruyama
method approximates the sample solutions of an SDE with the strong order of convergence equal to
0.5 [45]. To cope with the small time steps that are often required by the Euler-Maruyama method
for spatial models, we use a restarted version, where the time-step length is newly determined in
every integration step in an adaptive manner. The noise term in the Euler-Maruyama approximation
is represented by increments of the Wiener process. These are simulated by known pseudo random
number generator algorithms, which we have parallelized in OpenMP to reduce the overall simulation
runtime. For more details on computational aspects we refer the reader to [47].

5. Simulation results and computational analysis

5.1. 2D simulations

We present some illustrative simulations of the model in the 2D setting. In a first scenario, the
simulation is initiated with a clean domain, i.e., the initial data for biomass density equals zero
everywhere. In a second scenario, the simulation is initiated with a small established colony at the
center of the domain. Our goal is to investigate qualitatively the effect of an established colony on the
random attachment of free cells and the ensuing colony formations and developments. In both of
these scenarios, we look into variations in the biofilm development that might arise from changing the
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rate of bacterial cell attachment. In all these simulations the carbon concentration is set to its maximal
value over the entire domain, i.e., we mimic a homogeneous substratum, e.g., paper chads that are
often used in experimental studies, such as [40]. For each scenario, we consider two different rates of
stochastic cell attachment. The simulation parameters for all these cases are given in Table 1.

5.1.1. Case 1: initially clean domain

We control the emerging characteristics of these simulations, namely the rate of stochastic cell
attachment and the overall biofilm formation features, by adjusting ψ in (3.3); in simulation 2 this
value is half of the one used in simulation 1 (see Table 1). The results of these simulations, for
selected time points, are shown in Figures 4 and 5. Starting from the homogeneous initial conditions,
as the simulations progress temporally, small colonies start to emerge gradually. Figure 4 for
simulation 1 demonstrates that the seeds of the initial colonies begin to become visible around t = 25.
These colonies grow radially and eventually manifest crater-like features, as a consequence of carbon
depletion behind the moving front of the colony. These simulated communities resemble those of the
cellulolytic biofilms observed experimentally, see Figure 1 for comparison. As the radial growth
continues, some colonies coalesce and form communities. In turn, these communities grow and join
other communities, which produce even larger communities.

A comparison of Figures 4 and 5, reveals the effect of the attachment rate ψ on colony formation.
For simulation 2, colony formation becomes noticeable later than in simulation 1 (around t ≈ 45
vs. t ≈ 25) and more scarcely. As a consequence, the initial colony formations are patchier and it
takes longer for these colonies to merge and form communities. The substrate supply lasts longer,
to around t ≈ 80, in simulation 2 to the point that some remaining spots of the substratum that still
contain maximal carbon concentrations have become sites for the formation of new colonies, whereas
in simulation 1 carbon is depleted at t ≈ 45. This suggests that cell attachment, rather than growth can
be the limiting factor in carbon utilization.

5.1.2. Case 2: initially colonized domain

As demonstrated in Figures 6 and 7, the central colony grows radially with a distinct circular front
that sweeps through the domain. In the wake of this front, the substrate is consumed, which eventually
renders the area within the central crater-like structure unavailable to random cell attachment.

As before, by changing the value of ψ the frequency of attachment events is controlled. For higher
values, more random attachment events occur over the areas that are still replete with substrate and
are not yet occupied by biomass. This is evidently the case in Figure 6 where by t = 35 numerous
small colonies have formed and many newly emerged colonies are visible. The growth rate for these
small peripheral colonies is such that by t = 40 many of them have merged and developed into
communities. Subsequently, the biofilm communities surround the central colony from all directions
and merge into it. This interaction distorts the sharp front of the central colony, which is characteristic
for the underlying deterministic model [29], and suppresses its further growth toward the boundaries
of the domain. The situation is very different when ψ is set to half the previous value. Figure 7
displays how the lower rate of random attachment can emphasize the usual characteristics that we
expect from a deterministic model of a single-colony cellulolytic biofilm, i.e., attachment processes
do not notably affect the biofilm dynamics.
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Figure 4. Simulation of (3.6) with ψ = 0.08 and initially M ≡ 0 everywhere. Shown are
biomass density M (left) and carbon concentration C (right) at different times t.
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Figure 5. Simulation of (3.6) with ψ = 0.04 and initially M ≡ 0 everywhere. Shown are
biomass density M (left) and carbon concentration C (right) at different times t.
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Figure 6. Simulation of (3.6) with ψ = 0.08 and initial colony in the center. Shown are
biomass density M (left) and carbon concentration C (right) at different times t.
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Figure 7. Simulation of (3.6) with ψ = 0.04 and initial colony in the center. Shown are
biomass density M (left) and carbon concentration C (right) at different times t.
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Table 2. Model parameters used in 1D simulations in section 5.2.

Parameter Symbol Value Reference
Constant Coefficient in the AF SDE ψ 0.1 & 0.2 assumed
Starting integer seed for the PRNG sd 1-100 assumed
Number of grid cells N 24-213 assumed
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grid sizes averaged over a hundred realizations. The spatial size of each random cell
attachment is 1

16 of the domain length. Here, ψ = 0.2.
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Figure 9. The time evolution of the total biomass M (left) and carbon C (right) for several
grid sizes averaged over a hundred realizations. The spatial size of each random cell
attachment is 1

128 of the domain length. Here, ψ = 0.1.
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5.2. Grid refinement studies

We have performed a spatial grid convergence study to investigate how the attachment model (3.6)
behaves as the spatial discretization is refined. This has been carried out in 1D simulations because
of the high computational costs incurred by 2D simulations. Each simulation in the study has been
repeated several times with different initialization of the pseudo random number generator (PRNG)
seed. The simulation parameters used for all 1D simulations are mostly the same as the ones provided
in Table 1. The few changes are summarized in Table 2. For quantitative comparability of results
between grid resolutions, we keep the size of attachment sites constant. We test two values, 1

16 and 1
128

of the domain length.
The primary quantities of interest that we track in our simulation experiment are the total biomass

and the total carbon in the system,

MTOT (t) B
∫

Ω

M(t, x)dx = ∆x
N∑

p=1

Mp, (5.1)

and

CTOT (t) B
∫

Ω

C(t, x)dx = ∆x
N∑

p=1

Cp, (5.2)

where Ω = [0, 1] ⊂ R is the spatial domain and N is the number of grid points. The sample mean and
the sample standard deviation for these quantities of interest, as functions of t, taken over the repeats
of the simulations are computed as

sample mean B E[X] =
1
n

n∑
i=1

Xi, (5.3)

sample standard deviation B S D[X] =

√√
1

n − 1

n∑
i=1

(Xi − E[X])2, (5.4)

standard error of the sample mean B S EM[X] =
S D[X]
√

n
, (5.5)

where X stands for MTOT and CTOT and n is the number of samples (realizations).
The sample means are plotted in Figures 8 and 9, taken over n = 100 simulations for each grid size

in the convergence study. For both sizes of attachment sites the results are qualitatively different, and
easily predictable: The amount of carbon decreases monotonically. During an initial phase, when
little biomass is in the system the amount of carbon remains close to the initial amount. Decay
becomes notable at the same time as the biomass in the system increases, and levels off eventually
when all carbon is consumed. When the amount of carbon drops below half of the initial amount, the
amount of biomass decreases again. This indicates that the loss terms in the biomass equation begin
to dominate and that also attachment ceases, due to a lack of carbon in the system, i.e., a lack of
favourable attachment sites. This qualitative behaviour is observed for all grid sizes and both sizes of
attachment sites. Coarser grids predict a higher biomass peak, and both an earlier occurrence of the
biomass peak and the leveling off of carbon. However, as the grid is refined, convergence of the
sample mean is observed for both quantities of interest.
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Figure 10. The biomass SEM (left) and carbon SEM (right) for several grid sizes obtained
from a hundred realizations. The spatial size of each random cell attachment is 1

16 of the
domain length. Here, ψ = 0.2.
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Figure 11. The biomass SEM (left) and carbon SEM (right) for several grid sizes obtained
from a hundred realizations. The spatial size of each random cell attachment is 1

128 of the
domain length. Here, ψ = 0.1.
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Figure 12. The mean values of the spatially integrated biomass density (left) and carbon
concentration (right) plotted against time for several values of ψ. Here, a = 0.99, b = 1.00
and σ = 0.00001 for all the one hundred sampled simulations. The vertical bars represent
the mean ± one standard deviation.

Also the standard error of the sample means converge as the grid is refined for both quantities of
interest, cf. Figures 10, 11. The time course for these values reflects the time course of the sample
means: For MTOT we observe two maxima, one corresponding to the phase of increasing biomass, one
to the decay phase, for CTOT we have a single peak during the decay phase. For both quantities of
interest the deviation from the mean is larger for the coarser grids.

5.3. Dependency on attachment parameters

In order to investigate the dependence of the model behaviour on the parameters that we introduced
to describe cell attachment we carry out a series of simulations in which the values of a, b, σ, ψ are
varied. The remaining parameters are given in Table 1. This simulation experiment is conducted on
a square domain of 256 × 256 grid points, which represents a good compromise of grid resolution
and computational cost. Each simulation is repeated several times and we again use the total biomass
(5.1) and carbon (5.2) in the system as quantities of interest and compute the sample mean and sample
standard deviation in accordance with (5.3), (5.4). For all sampled simulations, the substratum or
spatial domain has been set to have zero biomass attached to it initially. As simulation time progresses,
random cell attachment events occur, and subsequently establish small colonies, which then grow,
consume the substrate and eventually merge to form larger communities (Figures 4 and 5 provide
visual representations for this scenario).

The effect of varying ψ over one order of magnitude, from 0.03 to 0.3 are shown in Figure 12. As
we elaborated in Section 5.1.1, the higher values of this parameter are associated with more instances
of stochastic cell attachment that also begin to occur earlier in time. This model behavior is
corroborated by the results shown here as well. Greater ψ values result in more random cell
attachment and as more initial colonies form, the substratum is covered by more distributed amounts
of biomass, which accelerates both, the growth phase and the consumption of the carbon substrate. As
a result, the biomass curves become narrower and attain higher peaks, and the carbon curves become
steeper during the consumption phase. As the value of ψ is increased, the standard deviation of both
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Figure 13. The mean values of the spatially integrated biomass density (left) and carbon
concentration (right) plotted against time for several values of a and b. Here ψ = 0.1, b −
a = 0.05 and σ = 0.00001 for all the one hundred sampled simulations. The vertical bars
represent the mean ± one standard deviation.

quantities of interest decrease, i.e., as the number and size of colonies grows due to higher rates of
random attachment the uncertainty in MTOT and CTOT curves is reduced. This is a consequence of the
increased colonisation and thus the reduction of possible attachment sites.

Figure 13 shows the effect of varying a and b simultaneously. We kept the difference b − a = 0.05
constant and varied 0.45 ≤ a ≤ 3.45. As the values of a and b are reduced, the maximum and minimum
values of the biomass and carbon curves, respectively, are attained earlier in time. This behavior is
similar to the one manifested by higher values of ψ, which induced more frequent random attachment.
Since the value of ψ is the same for all the sampled simulations in this case, the reason that more
attachment events occur for smaller values of a and b may be attributed to the higher likelihood of the
event where the value of the AF falls within the impulse interval as the interval is shifted towards zero
(the initial value of the AF over the whole domain). We also observe the same gradual decrease of the
standard deviation in both quantities of interest. The reason is the same as the one discussed for the
role of ψ, i.e., more instances of random attachment reduce the subsequent possibility of attachment
and slows down growth.

The situation is different for the dependency of σ, which we varied between 10−2 and 10−7, see
Figure 14. For the smaller values there is no substantial effect on the quantities of interest observed,
only for the largest value small differences are noticed. The standard deviation in all cases remains
small. This confirms that the mollification of the discrete impulse that was introduced via (3.1) indeed
converges as σ → 0, and that our approach is well suited to mimic discrete attachment events. The
reason for the fairly low sensitivity observed here can be ascribed to the role of σ in the impulse
function f , see Figure 3. For values of σ close to the ones used in our simulations, the impulse function
maintains a rectangular shape between the values of a and b. Hence, the cut-offs for effective φ values
are sharp and very close to the numerical values of a and b. For larger values of σ the rectangular
shape gives way to a mound-like shape with variable width, which does not equal the length of [a, b]
everywhere. Therefore, as long as σ assumes values in the range that maintains somewhat sharp cut-
offs for φ, the frequency of stochastic cell attachment is most sensitive to the values of a, b and ψ.
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Figure 14. The mean values of the spatially integrated biomass density (left) and carbon
concentration (right) plotted against time for several values of σ. Here a = 0.99, b = 1.00
and ψ = 0.1 for all the one hundred sampled simulations. The vertical bars represent the
mean ± one standard deviation. The insets provide a zoomed-in portion of the graphs for
clarification.

6. Discussion

Through performing many numerical simulations, we provided evidence that our model of
stochastic attachment of free bacterial cells to the substratum is a viable mathematical framework that
can be incorporated into deterministic continuum models. We especially focused on cellulolytic
biofilms for which the underlying deterministic PDE-ODE system has been previously shown to
model biomass growth and inverse colony formation in accordance with experimental findings [29].

The particular nature of random cell attachment and the fact that there are not sufficient
experimental data in the literature to be used to parameterize possible underlying mechanisms,
especially in the case of cellulolytic biofilms, make the deployment of a stochastic approach for
modeling the attachment process adequate for now. However, future experiments and further analysis
of their results may eventually provide a path towards a model that incorporates more physical details
in a more deterministic manner.

The mere addition of noise to the underlying PDE model would not lend itself readily and directly
to describe random cell attachment: while such additive noise would naturally lead to an Itô SDE
for which established numerical methods exist, the inherent possibility that solutions attain negative
values and the random magnitude of the stochastic part render this approach unsuitable for constructing
random attachment with certain characteristics. Moreover, attachment described by such an approach
will lose its discrete nature. These were the main reasons for us to decouple the stochasticity of
attachment from the main model equations and to describe it via a separate variable.

To cast our model in the theoretically well-established formalism of stochastic differential equations
is a step forward from the ad-hoc method used previously in [29]. Although this may be viewed as
the most significant accomplishment of the present work, the underlying stochastic variable that we
introduced, namely the attachment factor φ, which produces the required stochasticity in the system,
is not physically on par with the other two state variables, the biomass density M and the carbon

Mathematical Biosciences and Engineering Volume 17, Issue 3, 2236–2271.



2266

concentration C. Since our main purpose has been utilizing an approach that is supported by an existing
rigorous theoretical foundation, the introduced SDE formulation can be viewed as the first step towards
modeling the stochastic attachment phenomenon. There is room for improving our approach, e.g., by
attempting to reformulate a similar model as mathematically simpler Random Ordinary Differential
Equation [44].

Our numerical simulations have shown that in a two-dimensional setting the proposed model
produces results that exhibit similar characteristics as the cellulolytic biofilm formations documented
in Figure 1. Furthermore, our 2D simulations may be viewed as computer experiments where
different scenarios with various initial states can be replicated and consequently an improved
understanding of the studied biological system could be acquired. Our computational analysis
suggests the convergence of the spatially discrete model as the grid is refined.

The number and frequency of stochastic cell attachment is most sensitive to the constant
coefficients in the equation for the attachment factor ψ, and the shift parameters of the impulse
function, a and b. These three parameters summarize both the external physical conditions and
reactor properties. Accordingly, and this is also supported by our simulations, the temporal and spatial
component of attachment cannot be controlled separately in an easy manner by these parameters.
Furthermore, our simulations have shown that the continuous mollification (3.1) of the discrete
impulse function is able to mimick discrete attachment events, i.e., the mollified version behaves as
one expects from the discrete version if σ→ 0.

As a direct consequence of the model being inherently stochastic, some of the simulation results
and drawn conclusions have been treated statistically. The number of sampled simulations for these
statistical treatments have been determined such that the level of stochasticity would not change
dramatically as more samples were included in calculating the desired statistics. To determine this
number, we have used the 1-norm of the standard deviation as a measure, which can be calculated
from the data for both 1D and 2D simulations.

In the case of 1D simulations, we have both biomass data and carbon data for a number of grid sizes
that have been used for the results in Section 5.2. The 1-norm is calculated easily by summing over
standard deviations from several time points. Figure 15 shows the results of these calculations for one
of the grid sizes.

As the sample size is increased, the 1-norm of the standard deviation for the biomass begins to show
less variation above seventy samples. Therefore, for keeping the computational costs manageable, we
have used a maximum of one hundred samples for calculating the desired statistics. The same type
of behavior is somewhat evident from the carbon curves as well. This result holds true for other grid
sizes, which we have not displayed here.

The 2D case, is handled similarly. The biomass and carbon data have been acquired from sensitivity
analysis simulations as described in Section 5.3. Figure 16 shows the results for calculating the 1-norm
of standard deviations for different sample sizes. Both, biomass and carbon curves, begin to show signs
of levelling off after the number of samples exceeds eighty.

One of the most challenging aspects of our study has been the computational realization of the
numerical simulations. This has manifested itself at different levels, e.g., in the strict time step
restriction of the Euler-Mayurama method, which however is also necessary for a sufficiently accurate
resolution of the temporal stochasticity, and the process of random number generation. The
algorithms we have utilized for random number generation are textbook methods with well-known
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Figure 15. The 1-norm of standard deviation calculated using standard deviations at several
time points for a 1D setting. The x-axis represents the number of samples. The grid size is
214 = 4096. The biomass curve is on the left and the carbon curve is on the right. Note that
the numerical data from the spatially integrated state variables are used here. The simulation
parameters are given in Table 1 and specifically here ψ = 0.2, a = 0.99, b = 1.00 and
σ = 0.00001.
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Figure 16. The 1-norm of standard deviation calculated using standard deviations at several
time points for a 2D setting. The x-axis represents the number of samples. The grid size is
256 × 256. The biomass curve is on the left and the carbon curve is on the right. Note that
the numerical data from the spatially integrated state variables are used here. The simulation
parameters are given in Table 1 and specifically here ψ = 0.08, a = 0.99, b = 1.00 and
σ = 0.00001.

properties. We used them because they are easy to implement and test, and well understood. Relying
in a first proof of principle study on such proven and generally applicable methods, allows us to focus
on the modeling question at hand and to separate it from questions of reliability of the numerical
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methods used. While there are established and generally accepted methods for semilinear parabolic
stochastic PDE extensions, e.g., [33], these often use the specific properties of the linear diffusion
operator and cannot be easily extended and applied to quasilinear problems. In order to make the
model that we presented suitable for large scale simulation experiments, however, this question of
acceleration of the numerical simulations needs to be addressed.

Finally, our model development was presented for a two-dimensional setup that corresponds to the
spread of cellulosic biofilms over very thin substrata. In this case, the entire domain is a potential
attachment site. To apply the same ideas to a fully three-dimensional setup with a substratum of
non-negligible depth, penetration of the colonies into the substratum needs to be accounted for. The
computational domain in that case would be a section of the substratum, some part of the boundary of
which interfaces with the (not explicitly considered) aqueous phase. Possible attachment sites would
be initially restricted to that part of the boundary and, later on, as the wave fronts penetrate into the
substratum, potentially also to the wake side of these fronts, i.e., the set of attachment sites would be
a 2D surface in the 3D domain. Similarly, a two-dimensional setup describing vertical degradation of
a thin slice of substratum could be handled, leading to a 1D curve in the 2D domain. Such a setup
will bring with itself some additional technical challenges which to address we leave for a forthcoming
study.

7. Conclusion

Discrete random cell attachment can be included in a deterministic continuous biofilm model by
introducing an auxiliary stochastic process that generates attachment impulses. This formulation leads
to a stochastic model that naturally preserves non-negativity, as opposed to the direct addition of
white noise. Using a regularised version of the underlying partial differential equation, this model also
preserves the boundedness of solutions. In contrast to an earlier more direct approach to include
(nonlinear) stochastic impulses, this formulation leads to an Itô stochastic differential equation for
which the established stochastic numerical methods are known to reproduce the stochasticity of the
differential equation correctly. We used here the simplest numerical solver for a stochastic differential
equation, namely the Euler-Maruyama method. This turned out to be highly expensive. More
advanced stochastic time integration schemes should be explored in the future.

Whereas we developed our model here for the particular setting of cellulosic biofilms, we think
that in principle this discrete stochastic attachment framework can also be incorporated into other two-
dimensional or three-dimensional continuum models, including models of more traditional biofilms
where nutrients are supplied by diffusion from the aqueous phase to the colony.
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